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Abstract: Effective fault diagnosis will greatly improve the operational 
efficiency of industrial machinery and equipment. In this paper, for the issues 
of multi-fault coupling and low diagnostic accuracy that exist in the current 
research. Firstly, the mechanical equipment signals are pre-processed. The 
empirical modal decomposition is introduced to construct the fault eigenvectors 
of industrial mechanical equipment. Then the improved principal component 
analysis is used to map the high-dimensional features to the low-dimensional 
space, the dual attention mechanism (DAM) is introduced to improve the 
transformer model (ODAT), an ODAT model is trained for each fault for 
diagnosis, and a fault set is generated based on the diagnosis results of all 
ODAT models. Comparative experiments were conducted on the PHM15 
dataset, and the results show that the fault diagnosis accuracy of the proposed 
model is 93.71%. 
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1 Introduction 

With the growth of industrial society and the continuous progress of technology, modern 
industry began to totally adopt mechanical equipment in lieu of manual labour. However, 
the operation and maintenance of machinery and equipment is crucial while the 
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efficiency of work increases. If mechanical failure occurs in the process of industrial 
production, it may affect the productivity or cause safety accidents (Kareem and Jewo, 
2015). Failure of mechanical equipment generally manifests itself in the inability to 
accomplish a specific functionally required task, and there are challenges in identifying 
failures due to the presence of more complex parts in the equipment (Huo et al., 2020). 
To ensure the reliable and stable operation of mechanical equipment, it is very essential 
to carry out equipment fault diagnosis. The conventional mechanical equipment fault 
diagnosis approach chiefly depends on the maintenance personnel’s experience 
judgement, which has the issues of low diagnostic accuracy and low maintenance 
efficiency (Sun et al., 2023). Therefore, it is urgent to develop automated and intelligent 
mechanical equipment fault diagnosis approaches. 

Traditional study is relied on statistical modelling to diagnose the faults of 
mechanical equipment, Jiang et al. (2013) projected the monitoring data onto a 
predefined operation mode to obtain the specified element, and memorised the equipment 
fault diagnosis by the size of the specified element’s significance. Sarita et al. (2022) 
adopted principal component analysis (PCA) to decompose each set of fault data and 
project the data to be detected in the direction of known faults to diagnose the type of 
equipment faults, but it was difficult to diagnose faults caused by non-vibration factors. 
Conventional statistical model based mechanical equipment fault diagnosis methods 
suffer from severe pattern compounding effects, leading to poor diagnostic accuracy. As 
the industrial big data rapidly growing, data-driven techniques relied on machine learning 
(ML) directly deep mine the fault data to achieve high-precision fault diagnosis. Goyal  
et al. (2020) proposed a fault diagnosis method for mechanical equipment based on 
restricted Boltzmann machines (RBM) and support vector machines (SVM), and the 
faults can be well detected by extracting the features by RBM and inputting them into 
SVM. Wang et al. (2023) adopted a decision tree (DT) to categorise historical faults and 
then used Jaccard similarity to calculate the similarity between new faults and historical 
fault classes for case-based reasoning, but the diagnostic efficiency is not high. 

Data-driven models based on deep learning (DL) overcome this shortcoming by 
mining valuable information from raw data to enable end-to-end diagnosis, thereby 
improving diagnostic efficiency. Tang et al. (2020) used CNNs to automatically learn 
features conducive to bearing fault detection and used them in a mechanical equipment 
fault diagnosis task with higher accuracy compared to DT methods. Shi et al. (2022) 
proposed an LSTM-based fault diagnosis method for mechanical equipment, which can 
well diagnose a variety of faults. Liu et al. (2021) collected the timing signals generated 
during the operation of the equipment, used the CRITIC weighting method to determine 
the key parameters that affect the occurrence of equipment faults, and used the GRU to 
perform a predictive analysis. Xing et al. (2020) identified multiple faults by deep belief 
network (DBN), but did not consider the class imbalance and multi-labelling problem 
that exists between faults, and was unable to learn the complex dependencies between 
labels. 

