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Abstract: Music genre classification has become a major focus of study as 
audio processing. Mel-spectrogram and multi-channel learning, MC-MelNet, is 
proposed in this work for the categorisation job of classical music genres. 
Combining the Mel-spectrogram and other audio characteristics, with a  
multi-channel learning framework, the model performs thorough modelling of 
audio signals. Complete use of the multidimensional information in the audio 
data enhances the categorisation accuracy. By means of end-to-end training, 
MC-MelNet simplifies the conventional feature engineering processes and 
simultaneously performs well in the tests, so attaining higher accuracy, 
precision, recall, and F1 socre than in the conventional approaches, which show 
the robustness and efficiency of multi-channel learning in the classification of 
classical music. The experimental results reveal that the MC-MelNet model can 
give significant support for the domains of audio classification and music 
information retrieval in the categorisation of classical music genres. 

Keywords: classical music genre classification; Mel-spectrogram; audio 
feature fusion; multi-channel learning; MCL. 
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1 Introduction 

Aiming at detecting and separating various kinds of music by automated computer 
techniques, music genre classification is a crucial activity in the field of music 
information retrieval (Casey et al., 2008; Sturm, 2014). More and more deep  
learning-based music genre categorisation techniques have been suggested and shown 
amazing results in view of the exploding expansion of audio data and the ongoing 
enhancement of computing capacity. Conventional audio classification techniques 
depend on hand-designed feature extraction, such Mel-spectrogram (Küçükbay et al.,  
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2022), Mel-frequency cepstral coefficients (MFCC), Chroma features, etc., which are 
able to better express the frequency domain information of audio and somewhat improve 
the classification ability of the model. More complicated and several features are 
therefore required to improve the classification effect as the complexity and variety of 
music genres grow since a single audio feature sometimes cannot adequately describe the 
audio signal. 

The Mel-spectrogram models the auditory perception mechanism of the human ear by 
separating the frequency spectrum into several Mel scales, so better capturing the  
low-frequency characteristics of audio signals and so stressing the frequency range to 
which the human ear is sensitive. Nevertheless, the Mel-spectrogram lacks the modelling 
of the time domain information and only offers the frequency domain information of the 
signal (Zhang et al., 2021; Tang et al., 2023), so it may have some restrictions when 
handling tasks with strong temporal aspects. 

Recent studies have started to investigate the multi-channel learning (MCL) method 
in order to get above these restrictions (Fang et al., 2024; Al Islam et al., 2015). This 
method models the audio signal from several dimensions and enhances the classification 
performance generally by concurrently using several audio feature channels. To improve 
the diversity and robustness of the model, researchers sometimes mix the Meier 
spectrogram with other characteristics (e.g., MFCC, Chroma features, etc.), and apply the 
MCL framework. Particularly in the highly complicated choreography of music genre 
classification, it might help one become more adept in differentiating several genres. 

End-to-end audio categorisation models are progressively going popular as deep 
learning technology – especially the application of convolutional neural network (CNN) 
and recurrent neural network (RNN) – develops rapidly (Banerjee et al., 2019). Through 
the concept of local perception and weight sharing, CNN can efficiently extract high-
level features from time-frequency data including Meier spectrograms and capture spatial 
patterns in audio recordings. RNN, particularly long short-term memory (LSTM) 
network, are therefore ideally suited for processing audio tasks with temporal 
dependencies since they can replicate the temporal features in audio signals (Mirza et al., 
2024). 

Deep learning techniques still have significant difficulties even if they have shown 
amazing success in the categorisation of musical genres. First, complex audio signals and 
genre similarities call for more robust feature representation; second, the noise and 
diversity of audio data could compromise the model’s robustness; still, how best to lower 
the computational complexity while yet guaranteeing the accuracy of the model remains a 
question of importance. 

Thus, this work presents a classical music genre classification model based on  
Mel-spectrogram and MCL, MC-MelNet. 

