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Abstract: The goal of style transfer is to apply the artistic features of a style 
image to a content image while maintaining the content image’s structure. 
Traditional methods often use CNNs and residual blocks, but their limited 
receptive field struggles to capture long-range feature dependencies, leading to 
repetitive local patterns. Residual blocks can also cause interference between 
style and content representations. To address these issues, we introduce a 
pseudo-coordinates graph convolutional generative adversarial network  
(PGC-GAN), which consists of two branches: one for extracting style and 
another for style transfer. The style extraction branch represents style features 
as a graph and uses graph pooling to remove redundant information. The style 
transfer branch encodes these features into pseudo-coordinates, enabling 
flexible relationships between pixel nodes and long-range feature aggregation 
without disrupting the content image’s structure. Experimental results 
demonstrate that PGC-GAN significantly improves artistic style transfer 
compared to existing methods. 
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1 Introduction 

Artistic style transfer is a crucial task in computer vision, with wide applications in image 
editing and digital art creation. The core objective is to transfer the artistic style of a 
target image onto a source image while preserving the content of the original image, 
resulting in an image that embodies the desired style (Wang and Yaermaimaiti, 2024). 
However, challenges arise from the differences between styles, the degree of  
style-content fusion, and the need to maintain image details during the transfer process 
(Wei, 2024; Tian, 2024; Liu, 2023). These challenges limit the quality and consistency of 
images generated by current style transfer methods. 

Artistic style transfer methods based on CNNs (Ni, 2024; Wang and Li, 2023; 
Farajzadeh et al., 2023; Chiu and Gurari, 2023) rely on their hierarchical convolutional 
structure, which can automatically extract multi-scale features from images, offering 
advantages in capturing local details while preserving global structures. Li and Zhu 
(2024) proposed a multi-scale feature fusion network that employs a parallel multi-scale 
feature extraction mechanism to capture style features at different levels. By 
incorporating channel attention mechanisms, they emphasise the significant features of 
the target artistic style. However, to reduce the number of model parameters, Li and Zhu 
(2024) used a convolutional kernel decomposition strategy, breaking down large kernels 
into smaller ones to expand the receptive field and lower computational complexity. 
Although stacking smaller kernels can increase the receptive field to some extent, it also 
raises training challenges, such as gradient explosion or vanishing. To address this issue, 
Chiu and Gurari (2022) introduced high-frequency residual skip connections, transmitting 
high-frequency details between the encoder and decoder. This method preserves more 
details through residual structures, ensuring that high-frequency features of the original 
image are retained during style transfer. However, despite preserving high-frequency 
information, these details do not entirely equate to style features. Since edges and other 
high-frequency information are closely tied to image content, models struggle to 
distinguish between these details and style information, leading to confusion between 
content and style in the transfer results. 

Compared to CNN-based methods, generative adversarial networks (GANs) (Lin and 
Li, 2024) offer a different approach to style transfer. GANs, through adversarial training 
between the generator and discriminator, effectively mitigate gradient explosion or 
vanishing issues. Additionally, the multi-stage generation structure of GANs allows 
images to be generated progressively, which aids in separating content and style features 
while maintaining global consistency. For example, Han et al. (2023) proposed a  
multi-feature encoder that encodes style from multiple aspects, including shape, texture, 
and colour, and utilises dynamic convolution and adaptive instance normalisation 
(AdaIN) for effective transfer of complex styles. Ma (2024) further explored different 
generator architectures in GANs and discovered significant differences in style transfer 
performance depending on the architecture. For instance, using U-Net (Ronneberger  
et al., 2015) as a generator, the model excels in retaining details and textures due to its 
complex structure. However, U-Net tends to generate overly detailed and textured 
images, resulting in overly complex and visually cluttered outputs. On the other hand, 
using ResNet (He et al., 2016) as a generator produces more natural and consistent style 
representations but lacks the detailed textures and complexity often crucial to artistic 
style due to ResNet’s residual structure, which directly preserves some of the original 
content information. 
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To further optimise style transfer performance, some methods have introduced graph 
structures to more flexibly represent relationships between style features. This approach 
aligns well with the characteristics of style features, which are often independent of the 
absolute position in the image. Shi et al. (2024) proposed a heterogeneous graph structure 
that includes both the target image and multiple reference images. Through the similarity 
reference indexing generation module, it selects reference images that are semantically 
and stylistically similar to the target image. The multi-reference graph reasoning module 
then uses GCNs to learn the relationships between images within the graph, optimising 
the style transfer process. Similarly, Jing et al. (2022) utilised graph neural networks 
(GNNs) to establish fine-grained content-style correspondences, treating local patches 
from both content and style images as graph nodes. They employed a heterogeneous 
graph attention mechanism to enable patch-level content-style interactions, thereby 
forming adaptive many-to-one content-style correlations. Additionally, a deformable 
graph convolution method was introduced to achieve cross-scale content-style matching. 