In the latest research, the attention mechanism (AM) allows the model to 
automatically learn and selectively focus on important information when processing input 
data. By assigning different weights to different information, the model is able to focus 
on the most relevant information instead of treating all inputs equally. This ability allows 
the model to more accurately capture key features in the input data to improve the 
performance of the DL. Xu et al. (2022) utilised temporal convolutional neural networks 
(TCNs) to extract features from time series for fault prediction by assigning weights to 
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multiple dimensions of the input features through a distributed AM. Pan et al. (2022) 
proposed a generative adversarial network (GAN)-based engine fault prediction method 
to reconstruct the data in the pre-training phase via GAN, and feature enhancement via 
AM in order to classify the equipment faults via softmax. Xiao et al. (2023) proposed an 
engine fault prediction method based on the transformer architecture, which extracts 
mechanical equipment features in an unsupervised manner and further enhances the 
features through AM for fault diagnosis, which greatly improves the diagnosis efficiency. 

Intending to the issues of fault imbalance and multi-fault coupling in the above 
studies, an intelligent fault diagnosis method for mechanical equipment based on 
industrial big data is suggested. Firstly, the box plot method and wavelet packet noise 
reduction method are used to pre-process the mechanical equipment signals, and 
secondly, the empirical mode decomposition (EMD) algorithm is utilised to decompose 
the equipment signals into multiple intrinsic mode function (IMF) components, and 
multiple feature parameters are computed for the effective IMF components to construct 
the high-dimensional fault features. These high dimensional feature data are then mapped 
to a low dimensional space using improved PCA to reduce feature redundancy. Finally, 
the transformer model is improved by introducing the dual attention mechanism (ODAT), 
so that the model focuses on the more important information in the features from multiple 
dimensions. To reduce the difficulty of fault diagnosis, a binary correlation method is 
used to train an ODAT model for each fault for diagnosis, and after the diagnosis is 
completed, a fault set is generated relied on the diagnosis results of all ODAT models. 
The experimental outcome indicates that the diagnostic accuracy and F1 value of the 
proposed model are improved by 3.54%–16% compared with the comparison model, 
which can effectively improve the diagnostic accuracy and has good application 
prospects in the field of industrial machinery and equipment fault diagnosis. 

2 Relevant theoretical foundations 

2.1 Attention mechanism 

AM improves the information extraction ability of the model by modelling the human 
AM and focusing the model’s attention on the information that is more important to the 
current task, i.e., assigning appropriate weights to the input information according to its 
importance to the current task (Lv et al., 2022). The role of the AM is to find the most 
important and relevant information for the output from the input time series, which can 
be described as a mapping of a query Query to multiple key-value pairs key-value as 
shown in Figure 1. AM first maps the input time series into multiple key-values and the 
output into a query. Here, three weight matrices WK, WV, and WQ are introduced and 
multiplied with the input time series X and output Y to obtain the corresponding K (Key), 
V (Value), and Q (Query) parameter matrices. In the AM, K, Q and V are computed from 
the input data by specific linear transformations, i.e., K = XWK, V = XWV, and Q = YWQ, 
respectively. 

The similarity between the output Q and multiple K of the input time series is then 
computed to obtain the attention weight α for each V, as shown in equation (1). It is 
transformed into a probability distribution with a sum of 1 by means of the softmax 
function, as shown in equation (2). 



   

 

   

   
 

   

   

 

   

    Intelligent fault diagnosis of mechanical equipment 87    
 

    
 
 

   

   
 

   

   

 

   

       
 

( ), T
i if Q K Q W K= α  (1) 

( )( )
( )

( )

,

,
,

i

j

f Q K

i i

j

f Q K

esoftmax f Q K
e

= =


α  (2) 

Finally, the attention output corresponding to the input time series is obtained based on 
the weighted summation of α to V, as shown in equation (3). 