This work offers the following original innovations: 

1 Combining Mel-spectrogram with MCL. We creatively suggest in this work a model 
structure combining several audio feature channels with Mel-spectrogram. We model 
audio signals from several dimensions by combining several kinds of features using 
a MCL framework, so improving the feature representation capacity of the model 
and hence the accuracy of the categorisation of classical music genres. 

2 End-to-end deep learning model. This work presents an MC-MelNet model that uses 
MCL along with Mel-spectrogram to extract audio features and fusion, therefore 
producing a more complete and accurate audio classification model. The model 
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improves the classification performance by using end-to-end training based on deep 
learning, hence simplifying the conventional feature engineering processes. 

3 Improved feature fusion strategy. In order to avoid the restriction of a single feature, 
a new feature fusion strategy is suggested in this work using a weighted summation 
method to merge the information of several feature channels into a new feature 
vector. After feature fusion, the method significantly increases the representation 
capacity and produces more outstanding results in the classical music genre 
classification. 

2 Relevant technologies 

2.1 Mel-spectrogram 

Widely applied in speech recognition, music classification, and other domains,  
Mel-spectrogram is an audio feature representation approach based on Mel scale that can 
efficiently extract the essential characteristics in the audio signal by converting the audio 
signal into time-frequency representation (Ustubioglu et al., 2023). First in the process of 
audio processing, the audio signal must be transformed into a frequency domain 
representation using short-time Fourier transform (STFT) (Zhu et al., 2007). The STFT of 
a particular audio signal x(t) may be stated using the following equation: 

2( ) ( ) ( ), j πfτX t f x τ w t τ e dτ
∞

∞
−

−
= −  (1) 

where the window function is w(t – τ), t represents the time step; f is the frequency. With 
the magnitude component reflecting the intensity of the signal at a given frequency and 
the real and imaginary parts representing the phase information, respectively, the STFT 
produces a complex number that reflects the information of the signal in the  
time-frequency plane. 

The power spectrum P(t, f) is then obtained by first considering the square of the 
magnitude of X(t, f), therefore characterising the energy distribution of the signal in the 
time and frequency domains: 

2( ), ),(P t f X t f=  (2) 

Frequency analysis is built on the power spectrum P(t, f), which offers details on the 
energy distribution of the signal at every frequency. The frequency axis must be mapped 
to the Meier scale if one is to more closely fit the perceptual characteristics of the human 
ear. 

Based on the nonlinear perception of frequencies by the human ear, the Meier scale is 
built to produce a lesser resolution in the high frequency section and a higher resolution 
in the low frequency part (Wolfe et al., 2011). The map equation for the Meier scale 
follows: 

102595log 1
700mel

ff  = + 
 

 (3) 

where f is the common frequency; fmel is the related Mel frequency. 
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Through compressing the details of the high-frequency signal to a lower resolution, 
so enhancing the effectiveness of the representation of audio features, the  
Mel-spectrogram is able to better replicate the perception of frequencies by the human 
ear. Convert the frequency axis to the Mel scale. 

The power spectrum must then be handled next using a Mel filter bank after the 
frequency mapping (Nadeu et al., 2001). The Meier filter bank is made of a sequence of 
triangle filters whose frequency response spans the Meier scale consistently (Kathania  
et al., 2019). One may define the frequency response Hm(f) of the Mel filter as follows 
segmented function: 

Regarding f < fm–1 和 f ≥ fm+1: 

) 0(mH f =  (4) 

That is to say, the filter responds with zero both before and after its upper border. 
Regarding fm–1 ≤ f < fm: 

1

1
( ) m

m
m m

f fH f
f f

−

−

−=
−

 (5) 

The filter responds linearly in this interval from fm–1 to frequencies between fm. 
Regarding fm ≤ f < fm+1: 

1

1
( ) m

m
m m

f fH f
f f

+

+

−=
−

 (6) 