However, defining relationships between nodes in graph structures remains a 
challenge. Node relationships are often based on similarity or a fully connected approach. 
The former has limited flexibility and tends to fall into local optima (Jiao et al., 2022), 
while the latter, although capable of capturing global semantic correlations, leads to node 
oversmoothing as the number of layers increases, resulting in feature information loss 
(Cao et al., 2022). Although attention-based node relationships improve flexibility to 
some extent, the use of Softmax in attention mechanisms forces weights to be non-
negative and sum to 1, which can lead to over-squashing during information aggregation, 
causing the loss of critical local information (Giraldo et al., 2023). 

Therefore, we believe that a key challenge in improving the quality of generated 
images is how to effectively separate and integrate style and content features while 
ensuring consistent and uniform style distribution across the image. 

To overcome the limitations of existing style transfer methods in separating and 
integrating style and content features, we propose an innovative network architecture 
called the Pseudo-coordinates graph convolutional generative adversarial network  
(PGC-GAN). This architecture effectively addresses the issues of poor style consistency 
and redundant information in traditional methods by separating style extraction and style 
transfer into two independent branches. In the style extraction branch, we model style 
features using a graph structure, enabling the relationships between nodes to dynamically 
adapt to different styles and enhancing style consistency. To tackle the difficulty of 
eliminating redundant style features in traditional methods, we designed a node scoring 
mechanism (NSM) that assigns a uniqueness score to each node. Nodes with higher 
scores represent more distinctive style information, while nodes with lower scores are 
considered redundant and can be represented by combinations of other nodes. This 
mechanism effectively reduces invalid or repetitive style features, preventing interference 
during the style transfer process. In the style transfer branch, we abandon the traditional 
residual structure to overcome the issue of mixed style and content features in previous 
methods. However, removing the residual structure may lead to gradient vanishing or 
explosion, and reducing convolutional blocks can shrink the receptive field, weakening 
the model’s ability to capture global features. To address these challenges, we replace 
convolutional blocks with graph convolutional networks (GCNs) (Zhang et al., 2022) to 
enhance the model’s capacity for modelling complex style features. However, traditional 
GCNs have limitations in constructing node relationships: similarity-based connections 
are too simplistic to capture complex global relations, while fully connected graphs, 
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though capable of capturing global information, increase computational complexity and 
lead to node over-smoothing. To solve this problem, we propose a learnable  
pseudo-coordinates graph convolution (PGC) mechanism. This method dynamically 
learns flexible relationships between nodes based on style feature encoding, avoiding 
reliance on the original structure of the content image and effectively balancing local and 
global information modelling. By precisely modelling long-range dependencies, PGC not 
only improves the accuracy and consistency of style transfer but also reduces 
computational complexity, overcoming the shortcomings of traditional methods in node 
relationship modelling. 

In summary, our contributions are threefold: 

1 We propose a novel pseudo-coordinates PGC-GAN that aggregates long-range style 
dependencies while preserving the original structure of the content image. 

2 We design a NSM for the style extraction branch, which scores each graph node to 
identify and filter out redundant style feature nodes, thereby reducing redundant style 
information and ensuring consistency in style. 

3 We introduce PGC for generating pseudo-coordinates for pixel nodes based on style 
features. This further separates dependencies between the original image and style 
image, allowing precise control over long-range dependencies during the style 
transfer process. 