( , , ) i i
i

Attention Q K V V=α  (3) 

Figure 1 Structure of the AM 
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2.2 Transformer model 

Traditional models tend to lose a lot of original information when dealing with long time 
series and are unable to learn the effect of different time steps in the input time series on 
the output. Transformer is a model of multiple encoder-decoder stacking relied on the 
AM (Guerra and Mota, 2006), as shown in Figure 2. The transformer model was 
introduced mainly to address the shortcomings of traditional models in dealing with 
sequential data, especially the limitations of recurrent neural networks (RNNs) and their 
variants, (e.g., LSTMs and GRUs) in dealing with long-range dependencies and parallel 
computation. The model encodes the input time series into multiple intermediate state 
vectors that change with the output, and can fully learn the importance of different time 
steps in the input time series to the output, which can not only solve the long time series 
dependency problem well, but also can be computed in parallel. 

1 Encoder (E). E consists of a position coding (PC) layer, a multi-head self-attention 
(MAM) layer, a feed-forward neural network (FNN) layer and a residual 
normalisation (RN) layer. First, the sequence location information is added to the 
input feature sequences through the PC level; then, the attention weights are assigned 
to the input feature sequences through the MAM level; finally, the outputs of the 
MAM level are transformed to the nonlinear space through the FNN level to enhance 
the nonlinear representation of the model. In addition, the RN level is added after the 
MAM and FNN levels to speed up the model convergence speed to enhance the 
model generalisation ability. 

2 Decoder (D). D is composed of PC level, Masking MAM level, MAM level, FNN 
level and RN level. First, the sequence position information is added to the input 
label sequence through the PC level; then, the model is made to focus more on the 
important information in the input label sequence by masking the MAM level, as 
shown in equation (4). Then, the dependencies between the intermediate state vectors 
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of the encoder output and the input label sequence are learned through the MAM 
level; finally, the output of the MAM level is transformed to a nonlinear space 
through the FNN layer. The role of the RN level is the same as that of the FN level in 
the encoder. 

mod
( , , )

T

el

QK MMasked Q K V softmax
d

 =  
 

 (4) 

where M is the lower triangular unit matrix. 

Figure 2 Transformer model structure 
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3 Data acquisition and pre-processing of industrial machinery and 
equipment 

Industrial machinery and equipment generate a variety of signals during operation, which 
represent their voltage and current changes or vibration amplitude, etc. To capture the 
signals generated during the operation of machinery and equipment, the study installs 
different sensors on the machinery and equipment to capture the industrial big data of the 
operation. However, due to the presence of more types of equipment and many types of 
industrial data, there are also many data with missing values, redundant values, outliers, 
etc. (Fernandes et al., 2022). If these data are used directly as inputs to the diagnostic 
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model, the complexity of the input variables will be greatly enhanced, thus reducing the 
diagnostic accuracy. For this reason, pre-processing of signal data is required. 

There are many outliers in the collected data, which affect the accuracy of fault 
diagnosis, and the outliers need to be eliminated, for this purpose, the study utilises the 
box plot method to screen the outlier anomalous data. It was found that if these anomalies 
are simply eliminated, the continuity of the time series is destroyed, for this reason; the 
screened outliers are uniformly treated as missing values as shown below. 

1 +1+
2

i i
i

x xx −=  (5) 

where xi ∉ [D, U], [D, U] are the upper and lower value ranges of the box plot, and xi is 
the observed value at time point i. 

In signal acquisition, a lot of noise is generated, and the data needs to be denoised in 
order to obtain more effective diagnostic results. Currently the commonly used denoising 
methods are smoothing denoising and signal transformation. The signal transform noise 
reduction method can better preserve the original characteristics of the data while 
denoising. The wavelet transform has the property of multiresolution analysis, which 
means that it is able to decompose the signal at different scales. This property allows the 
wavelet transform to portray the non-smooth features of the signal well, such as edges, 
spikes, and breakpoints. When dealing with signals containing noise, the wavelet 
transform is able to separate the signal from the noise at different scales, thus removing 
the noise more effectively. Therefore, the study used wavelet transform (Almounajjed  
et al., 2022) in the signal transform noise reduction method for noise reduction of the 
data. First the signal is decomposed and after decomposition the wavelet coefficients of 
each node are obtained. The wavelet coefficients obtained from the data with too much 
noise will exceed the threshold, so some of the data can be filtered according to the 
calculated wavelet coefficients. After filtering the data signal is reconstructed according 
to equation (6). 