The filter responses in this period are linearly declining in frequency from fm to fm+1. 
The Mel spectrum M(t, m) is obtained by weighted and summed with the power 

spectrum as the signal travels through these filters: 

( ( ), ) ) ( ,
f

mM t m H f P t f=  (7) 

Transforming the power spectrum using a Mel filter bank yields the Mel spectrum  
M(t, m), which on the Mel frequency scale denotes the energy distribution of an audio 
stream. Often a logarithmic adjustment of the Mel spectrum is done to further lower the 
dynamic range and better fit the perceptual qualities of human hearing. The logarithmic 
transformation reduces the huge dynamic range and accentuates the low-energy aspects. 
One computes the logarithmic Mel spectrum L(t, m) as follows: 

( ), log( ) ( , )L t m M t m= +   (8) 

where in logarithmic operations a modest constant   helps to avoid zeros. The  
Mel-spectrogram offers a time-frequency characteristic representation of the audio signal 
on the Mel scale, therefore representing the last logarithmic Mel spectrum L(t, m). 
Particularly the ability to identify the spectral variations between different genres, the 
Mel-spectrogram can efficiently capture the time-frequency characteristics of audio in 
audio classification tasks including classical music genre classification, so providing 
strong feature support for machine learning models. 
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2.2 Multi-channel learning 

MCL is a method of knowledge extraction and fusion utilising several input channels 
(Guo et al., 2022; Ye et al., 2021). Especially in audio classification jobs, it has been 
extensively applied in audio signal processing chores. Learning features from several 
sources helps the model to get acoustic information from several points of view, hence 
strengthening classification accuracy and resilience. In the job of classifying classical 
music, the audio signal can be feature extracted from several angles including MFCC, 
time domain waveform, and the Meier spectrogram. Every feature captures a separate 
component of the audio signal; so, integrating features from several channels helps the 
model to have better identification ability. 

Suppose in MCL we extract multiple types of features for the audio signal x(t), each 
matching an input channel. These properties are f1(t), f2(t), …, fn(t) accordingly, where 
every fi(t) shows the signal’s representation on a certain channel. By now the audio 
signal’s multichannel characteristics could be seen as a set of vectors: 

[ ]1 2( ) ( ) (, , ..) . ( ), nF t f t f t f t=  (9) 

Each feature has a matching representation at some time point t; these feature vectors can 
contain various kinds of features including Meier spectrograms, time-domain features, 
zero-crossing rates (ZCRs), etc. 

Deep learning models typically extract more abstract feature maps by means of CNN 
or another network design, therefore processing the features of every channel. Under that 
channel, these feature maps can mirror the local qualities of the audio signal. A  
time-domain waveform, for instance, tells about the instantaneous changes in the audio 
signal while a Meier spectrogram shows the time-frequency distribution of the audio 
signal (Wei et al., 2018). Following the feature extraction, an independent convolution 
procedure generates fresh set of feature representations for every channel. 

Combining the features of each channel by concatenation or weighted summation is 
typical practice to efficiently integrate the information from many channels. Let a CNN 
handle the features f1(t), f2(t), …, fn(t) of every channel to generate a high-dimensional 
feature map. The concatenation approach combines sequentially the feature maps of 
every channel to generate a high-dimensional feature vector z(t): 

[ ]1 2( ) ( ) (, , ..) . ( ), nz t f t f t f t=  (10) 

This splicing helps to maintain the feature information of several channels by joining 
their elements into one huge vector. Feature fusion can be used for some jobs where the 
contributions between channels might not be the same (Dai et al., 2024). This uses 
weighted fusion. In weighted fusion, the weighted fused feature vector can be stated as 
the features of each channel given varying weights wi depending on their relevance: 