2 Methods 

In this section, we will introduce the proposed method in detail. First, we describe the 
overall framework of the model, as shown in Figure 1. Then, we provide a more detailed 
explanation of the Pseudo-coordinates PGC-GAN, focusing on the key components of the 
two branches: the NSM and the PGC. 

The PGC-GAN model consists of three parts, as illustrated in Figure 1. First, the style 
extraction branch extracts the style information from the style collection. Then, the style 
transfer branch extracts the content features from the content image, fuses them with the 
extracted target style, and generates the style-transferred image. Finally, the discriminator 
network judges whether the generated image’s style is consistent with the target style. 

Specifically, we utilise the VGG16 and ResNet50 networks pre-trained on ImageNet 
(Deng et al., 2009) as feature extractors for the style extraction and style transfer 
branches, respectively. First, we choose VGG16 as the feature extractor for the style 
extraction branch due to its relatively simple structure, which lacks skip connections, thus 
avoiding confusion between content and texture features. In this branch, we extract 
features using VGG16 and calculate the Gram matrix to represent style features. Each 
style is treated as a node, and we calculate the importance score for each node, with 
higher scores indicating that the node contains more information, while lower-scored 
nodes can be replaced by others. This process filters out redundant style features. 
Ultimately, the style features are modelled as two sets of parameters that guide the style 
transfer branch. 
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Figure 1 Framework of the pseudo-coordinates graph convolutional generative adversarial 
network (see online version for colours) 

 

In the style transfer branch, ResNet50 is responsible for extracting content features. Its 
residual blocks can effectively reuse lower-level features, aiding in content extraction. 
We treat each pixel in the feature map extracted by ResNet50 as a node and use the 
topology parameters generated from the style features to construct the graph structure 
between nodes. By introducing pseudo-coordinates, we enhance the flexibility of graph 
construction, while avoiding excessive node smoothing. Next, we aggregate features 
based on the pseudo-coordinates and perform L rounds of aggregation, followed by 
AdaIN (Huang and Belongie, 2017). It is important to note that the parameters for AdaIN 
are also generated from the style features. Finally, the style-transferred image is 
generated through a decoder equipped with a spatial window layer instance normalisation 
(SW-LIN) (Xu et al., 2021) function. 

In the discriminator network, VGG16 takes both the target style image and the 
generated image as inputs. The discriminator is used to determine whether the generated 
image’s style is consistent with the target style. 

2.1 Node scoring mechanism 

To avoid degradation in the quality of generated images due to redundant local style 
features, we designed and proposed a NSM. This mechanism aims to evaluate the 
importance of each node by calculating the Manhattan distance between nodes, 
determining which nodes’ information can be represented or replaced by others, thereby 
reducing redundant features. This approach not only enhances the model’s ability to 
handle global information but also optimises the style transfer process, ensuring that the 
generated images exhibit a more harmonious and unified overall style. 

First, we base our approach on the feature map F∈RH×W×C extracted from the VGG16 
network, where this feature map contains high-dimensional content representations. To 
process these high-dimensional features, we calculate the Gram matrix G∈RC×C to 
capture the relationships between style features. The calculation of the Gram matrix is 
expressed in equation (1): 

1
( , ) ( , 1, 2, )

H W
i jk

G i j F kF k i j C
=

×
= =   (1) 
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where Fik represents the kth element of the ith channel in the feature map. Next, we treat 
each row of the Gram matrix as a feature vector node and represent these nodes as 
vc∈R1×C. By calculating the similarity between nodes, we construct the adjacency matrix 
A∈RC×C and generate the corresponding degree matrix D∈RC×C. To further filter out 
redundant nodes, we introduce the Manhattan distance as a metric to quantify the 
importance of each node. Specifically, the score p∈R1×C for each node is calculated using 
the following equation (2): 

( )1
1p I D A V−= −  (2) 

where I is the identity matrix, V represents the node feature matrix, and ‖∙‖1 is the L1 norm 
operator applied row-wise. After computing the scores for each node, we sort these 
scores and introduce a selection ratio r to determine the number of nodes to retain. The 
specific node selection process is described by equation (3): 