+1, ,2 ,2 +1
2 2+j n j n j n

l k l kl k k
k z

d h d g d− −
∈

 =    (6) 

where k is the number of layers to continue decomposition, z is the set of all integers, j is 
the frequency index, +1,j n

ld  is the orthogonal wavelet packet decomposition coefficients 
of the signal at a resolution of j + 1, n is the number of discrete data points, hl–2k and gl–2k 
are sequences consisting of filter coefficients. In determining the threshold value, the 
study chooses the wavelet threshold estimation method for threshold estimation, as 
shown in equation (7). 

2 ( , )( , )
( , )x

σ j nT j n
σ j n

=  (7) 

where σx is the original signal variance, σ2 is the noise variance, and T is the resulting 
threshold. The wavelet packet coefficients are filtered by a soft threshold function as 
shown in equation (8). 
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Due to the existence of diversity in mechanical equipment, the collected data has 
different magnitudes, and the diagnostic model needs to be trained with a uniform 
magnitude. For this reason, the study operates on the data to eliminate the magnitude, and 
the standardised calculation method is shown below. 

( )
var( )

ˆ x E xx
x

−=  (9) 

where x and x̂  are the values before and after treatment, respectively, and E(x) is the 
sample mean. 

4 Intelligent fault diagnosis of mechanical equipment based on industrial 
big data 

4.1 Constructing fault eigenvectors of industrial machinery and equipment 
based on EMD 

Intending to the fault class imbalance and multi-fault coupling issues existing in the fault 
diagnosis of industrial machinery and equipment, a fault diagnosis method based on the 
DAM improvement transformer (ODAT) model under the class imbalance of industrial 
big data is proposed, as shown in Figure 3. Firstly, the mechanical equipment signals are 
decomposed into intrinsic modal function components (IMFs) by EMD and the IMFs 
containing feature information are obtained, and then multiple feature parameters are 
computed for these effective components to form the high-dimensional features, and then 
these high-dimensional data are mapped to the low-dimensional space by using the 
improved PCA. Finally, the ODAT model is used to extract important features from 
multiple dimensions, and the binary correlation method is used to reduce the difficulty of 
training the multi-label model, and after the diagnosis is completed, the fault set is 
generated based on the diagnostic results of all ODAT models. 

After the industrial machinery and equipment signal acquisition and pre-processing, 
the principle of EMD method (Lei et al., 2013) is utilised to make a multi-dimensional 
decomposition of the machinery and equipment signals, and then construct the fault 
feature vector. The EMD method is a big data-driven decomposition method that does not 
require prior assumptions about the distribution or structure of the signal and is capable 
of adaptively generating the IMF. 

Since any industrial machinery signal consists of independent IMF components, the 
components are interrelated and coupled. Firstly, EMD is used to decompose the complex 
signal into a series of IMF components and a sum of residual components to extract the 
local features and dynamic information in the signal, the formula is as follows. 

1

( ) ( ) + ( )
n

i
i

x t c t r t
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=  (10) 
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where x(t) is the mechanical equipment signal, ci(t) is the intrinsic mode component of 
the vibration signal, and r(t) is the residual component of the vibration signal. Next, all 
local extremes are identified from x(t). Find the mean value of the upper and lower 
envelopes, denote it as m1, and derive the difference between the original vibration signal 
and the mean value of the envelope as follows. 

1 1( )h x t m= −  (11) 

If h1 meets the two necessary conditions of the IMF component of the mechanical 
equipment signal, it is considered to be the first IMF component of the equipment signal; 
if either condition is not met, it is treated as the original signal, and the above 
decomposition steps of the equipment signal are repeated. Calculate the correlation 
coefficient between the IMF component and the original signal as follows. 

2

1

0 0

2

( ) ( )

( ) ( )

n

k

y
k

n

k

x
n

x k y k
Q

x k y k

=

= =

=


 
 (12) 

where x(k) and y(k) are IMF components. Calculate the correlation coefficient between 
the two, rank the correlation coefficients of each IMF component, take the IMF 
component with the highest correlation coefficient, and then extract the features in the 
time and frequency domains of the valid IMF components to get the high-dimensional 
eigenvalue f1, f2, …, fn related to the failure of the mechanical equipment. 