1

( ) ( )i i

n

i

z t w f t
=

= ⋅  (11) 

where wi is the weighting coefficient of channel i, often learnt during the training 
procedure. This weighted fusion dynamically changes the contribution of every channel 
in the final feature vector, therefore enabling the model to pay more attention to the 
channels that support the classification objective. 
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The classifier will get the fused feature vector z(t) for ultimate classification. 
Practically, a fully connected layer usually handles these combined characteristics. With 
MCL, the output ˆ( )y t  of the classifier can be stated as: 

( )ˆ( ) ( )σ Wy z bt t= ⋅ +  (12) 

Usually using sigmoid activation function (for binary classification problems) or softmax 
activation function (for multiclassification problems), where W is the weight matrix, b is 
the bias term, and σ is the activation function produces the prediction results. 

By use of MCL, the model can build a multi-level and rich feature representation of 
the audio signal by aggregating features from several channels, so augmenting the basic 
information of the signal from a single channel. Especially in the classification 
assignment for classical music, this method can efficiently improve the audio 
classification performance by means of integrated use of multi-channel information and 
greatly increase the classification accuracy and resilience. 

3 Classical music genre classification model based on Mel-spectrogram 
and MCL 

3.1 Model framework: MC-MelNet 

This work proposes a classical music genre classification model based on  
Mel-spectrogram and MCL, named MC-MelNet, which combines the frequency-domain 
characteristics of Mel-spectrogram and multi-dimensional feature inputs of MCL for 
effective classification by deep neural network. Not only can MC-MelNet extract audio 
frequency features from Mel-spectrogram but also fusing time-domain features such ZCR 
and short-time energy (STE) to acquire a more complete audio signal representation 
using the multi-channel input and feature fusion approach. To provide a more complete 
picture of the audio signal, extracts audio frequency characteristics as well as merges 
time-domain aspects including ZCR and STE. 

First, STFT transforms the audio signal x(t) into a Mel-spectrogram M(t), which is 
then created by Mel filter bank processing and frequency domain feature of the model. 
Calculated as the distribution of the audio signal in frequency and time, the  
Mel-spectrogram may fairly depict these aspects. 

( )( )( ) ( )Mel STFTM t F F x t=  (13) 

MC-MelNet additionally generates other features from the time domain of the audio 
signal, such as ZCR(t) and STE(t), so enhancing the feature representation of the model. 
These equations respectively allow one to determine the ZCR and STE: 

( )
1

1 0( ) ( ) ( )
N

n

ZCR t x n x n
=

⋅ − <Π=  (14) 

2

1

( )( )
N

n

STE t x n
=

=  (15) 
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These time-domain characteristics enable dynamic audio signal recording and reveal 
information on the timing of the audio stream. MC-MelNet synthesises several facets of 
the audio stream by combining Mel-spectrograms with time-domain characteristics, 
therefore improving the classification of classical music genres. 

MC-MelNet uses CNN to do multi-channel feature fusion following feature 
extracting. To derive more representative features, the output fi(t) of every feature 
channel will be convolved with the learnt convolution kernel by convolution operation. 
One may depict this procedure as follows: 

( )) ( )(i i if t C f t′ =  (16) 

where Ci is the convolution process; ( )if t′  is the ith channel’s output feature map 
following convolution. A cross-channel fusion procedure will link the outputs of every 
channel once each one has been convolved. More especially, all the convolved features 
will be spliced along the feature dimensions into a new feature vector z(t): 

( )1 2( ),( ( ), ..., )) (nz t concat f t f t f t′ ′ ′=  (17) 

where concat(∙) represents the sewing of features output from several channels to 
generate a consistent feature representation z(t). By means of convolutional procedures, 
this fusion approach not only retains the information of every feature channel but also 
automatically extracts more complex and discriminative features. MC-MelNet makes full 
use of the multi-dimensional information of several channels by means of cross-channel 
feature splicing, hence improving the model’s classification capacity. 