( , * ), ( ,:),dx top rank p r C V V idx= − =  (3) 

where top-rank(⋅) is a function that returns the indices of the top ⌈r*C⌉ values. The 
selected features [ * ]r C CV R ×∈  are then encoded to guide the subsequent style transfer 
module, with the parameter values computed as shown in equation (4): 

{ } ( )( )( ) ( )( )( ){ }, ,, ,ω γ ω γθ θ BN j pool V BN j pool V=  
β β  (4) 

where ϕω and ϕγ, β are fully connected layers used for encoding, ϕω constructs the pseudo-
coordinates, and ϕγ, β generates the affine parameters for the AdaIN layer. BN denotes 
batch normalisation. It is important to note that since we use a style collection where each 
style contains K style images, the parameters generated by the encoding process are 
weighted averages. This process is described by equation (5): 

{ } { }, 0 0

1 1, , ,
K K

ω γ k k k γk kk k
θ θ π θω π θ

K K= =
=  β β  (5) 

where πk denotes the weight corresponding to the kth style image, which is determined by 
the similarity between the style image and the content image. 

2.2 Pseudo-coordinates graph convolutional 

In style transfer, traditional CNNs face issues such as a large number of parameters, 
complex training, and feature confusion. In contrast, GCNs can effectively facilitate 
feature aggregation between nodes, helping to share style information across different 
nodes. However, due to the complexity of constructing graph structures, GCNs have 
higher computational costs and lower interpretability. To address these issues, we 
introduce pseudo-coordinates based on conventional graph convolution. 

Specifically, we first reconstruct the parameter ,ωθ  obtaining the adjacency matrix 
A∈RHW×HW, where H and W represent the height and width of the feature map output by 
ResNet50. Next, we compute the degree matrix , ,i i i jD A=  and the random walk 
matrix M = D–1A, where Mi,j represents the probability of moving from node i to node j in 
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one random walk. Based on this concept, we construct pseudo-coordinates Pi,j, with the 
calculation process described by equation (6): 

2 (2 , , ,?, 1)
, ,, , , , ,I M M M K K

i j i jP I M M M R− = ∈   (6) 

where Pi,j represents the probability of node i reaching node j in K-1 steps. This 
construction of pseudo-coordinates captures the unique relationship between nodes i and j 
and is better at capturing multi-step dependencies compared to other methods. 

Next, since using the same weights for each channel in multiple graph convolutions 
can lead to over-smoothing, we introduce a kernel function ψ(⋅)∈RK×d to ensure that each 
channel has different weights. For the graph G = (V, E) and its node signal function: V → 
Rd, the PGC is defined as follows in equation (7): 

( ) ( ),( )

1( * )( )
( ) i jj supp i

ψ
χ ψ i W χ j ψ P b

supp i ∈

  + 
 

 ú  (7) 

where b is a bias term, W is the trainable weight, and suppψ(i) represents the K-hop 
neighbourhood of node i, i.e., the set of nodes reachable from i with a probability greater 
than or equal to ε after K steps. 

The aggregated node features X are then normalised using AdaIN to match the mean 
and variance of the style input , ,γθ β  with the calculation process described by equation 
(8): 

( ),
( ), ,

( )γ γ
X μ XAdaIN X θ θ θ
σ X
− = + 

 
β β  (8) 

where θβ  and γθ  represent the mean and variance of the style features. After performing 
L graph convolutions, the output features X are fed into the SW-LIN decoder for 
upsampling, ultimately generating the style-transferred image Is. The SW-LIN decoder is 
a symmetric structure of ResNet50, removing skip connections and replacing BN layers 
with AdaIN layers. 

Finally, we optimise the discriminator with respect to the target style image and 
extract features from both the generated image and the target style image to evaluate their 
style consistency in feature space. 