Figure 3 Intelligent fault diagnosis model of mechanical equipment based on industrial big data 
(see online version for colours) 
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4.2 Dimensionality reduction of industrial machinery and equipment fault 
characteristics based on improved PCA 

After obtaining the eigenvalues associated with the mechanical equipment faults, PCA is 
utilised to perform data dimensionality reduction on the above high dimensional feature 
matrix. Due to the high computational complexity of traditional PCA (Gewers et al., 
2021), this paper uses kernel function to optimise PCA, and carries out dimensionality 
reduction processing for high-dimensional data features of decomposed useful 
components, making the data structure more concise while retaining the signal feature 
information to the maximum extent. Thus, the correct rate of mechanical equipment fault 
diagnosis can be significantly improved. 

Suppose that a nonlinear mapping function φ(x) transforms the set of high-voltage 
features F = [f1, f2, …, fn]T into a set of kernel features F′ = [φ(f1), φ(f2), …, φ(fn)]T, where 
n is the number of samples, the covariance matrix F of the kernel feature set is as follows. 

( ) ( )

( ) ( ) ( )

1

1

1

1

n
T

i i
i

n

i i i
j

F ψ f ψ f

ψ f φ

n

f φ f
n

=

=


=



 = −





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The eigenvalues λi and eigenvectors ξi of the matrix F are then computed as follows. 
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


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A Gaussian radial basis function is chosen as the kernel function for the inner product 
operation of PCA in high dimensional space. 

( ) ( ) ( )ˆ , T
i j i jE f f φ f φ f=  (15) 

Then the e eigenvectors corresponding to the e largest eigenvalues are selected as the 
column vectors of the transform matrix γ. The result of the improved PCA after 
dimensionality reduction is as follows. 

TR γ F ′= ⋅  (16) 

To illustrate the degree of correlation between the extracted feature vectors and the 
equipment fault sample category vectors, the expression is defined as follows. 

( )
( ) ( )

cov ,
cov , cov ,

i

n n

i

i i

ξ ξ
τ

ξ ξ ξ ξ
=  (17) 

where τ is the correlation degree coefficient, ξi is the extracted feature vector, and ξn is the 
sample category vector of the original feature set. 
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Figure 4 Dual AM (see online version for colours) 
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4.3 Improved transformer based on dual AM for fault diagnosis of industrial 
machinery and equipment 

The traditional transformer model only focuses on the attention of different time steps in 
the input feature sequence, but ignores the attention of different mechanical devices in the 
input feature sequence. For this reason, the industrial machinery and equipment 
troubleshooting model (ODAT) proposed in this chapter improve the transformer model 
by replacing the MAM with the DAM. The DAM mechanism is added to the encoder to 
extract the important information from the signals of different mechanical devices. An 
embedding layer is added to the input side of the decoder to enhance the dimension of the 
input tag sequence. The ODAT model can dig deep into the complex mapping 
relationship between multi-dimensional mechanical equipment and multiple fault labels. 

DAM is shown in Figure 4, firstly, the IPCA dimensionality reduction features are 
passed through time step AM to get the weighted time step feature sequence; then it is 
transposed to get the mechanical device feature sequence; finally, the weighted signal 
feature sequence is passed through device AM. So DAM can extract important features 
not only in different time steps but also in different mechanical devices as shown in 
equation (18) to equation (20). In addition, both time-step attention and mechanical 
device attention in DAM use a multi-head mechanism to improve the learning ability of 
the model. 

( )
mod

, ,
T

t t
t t t t t t

el

Q KTimestep Q K V Softmax V W V
d

 = = 
 

 (18) 

( )T
t t s s sW V Q K V= = =  (19) 

( )
mod

, ,
T

s s
s s s s s s

el

Q KME Q K V Softmax V W V
d

 = = 
 

 (20) 

where Qt, Kt, and Vt are the query, key, value, and weight matrices for the time-step 
feature, respectively; Qs, Ks, and Vs are the query, key, value, and weight matrices for the 
mechanical equipment feature, respectively, and dmodel is the dimension of the model. 