The deep CNN receives the fused feature vector z(t) to further extract high-level 
audio signal features and eventually applied for genre categorisation. Through the spliced 
multidimensional features, the CNN learns the local patterns of the audio signal, therefore 
collecting important audio characteristics as notes and rhythms. Following multi-layer 
convolution and pooling procedures, the final output classification result ˆ( )y t  will be 
utilised to produce the probability distribution of every genre via the softmax function, so 
defined by the formula: 

( )softm xˆ( ) ( )a Wt C by t= ⋅ +  (18) 

where W is the weight matrix of the fully connected layer; C(t) is the feature map 
produced by the convolution and pooling layers; b is the bias term; and the softmax 
function generates the genre to which the audio signal falls. 

MC-MelNet is able to effectively fuse the multi-channel information of  
Mel-spectrograms and time-domain features using this modelling framework, and 
concurrently extract deep-level audio features using CNNs, so enabling accurate 
classification of classical music genres. This framework improves the expressiveness and 
accuracy of the classification model by recording local acoustic patterns as well as by 
combining several feature information. 

3.2 Model training and inference process 

First, MCL and feature fusion trains and infers the Meier spectrogram and other pertinent 
characteristics by loading and processing the input audio data. 
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In this case, xi is the audio data and yi is the label – that is, music genre – the dataset 
D = {(xi, yi)} comprises audio samples xi and their matching labels yi. Features like  
Mel-spectrogram, ZCR, and STE are obtained for every audio file. 

The model’s training runs through numerous phases. First, hyperparameters like 
learning rate, batch size, and number of training rounds are defined together with starting 
weights for the convolutional and fully-connected layers. Every training round the dataset 
is split into several tiny batches, each of which is used for forward propagation, loss 
computation, gradient update and other activities of the model. 

Every batch of audio samples ix′  will be extracted with features including  
Mel-spectrogram, ZCR and STE, and feature extraction will be done via convolution 
operation throughout the training process. Feature fusion will combine the outputs of 
several feature channels; thereafter, the fused features will be forward propagated via a 
neural network. Back propagation generates the loss value between the model prediction 
result and the actual label; it also modulates the model weights. 

Using a test set, the model is assessed following completion of the training. The audio 
data is handled in the evaluation phase using the same feature extraction and convolution, 
then fed into the trained model for inference, therefore producing the projected labels for 
every sample. 

Algorithm 1 exhibits the pseudo-code for inference and training: 
Algorithm 1 Pseudo-code for inference and training MC-MelNet 

1 begin 
2  for each audio file in dataset D do 
3   Load audio file xi; 
4   Preprocess xi to extract features: Mel-spectrogram, ZCR, STE; 
5  Store the extracted features as ix′  for later processing; 

6  end for 
7  Initialise convolutional layers with random weights; 
8  Initialise fully connected layers with random weights; 
9  Set the model hyperparameters (e.g., learning rate, batch size, etc.); 
10  for epoch = 1 to E do 
11   Shuffle dataset D to randomise the training order; 
12   for batch = 1 to B do 
13    for each audio sample ix′  in the batch do 

14     Extract Mel-spectrogram, ZCR, STE from ;ix′  

15     Perform convolutional operations for each feature channel; 
16     Perform feature fusion by concatenating the outputs of each channel; 
17    end for 
18    Pass the fused features through the neural network; 
19    Compute the predicted genre \( \hat{yi} \) for each sample in the batch; 
20    Compute the loss using cross-entropy or another suitable loss function; 
21    Compute the gradient of the loss with respect to each parameter; 
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22    Update the weights of convolutional and fully connected layers using gradient 
descent or other optimiser; 

23   end for 
24  end for 
25   for each test sample x′_test in test dataset D_test do 
26   Extract Mel-spectrogram, ZCR, STE from x′_test; 
27   Perform convolution and feature fusion as in training; 
28   Pass the fused features through the trained neural network; 
29   Output the predicted genre \( \hat{yi}{test} \); 
30  end for 
31  Return the trained model weights W_final; 
32  Return the classification results for test dataset D_test; 
33 end 