2.3 Loss function 

During training, we use adversarial loss Ladv, perceptual loss Lper, and style classification 
loss Lcls. The overall loss function calculation is given by equation (9): 

adv per per cls clsL L λ L λ L= + +  (9) 

where λper and λcls are weight parameters. 
First, adversarial loss aims to assess whether the generated image is similar to images 

in the target style collection, with the calculation process described by equation (10): 

{ }( ) { }( )0 0,  ,   ( ),  ,  , 1 ,c c c c
i i

M Mc c c
adv i ii iy y Y c N x G x y Y c N

L E logD y y E log Dx y= =
 = −  

     +  − −   
  10) 
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where c represents the cth style out of N different styles, y denotes real images, and x 
denotes generated images. M represents the number of images in the target style 
collection, which we set to 3 in our experiments. 

Next, perceptual loss aims to compute style loss Ls and content loss Lc between the 
generated image and content image from multiple levels, as shown in equation (11): 

per c c s sL λ L λ L= +  11) 

where the content loss and style loss are calculated as shown in equations (12) and (13): 

( )

( ) ( )( )( )
 ,  

2 22
 

( ) ,

c c c cl

c
c x X c N

l l l l
s l N y x y x

L E φ x φ x

L E μ μ Gram Gram

= −

= − + −

 

 


 13) 

where φ(⋅) denotes features extracted from the ReLU41 layer of the VGG network, and Ls 
is applied to the lth layer features of VGG, which are ReLU12, ReLU22, ReLU33, ReLU43, 
and ReLU51 layers respectively. 

Finally, style classification loss aims to assist the style extraction network in 
classifying styles to extract more accurate style features, with the calculation process 
described by equation (14): 

( )( ) ,  | c
cls y Y c N clsL E logD c y= −   (14) 

3 Results and discussion 

3.1 Datasets and evaluation metrics 

We use the Place365 dataset (Zhou et al., 2017) and the WikiArt dataset (Mohammad and 
Kiritchenko, 2018) as sources for content images and style images, respectively. 
Specifically, 56,287 images were randomly selected from Place365, covering 69 different 
scenes. The WikiArt dataset contains 107,729 artworks across 15 different painting 
genres. To evaluate the effectiveness of style transfer, we use the deception score (DS) as 
the evaluation metric. The DS measures the percentage of correct predictions by a  
pre-trained artist classification network when the stylised images are input, assessing the 
quality of style transfer in the generated images. Additionally, in ablation studies, we 
introduce style distance (SD) to further evaluate the effectiveness of each component. 
The SD is calculated similarly to equation (13), using the L2 norm of the Gram matrices 
and summing them. 

3.2 Implementation details 

Our method is implemented using the PyTorch deep learning framework and trained on 
an NVIDIA RTX 4090D GPU. During training, images are augmented with random 
rotations and flips and then cropped to a resolution of 768 × 768. For the NSM module, 
the selection ratio r is set to 0.9. In the PGC module, the number of iterations L is set to 
16, the K-hop neighbourhood range covers the entire graph, and the probability threshold 
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ε is set to 0.7. We use the Adam (Diederik, 2014) optimiser with a learning rate of 
0.0001, a batch size of 2, and the model is trained for a total of 360,000 iterations. 

3.3 Ablation study 

To validate the effectiveness of the proposed NSM and PGC methods, we tested these 
components on selected image pairs, and the results are shown in Table 1. 
Table 1 Performance comparison of the proposed PGC-GAN, and the impact of NSM and 

PGC 

Method NSM PGC SD↓ DS↑ 
1 × × 284.5 0.450 
2 √ × 271.8 0.536 
3 × √ 263.4 0.574 
PGC-GAN √ √ 236.1 0.612 