To reduce the complexity of industrial equipment fault diagnosis under multiple  
class imbalance, this paper adopts the binary association method to convert the  
class-imbalanced multi-label multiclassification issue into an independent m  
class-imbalanced single-label binary classification issue. The complex industrial 
equipment fault dataset D is split into m class-unbalanced binary datasets Dg (g = 1, 2, 
…, m) based on fault labels as shown in equation (21) to equation (24). 

( )( ){ }, , 1i igD x G g i n= ∅ ≤ ≤  (21) 

( ) 1,
,

0,
i

i
g G

G g
otherwise

∈
∅ = 


 (22) 

( ){ }, 1 , 1i igD x g G i n+ = ∈ ≤ ≤  (23) 

( ){ }, 0 , 1i igD x g G i n− = ∉ ≤ ≤  (24) 
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where ∅(Fi, g) is the labelling category of sample xi in dichotomous dataset Dg 
corresponding to fault g, andg gD D+ −  are the positive and negative sample sets, 
respectively. 

The class imbalance rates of andg gD D+ −  with fault g in Dg are shown in  
equation (25). To address the class imbalance between andg gD D+ −  after decomposition, 
this chapter increases the sample size of ,gD+  the minority fault class, through SMOTE 
oversampling to ensure a relatively balanced sample distribution in the dataset. For the 
transformed binary learning problem, this chapter utilises Dg to train an ODAT model for 
each fault g for fault diagnosis, uses ODATg to generate the corresponding set of fault 
labels according to equation (26). 

( ) ( ), ,g g g g gIR Max D D Min D D+ − + −=  (25) 

( ){ }0, 1gi iG g ODAT x g m= > ≤ ≤  (26) 

5 Experimental results and analyses 

This chapter evaluates the proposed model using the dataset provided by the PHM 
Society Association in the PHM 2015 Data Challenge. The dataset is real historical 
monitoring data of complex industrial equipment after desensitisation of the plant, and 
each piece of equipment consists of normal events and six types of failure events. There 
are about 33 plants, and the data are collected over a period of about 3 to 4 years, with 
sampling intervals of about 15 minutes. This paper mainly uses data from Plant 1, which 
consists of six components, each with four sensors (s1–s4), four operating parameters 
(r1–r4), and six fault labels (f1–f6). The number of samples and percentage of each type 
of faults after processing by SMOTE oversampling are shown in Table 1. 
Table 1 Sample size and percentage of each type of failure in Plant 1 

Fault type f1 f2 f3 f4 f5 f6 
Quantity 6,015 3,796 5,194 3,687 4,123 8,319 
Ratio (%) 19.3 12.2 16.7 11.8 13.2 26.8 

The model training and evaluation in this chapter are based on the Python programming 
language and the TensorFlow, Keras DL framework, and Scikit-learn ML framework. 
The experimental environment is Intel Xeon Silver 4210R CPU 64G RAM, NVIDIA 
Tesla T4 GPU 16G RAM, and Windows Server 2016 Standard system. When training the 
model, the time step is 24, the batch size is 64, the maximum number of iterations for 
training is set to 200, the loss function is set to binary cross-entropy; the optimiser is set 
to Adam, and the initial learning rate is set to 0.001. 

To validate the diagnostic effectiveness of the ODAT model, it will be compared with 
the CRT-GRU (Liu et al., 2021), DBN, ATCN (Xu et al., 2022), and TRANS (Xiao et al., 
2023) models, and the evaluation metrics will be used as the accuracy, precision, recall, 
F1 and G-mean (Jian and Ao, 2023). Comparison of diagnostic accuracies of different 
fault types for each model is shown in Table 2. The diagnostic accuracies of ODAT are 
higher than the other five models for all six fault types. When the fault types are f2 and 
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f5, the diagnostic accuracy of the five models is lower than the diagnostic accuracy of the 
other fault types, this is because f2 and f5 are the tooth breakage and tooth wear of the 
mechanical equipment, respectively, which are difficult to recognise, resulting in low 
accuracy. When the fault types are f1, f3, f4, and f6, the diagnostic accuracy of ODAT is 
improved by 3.31%–17.84% compared to other models. 
Table 2 Diagnostic accuracy of different fault types for various models (%) 