We measured the model’s performance using the four evaluation criteria listed below 
throughout the training and assessment process: 

1 Accuracy 

 One of the most often used classification evaluation measures, accuracy shows the 
fraction of properly categorised samples among all the samples. Its calculating 
formula is: 

Number of Correct PredictionsAccuracy
Total Number of Predictions

=  (19) 

2 Precision 

 The proportion of all the samples expected to fit a certain category that really fall 
into that category is indicated by the accuracy rate. Its computation follows the 
formula: 

Precision TP
TP FP

=
+

 (20) 

 where TP counts the actual cases and FP counts the false positives. 

3 Recall 

 Recall is the percentage of all the samples that the model can effectively identify into 
a category. Its computation follows the formula: 

Recall TP
TP FN

=
+

 (21) 

 where FN stands for the false negative count. 

4 F1-score 

 The F1-score strikes a compromise between recall and accuracy by averaging both. 
The computation approach is: 
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Precision Recall1 2
Precision Recall

F ×= ×
+

 (22) 

These evaluation criteria provide a thorough evaluation of the MC-MelNet model in 
audio genre classification tasks, therefore facilitating analysis of the model’s 
classification accuracy, stability, and efficiency. 

4 Experimental results and analyses 

4.1 Datasets 

The GTZAN music dataset, a classical dataset for music classification activities due to its 
standardisation, genre diversity and wide range of applications, was selected for this 
experiment in order to evaluate the performance of the MC-MelNet model in the classical 
music genre classification task. 

Designed for audio classification tasks, the GTZAN dataset was made public by 
machine learning field researchers. There are ten different music genres in it, and each 
has one hundred audio samples, for a thousand audio files overall. Using a 16-bit mono 
recording technique, the audio samples run 30 seconds, and a 22,050 Hz sampling rate. 
Uniform audio file structure of the GTZAN dataset helps model training and 
experimental evaluation. 

Table 1 lists the salient characteristics and specifics of the GTZAN dataset. 
Table 1 GTZAN music dataset statistical information 

Attribute Description 
Number of genres 10 genres 
Number of samples per genre 100 audio samples per genre 
Total number of samples 1,000 audio samples 
Audio duration 30 seconds per audio sample 
Audio sampling rate 22,050 Hz 
Audio format 16-bit mono audio format 
Main genres Blues, classical, country, disco, hip-hop, jazz, metal, pop, 

reggae, rock 

Training, validation, and testing sets separate the dataset to enable efficient model 
training and evaluation of generalisation capability. Eighty percent of the data is utilised 
for training, 10% for validation, and 10% for testing – the particular division ratio is thus. 
To guarantee a balanced data split, the audio samples of every genre are randomly 
distributed to several subgroups. 

Prior to model training, the audio data in the GTZAN dataset is preprocessed as 
follows: first, each audio sample is sliced into multiple 2-second-long segments in order 
to make it easier for the model to capture detailed features in the audio. Each audio 
sample is split into 15 segments. Next, the time-domain signal is converted into a 
frequency-domain signal using STFT to compute the Mel spectrogram. All Mel 
spectrograms are normalised for zero mean and unit variance. In addition, to increase the 
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diversity and robustness of the data, the audio clips were subjected to data enhancement 
operations such as time shifting, volume scaling and spectral transformation. 

4.2 Comparison experiments 

We performed comparison studies with numerous classical audio classification models to 
comprehensively assess the performance of the MC-MelNet model in the genre 
categorisation in classical music. Support vector machine (SVM), CNN, LSTM, and the 
conventional Mel-spectrogram (Mel-Spec) feature extracting technique are among the 
comparison models. 

Figure 1 shows the experimental findings, therefore illustrating the performance of 
many models on the four evaluation criteria. Every experiment was carried out ten 
independent runs and the findings were averaged to guarantee their dependability. 