fThe results in Table 1 indicate that both NSM and PGC significantly improve the 
model’s performance. In Method 1, the style extraction branch uses features extracted by 
VGG16 directly encoded for the style transfer branch’s AdaIN, while the style transfer 
branch replaces PGC with CNN residual blocks with skip connections. In this case, the 
model shows high SD and low DS, reflecting mediocre performance. After introducing 
NSM, SD decreases to 271.8, and DS increases to 0.536. This demonstrates that NSM 
effectively reduces redundant style features, improving the model’s style consistency and 
transfer effect. A decrease in SD indicates reduced style discrepancy and more unified 
style, while an increase in DS suggests that the generated image better matches the target 
style. Following the introduction of PGC, SD further drops to 263.4 and DS rises to 
0.574. PGC, by constructing pseudo-coordinates and graph convolutions, allows the 
model to better capture long-range feature dependencies, enhancing the precision and 
accuracy of style transfer and further improving the style features of the generated 
images. Finally, with the combined introduction of NSM and PGC, SD falls to 236.1, and 
DS rises to 0.612, achieving the best results. NSM primarily targets the style extraction 
stage by assigning a uniqueness score to each node, effectively filtering out redundant 
and irrelevant style features. Traditional style transfer methods often include a large 
amount of repetitive or unrelated information during style extraction, leading to unstable 
or even distorted transfer results. By preserving representative style features, NSM 
reduces interference between style features, enabling the model to generate images with 
more coherent and consistent style representation. On the other hand, PGC further 
addresses the limitations of traditional models in modelling global and long-range feature 
dependencies during the style transfer process. Conventional CNN structures and GCNs 
struggle with capturing long-range dependencies, often resulting in localised style 
information that compromises overall style consistency. PGC overcomes this limitation 
by constructing pseudo-coordinate graphs and employing flexible graph convolution 
mechanisms, enhancing the model’s ability to perceive and integrate cross-regional style 
features. Overall, the designs of NSM and PGC improve model performance from two 
critical aspects: eliminating redundant features and enhancing global information 
modelling. Their synergistic effect significantly boosts the effectiveness of style transfer. 
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Additionally, to further analyse the impact of NSM and PGC on model performance, 
we compared stylised results for selected images, as shown in Figure 2. The images are 
as follows:  

a the original content image 

b the reference style image 

c results from Method 1 

d results from Method 2 

e results from Method 3 

f results from the PGC-GAN model. 

Figure 2 Ablation study of PGC-GAN (see online version for colours) 

 

In the visual analysis of the ablation experiments shown in Figure 2, different methods 
exhibit significant differences in the visual quality of the stylised images. In Method (c), 
without the introduction of NSM and PGC, the generated images display obvious content 
confusion, blurred details, and distorted boundaries. This is due to the lack of NSM for 
filtering redundant style features, resulting in interference between style and content 
features, and the absence of PGC for long-range feature aggregation, preventing the 
model from effectively capturing global information and further weakening the 
representation of image details and structure. In Method (d), with only NSM introduced, 
the colour style consistency of the images is noticeably improved. NSM effectively 
reduces redundant features and minimises interference between style and content. 
However, due to the lack of PGC’s ability to model long-range features, the images still 
suffer from blurred details and unclear boundaries. In Method (e), with only PGC 
introduced, the images show significant improvements in detail representation and 
structural boundaries compared to Method (c). PGC enhances long-range feature 
aggregation through the construction of pseudo-coordinate graphs and graph convolution 
mechanisms, resulting in clearer textures and edges. However, without NSM to filter 



   

 

   

   
 

   

   

 

   

    Pseudo-coordinates graph convolutional generative adversarial network 55    
 

    
 
 

   

   
 

   

   

 

   

       
 

redundant features, local style inconsistencies still exist. In contrast, Method (f), which 
incorporates both NSM and PGC, significantly improves the overall image quality. NSM 
effectively extracts key style features and prevents interference from redundant 
information, while PGC enhances detail and structure representation through long-range 
feature aggregation. The combination of both not only makes the images more naturally 
unified in colour and texture but also greatly improves detail clarity and style layering, 
achieving the best style transfer results. 

3.4 Quantitative analysis 

To further investigate the impact of hyperparameters on model performance, we tested 
different values for the selection ratio r, the number of iterations L in the PGC module, 
and the probability threshold ε. The number of iterations L in the PGC module directly 
affects the degree of content and style fusion, which significantly impacts the final 
generated image. Therefore, we conducted experiments with various values of L, and the 
results are shown in Figure 3. 