Model f1 f2 f3 f4 f5 f6 
CRT-GRU 76.89 71.12 77.15 76.93 70.68 75.14 
DBN 79.63 75.31 80.09 79.84 76.04 78.52 
ATCN 83.46 80.01 82.19 84.94 80.56 82.41 
TRANS 89.81 85.64 90.25 88.16 84.12 89.53 
ODAT 93.62 89.25 93.56 93.05 88.15 92.98 

Comparison of the average accuracy, recall and precision of different fault diagnosis 
models is shown in Figure 5. The accuracy of ODAT is 93.71%, which is 15.73%, 
13.15%, 8.54%, and 3.54% higher than CRT-GRU, DBN, ATCN, and TRANS, 
respectively. CRT-GRU did not denoise the mechanical equipment signals and 
determined the key parameters only by the CRITIC weighting method, resulting in poor 
diagnostic accuracy. DBN model identifies faults through DBN but does not consider the 
class imbalance and multi-labelling that exists between faults. ATCN does not consider 
the long term dependency of the time series although it highlights the key features of the 
device through AM. TRANS performs mechanical equipment fault diagnosis through 
transformer, but transformer is not optimised, so the diagnostic accuracy is not as good as 
that of ODAT; therefore, the ODAT model is more comprehensive for complex industrial 
equipment fault diagnosis, and is able to diagnose multiple faults occurring at the same 
time in a timely and accurate manner. 

Figure 5 Comparison of the average accuracy, recall and precision of different fault diagnosis 
model (see online version for colours) 
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In addition to accuracy, recall and precision, F1 and Gmean are also important indicators 
for evaluating the diagnostic effectiveness. F1 is the reconciled average of precision and 
recall, which comprehensively reflects the diagnostic efficiency of faults. Gmean is the 
geometric mean of the true case rate (TPR) and the true negative case rate (TNR), the 
larger the Gmean value, the more efficient the diagnosis. As implied in  
Figure 6, the F1 and Gmean values of ODAT are 0.93 and 0.97 respectively, which are 
16% and 15% higher compared to CRT-GRU, 12% and 10% higher compared to DBN, 
8% and 6% higher compared to ATCN, and 5% and 4% higher compared to TRANS, 
suggesting that ODAT exhibits excellent diagnostic performance. ODAT not only 
denoises the mechanical equipment signals and uses IPCA to downscale the  
high-dimensional equipment feature vector constructed by EMD, but also improves the 
Transformer model by DAM, which effectively solves the fault class imbalance and 
multi-fault coupling problems, thus improving the diagnostic efficiency. 

Figure 6 Comparison of F1 and Gmean for different models (see online version for colours) 

 

6 Conclusions 

Fault diagnosis of industrial machinery and equipment is essentially a problem of fault 
pattern recognition, and the selection of appropriate diagnostic methods is crucial to the 
accuracy of the diagnostic results. In this paper, for the current mechanical equipment 
fault diagnosis method diagnostic results of the problem of low accuracy, first of all, the 
industrial machinery and equipment big data pre-processing, the use of EMD on the  
pre-processed machinery and equipment signals to make a multi-dimensional 
decomposition, and then build the fault feature vector. The kernel function is then 
introduced to improve the PCA algorithm (IPCA), which is utilised to map the  
high-dimensional features of the mechanical device to the low-dimensional space and 
reduce feature redundancy. Finally, the transformer model is improved (ODAT) by DAM 
so that the model focuses on the key features from multiple dimensions, and in order to 
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alleviate the difficulty of fault diagnosis, the binary association method is used to train 
one ODAT model for each fault for diagnosis, and after the diagnosis is completed, a 
fault set is generated based on the diagnostic results of all ODAT models. The 
experimental outcome implies that the model has high fault diagnosis accuracy and can 
accurately diagnose multiple faults occurring at the same time for targeted repairs. This 
paper focuses on industrial big data-driven fault diagnosis methods for mechanical 
equipment, but there are still some shortcomings, and subsequent consideration is given 
to the physical knowledge of industrial equipment and related domain knowledge as 
constraints to be incorporated into the proposed model, in order to improve the robustness 
and generalisability of the model. 
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