Figure 1 Results of the comparison experiment (see online version for colours) 

SVM CNN LSTM Mel-SpEC MC-MelNet

0.78

0.91

 Accuracy
 Precision
 Recall
 F1-score

Mel-SpEC
0.75

0.80

 

From the experimental results, it is evident that the MC-MelNet model exhibits 
outstanding performance in all the assessment criteria, particularly in the accuracy rate, 
precision rate, recall rate, F1-score, which has a major advantage over other models. With 
a precision rate of 0.92, a recall rate of 0.93, and an F1-score of 0.93, MC-MelNet 
specifically achieves 91.8% in accuracy – higher than the other compared models – and 
shows the strong ability of the model in the audio classification task. 

Though placed second in terms of accuracy (87.5%), the CNN model performs 
somewhat worse in terms of precision rate, recall rate, and F1-score, with 0.86, 0.88 and 
0.87, respectively, compared with MC-MelNet .With a better balance particularly in 
terms of recall rate (0.84) and F1-score (0.83), the LSTM model also performs better; yet, 
the general accuracy rate is still lower than MC-MelNet at 83.3%. 

In this experiment, the conventional SVM model and the Mel-Spec approach based 
on Mel-spectrograms performed somewhat poorly. Although its performance is still 
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reasonable in some situations, the SVM, with an accuracy of 81.2%, a precision of 0.78, a 
recall of 0.81, and an F1-score of 0.80, obviously cannot compete with the deep learning 
approaches in challenging audio classification tasks. Mel-SPEC Although it may be 
efficient in some simple tasks, as a conventional feature extraction technique its 
performance in this trial is somewhat low, with an accuracy of just 79.4%, a precision of 
0.75, a recall of 0.79, and an F1-score of 0.77. 

By means of its integration of Mel-spectrograms and MCL, the MC-MelNet model 
dramatically enhances the accuracy and robustness of the model in the audio 
classification task overall. Based on its great classification performance, MC-MelNet is 
still the best option in practical applications even if its training time is somewhat longer 
than that of other models. 

4.3 Ablation experiments 

By progressively deleting various modules from the MC-MelNet model, we hope to 
evaluate the contribution of specific components to the general performance of the model 
in the ablation studies. To investigate the effect of these modules on the model 
performance, we specifically created three sets of ablation experiments each deleting one 
important module of the model. The ablation studies aim to identify which modules are 
most important in the audio classification task and which module removal causes 
appreciable performance reduction. 

First series of tests removes the MCL module (MC-MelNet without MCL). The 
model still takes the Mel-spectrogram as input in this experiment, but it no longer uses 
MCL; all feature channels will be straightly merged into a single feature representation. 
The accuracy falls from 91.8% to 88.4% and the precision, recall, and F1-score also 
somewhat drop following the removal of the MCL module, correspondingly. This 
suggests that feature fusion and model performance enhancement depend much on the 
MCL module. Different kinds of features can be handled by MCL, thereby allowing the 
model to learn from several dimensions and so get better classification accuracy. The 
model loses full use of the various feature information after eliminating this module, 
which results in performance deterioration. 

Removal of the Mel-spectrogram feature extraction module (MC-MelNet minus  
Mel-spectrogram extraction) forms the second set of studies. In this experiment the 
model directly employs raw audio data or other basic audio properties instead of  
Mel-spectrogram as input. With a precision of 0.82, a recall of 0.85, and an F1-score of 
0.83, the results demonstrate that the accuracy of the model drastically drops to 84.7%, 
following the Mel-spectrogram feature extraction. This implies that, especially for the 
audio classification task, the Mel-spectrogram is an efficient audio feature able to capture 
the spectral properties in the audio signals. The model loses this crucial feature 
information after deleting the Mel-spectrogram, which causes a notable reduction of the 
classification performance. 