Figure 3 Impact of the number of iterations L in the PGC module on model performance  
(see online version for colours) 

 

The number of iterations L in the PGC module plays a crucial role in style transfer, 
directly affecting the fusion of content and style, and thus determining the quality of the 
generated image. When L is less than 16, feature aggregation is insufficient, leading to 
incomplete fusion of style and content, and the generated images lack complex details 
and clear hierarchical structures. As L increases, the model gradually captures more  
long-range feature dependencies, and the image quality improves significantly. However, 
when L exceeds 16, performance gains begin to plateau, and further increases in continue 
to improve results but at the cost of computational efficiency and model complexity. 
Therefore, to balance performance and computational cost, L is set to 16. 

The selection ratio r and probability threshold ε determine the proportion of retained 
style feature nodes in NSM and the number of neighbouring nodes in PGC, respectively, 
impacting the style consistency and content detail of the generated image. We tested 
these two hyperparameters, and the results are shown in Figure 4. 
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Figure 4 Impact of the selection ratio r and probability threshold ε on model performance  
(see online version for colours) 

  

When the selection ratio r is too small, the model retains too few style feature nodes, 
which cannot adequately express the diversity of the target style, leading to incomplete 
style representation in the generated images, with a lack of rich details and layers. This 
also weakens the style transfer effect, causing the style features in the generated images 
to be less distinct and the fusion of style and content to be poor. For the probability 
threshold ε, if ε is too large, the model only considers nearby nodes, failing to capture 
relationships between distant features effectively. This limits the global style consistency 
of the generated images, resulting in better local style representation but lacking overall 
style coherence, with insufficient global information fusion and affected detail 
processing. When ε is too small, the model considers too many distant nodes, which 
enhances global feature aggregation but may lead to excessive smoothing of features, 
reducing image detail representation and causing confusion between style and content 
features, affecting image clarity and style transfer effectiveness. Additionally, a small 
threshold increases model complexity, leading to decreased training and inference 
efficiency. Therefore, after experimental testing, we set the selection ratio r and 
probability threshold ε to 0.9 and 0.7, respectively. 

We then compared the proposed PGC-GAN with existing state-of-the-art (SOTA) 
methods, and Table 2 presents the comparison results. 
Table 2 Performance comparison of the proposed PGC-GAN with other SOTA methods 

Method SD↓ DS↑ Parameters (M) FLOPs (G) 
Clipstyler (Kwon and Ye, 2022) 271.8 0.561 48.5 62.3 
AesUST (Wang et al., 2022) 258.2 0.568 54.7 71.8 
IEContraAST (Chen et al., 2021a) 263.4 0.552 43.2 58.6 
Dualast (Chen et al., 2021b) 268.3 0.542 49.8 66.4 
SAE-CGM (Xu et al. 2023) 245.6 0.573 52.1 69.2 
PGC-GAN 236.1 0.612 55.4 73.5 

Our proposed PGC-GAN achieves the best performance, while the closest competitor, the 
SAE-CGM model, implements the ‘style kernel’ mechanism to facilitate global and local 
feature interaction, ensuring flexibility in style transfer and preservation of content 
structure. However, SAE-CGM has limitations in balancing global and local features, 
particularly when overly focusing on local details, which can lead to uneven style feature 
distribution and style leakage issues. Additionally, SAE-CGM primarily relies on global 
style-content alignment features to generate the ‘style kernel,’ which lacks flexibility and 
accuracy in handling complex long-range dependency features. In contrast, our  
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PGC-GAN, by introducing PGC, better captures long-range dependency features, 
enhances the fusion of style and content, and avoids excessive local feature dominance in 
image style, achieving better global and local balance. Moreover, the NSM in PGC-GAN 
further optimises the selection of style features, eliminating redundant information and 
making style transfer more precise. 

In terms of model complexity, PGC-GAN maintains a competitive balance between 
performance and computational efficiency. With 55.4 million parameters and 73.5 
GFLOPs, PGC-GAN achieves superior results while keeping the model size and 
computational demand within a reasonable range. In comparison, SAE-CGM has 52.1 
million parameters and 69.2 GFLOPs, reflecting slightly lower complexity but at the cost 
of reduced flexibility in feature aggregation and style transfer accuracy. Despite  
PGC-GAN having marginally more parameters and computational load, its design 
effectively utilises these resources to achieve better global-local feature integration and 
overall style transfer performance. These improvements enable PGC-GAN to exhibit 
higher flexibility and efficiency in style transfer without significantly increasing 
computational overhead. 

3.5 Qualitative analysis 

Finally, we visually compared the style-transferred images generated by various SOTA 
models to assess the quality of the generated images. The comparative results are shown 
in Figure 5. 

Figure 5 Comparison of style-transferred images generated by the proposed PGC-GAN and other 
SOTA methods (see online version for colours) 

 

In the comparison of generated images, noticeable artefacts are present in the results from 
the Clipstyler and IEContraAST models, such as black streaks in the sky. Clipstyler’s 
issue arises from its heavy reliance on text descriptions for style transfer, leading to 
insufficient handling of local details. This is particularly problematic when no reference 
style image is available, as the CLIP-based text-image matching loss results in unstable 
texture generation. IEContraAST, which uses internal and external contrastive losses to 
enhance style consistency, also falls short in local detail processing, resulting in 
unrealistic colour and texture distributions. AesUST, while producing results close to the 
original style image, focuses excessively on texture, particularly in its aesthetic 
enhancement module AesSA, which overemphasises textures in large areas such as the 
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sky and walls, neglecting smooth colour transitions and causing colour distortion. 
DualAST struggles with an imbalance in its dual-style learning framework for global and 
local style control, leading to image blurring and confusion between style and content, 
especially during complex style transitions. Although SAE-CGM employs a ‘style 
kernel’ mechanism to dynamically generate convolutional kernels, it lacks precision in 
detail texture generation, resulting in detail loss and impacting the final output. In 
contrast, our proposed PGC-GAN effectively captures long-range feature dependencies 
and balances global-local features through PGC and optimises style feature selection with 
NSM. It significantly outperforms the aforementioned methods in terms of colour and 
texture representation. 

To further evaluate the robustness and generalisation ability of the proposed  
PGC-GAN, we conducted experiments on images with various styles and complexities. 
These tests assessed the model’s capability to adapt to different stylistic features while 
preserving content structure and achieving consistent style transfer. The experimental 
results are shown in Figure 6. 

Figure 6 The generalisation performance of the proposed PGC-GAN on images of different 
styles (see online version for colours) 

 

The experimental results in Figure 6 demonstrate that the proposed PGC-GAN exhibits 
strong adaptability to various artistic styles, including the dramatic colours and 
expressive textures in Style Image 1, the soft tones in Style Image 2, the geometric 
abstract features in Style Image 3, and the complex layered textures in Style Image 4. At 
the same time, the core structure of the content images, such as portraits or landscapes, is 
well preserved despite significant style variations. The model achieves long-range feature 
aggregation through the PGC mechanism, effectively balancing global style consistency 
with the preservation of local details. Additionally, the NSM eliminates redundant 
features, making style transfer more coherent and precise. However, in certain cases, such 
as the geometric style transfer in Style Image 3, slight fusion artefacts appear in the 
landscape content, while in Style Image 2, some detailed textures appear slightly 
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smoothed. Overall, PGC-GAN performs remarkably well across various styles, validating 
its robustness and generalisation capabilities while maintaining consistency in content 
structure and style representation. 

4 Conclusions 

To address the challenges in painting style transfer tasks – such as the integration of style 
and content, capturing long-range feature dependencies, and handling redundant style 
features-we propose an innovative Pseudo-coordinates PGC-GAN. This model 
effectively aggregates long-range style features while preserving the original structure of 
content images. Additionally, we designed the NSM to optimise the selection of style 
features and employed PGC to learn flexible node relationships. Extensive experimental 
results demonstrate that PGC-GAN achieves significant performance improvements in 
various style transfers. Although PGC-GAN excels in handling complex style transfer 
tasks, it tends to focus heavily on texture from style images, sometimes overlooking 
texture scales in content images. This issue is particularly noticeable when replacing 
complex image styles with those of simpler images. Therefore, in our future work, we 
will explore ways to enhance the performance of style transfer networks across different 
scales. 
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