The module with feature fusion deleted (MC-MelNet without feature fusion) forms 
the third set of tests. In this experiment, we eliminated the fusion mechanism among 
several feature channels in the model and instead categorised each feature channel 
independently and just combined their outputs. The accuracy of the model decreases to 
86.5% with a precision of 0.86, a recall of 0.87, and an F1-score of 0.86.5% once the 
feature fusion module is removed. Though the performance declines, the change is minor 
when compared to the tests without the MCL module and the Meier spectrogram feature 
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extraction module. This implies that, particularly in cases of effective integration between 
several features, which can enhance the resilience and classification capacity of the 
model, the feature fusion module aids to help to further improve the performance of the 
model. Still, feature fusion’s importance is more subdued than that of Mel’s spectrogram 
features and MCL. 

Figure 2 displays the experimental findings: 

Figure 2 Results of the ablation experiment (see online version for colours) 
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By means of these ablation studies, we can deduce that the core elements in the 
performance of the MC-MelNet model are the MCL module and the Mel-spectrogram 
feature extraction module; whereas, the feature fusion module has a rather minor 
influence even if it helps to increase the classification effect. The significant function of 
Mel-spectrogram and MCL in the classification job of classical music is validated by the 
experimental results. 

5 Conclusions 

In this work, we propose a classical music genre classification model (MC-MelNet) 
based on Mel-spectrogram and MCL, which essentially improves the accuracy and 
robustness of classical music genre classification by combining Mel-spectrogram features 
and a MCL framework. We carried comparison and ablation studies and matched the 
model with conventional audio classification techniques on numerous assessment criteria 
to confirm its efficacy. Verifying the excellence of the method in the classical music 
genre classification problem, the experimental findings reveal that the MC-MelNet model 
beats other benchmark approaches in terms of accuracy, precision, recall, and F1-score. 

The MC-MelNet approach has certain restrictions even if it has improved outcomes in 
the classification of classical music genres. First of all, the model is now limited to the 
classification challenge of classical music genres; other kinds of music genres or audio 
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data may need different feature extraction and model structure to fit. Secondly, the 
training process of the model is more complex, especially in MCL and feature fusion, 
which requires a lot of computational resources and time. As the size of the dataset 
increases, the training time and computational overhead also increase significantly, which 
is a challenge for resource-constrained environments. Furthermore, in some 
circumstances – especially in more complicated audio environments – the Meier 
spectrograms employed as audio cues in this work might not be able to fully represent all 
the important information in the audio stream. While MCL can extract features from 
several dimensions, the performance of the model may degrade in cases of poor quality 
of the input audio or additional noise. At last, the present model mostly depends on audio 
genre classification and has not yet been completely validated even if it performs well on 
various evaluation criteria. 

Future studies can be enhanced and broadened in the following respects: 

1 Cross-genre generalisation ability is improved. Although the MC-MelNet model has 
shown outstanding performance in the classification of classical music genres, its 
generalisation capacity has not been entirely confirmed. Larger multi-genre datasets 
will help the model’s cross-genre learning capacity to be improved going forward. 
Combining a greater spectrum of music genres, including modern music and 
electronic music, for instance, will let one investigate how to raise the model’s 
capacity for discriminating between several genres. 

2 A more efficient feature extraction method. Though in some situations may not be 
able to completely capture the detailed information in the audio, Mel-spectrograms 
have been extensively validated as a portrayal of audio properties. Future exploration 
of more sophisticated audio feature extraction techniques is warranted. Furthermore, 
investigating automatic feature learning techniques grounded in deep learning could 
help to lessen the dependence on handcrafted features, hence enhancing the accuracy 
and efficiency of the model. 

3 Real-time performance optimisation of the model. Future research can concentrate 
on maximising the inference efficiency of the MC-MelNet model so that it can 
operate real-time audio classification in resource-limited contexts since the model 
takes high computational resources during training. Techniques like model pruning 
and quantisation, for instance, can help to lower the computational complexity of the 
model thereby enabling its adaptation to embedded devices or real-time audio stream 
processing systems. 
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