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Abstract: Fractal art patterns are widely used in fields such as artistic creation, 
data visualisation, and scientific simulation. The existing fractal pattern 
generation methods often face the problems of insufficient pattern diversity and 
low generation efficiency. This article proposes a fractal art pattern generation 
method based on the equilibrium optimiser (EO) algorithm. Firstly, using 
fractal iterative function system to define the solution space of key parameters; 
secondly, the balanced optimiser algorithm is introduced to perform global 
search and local optimisation of parameters; and finally, the complexity, 
symmetry, and diversity of the generated patterns were quantitatively evaluated 
through experiments. The results indicate that this method improves the 
generation efficiency while maintaining the complexity of fractal patterns, and 
significantly expands the diversity of patterns. This study not only enriches the 
technical means of fractal art creation, but also provides a new perspective for 
the application in art design. 
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1 Introduction 

The most fable newcomer in geometry is fractal geometry. Fractal curves have captivated 
many individuals since its origin, and several sectors including natural sciences, 
architecture, computer graphics, and musicology have been keen to include fractal theory 
into their respective study domains. Under the direction of colour and aesthetic 
guidelines, points, lines, and surfaces produce a good known as art design. Daykin et al. 
(2008) hold that art design follows a creative law of ‘repetition and change’. ‘If there is 
only repetition without change, the work will inevitably be monotonous and dry; if there  
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is only change without repetition, it is easy to fall in a scattered and disorderly state’. 
Likewise, fractal algorithms’ images exhibit strong degrees of ‘repetition and change’ 
properties. Integrating fractal theory into modern design research will transform all the 
techniques of art design, which will eventually influence the art creation itself, depending 
on the study basis of mathematical functions, computer algorithms, program design, and 
art design. 

Fractal art pattern creation technology has lately been extensively used in computer 
graphics (Liu, 2022), data visualisation (Tian et al., 2019), and creative design domains 
(Chung and Ma, 2005). Nevertheless, conventional fractal pattern generating techniques 
mostly depend on hand design and parameter modification; their generating process is 
complicated and lacks automation. Particularly in the domains of art and design, 
designers have more expectations for the variety, complexity, and aesthetic effects of 
patterns, and current approaches are challenging to satisfy these demands concurrently. 
An important research challenge in this topic is how to maximise the fractal pattern 
generating process, increase generating efficiency, and broaden the expressiveness of 
patterns by means of intelligent algorithms. 

Powerful global search capabilities and adaptable properties of intelligent 
optimisation algorithms – such as genetic algorithm (GA), particle swarm optimisation 
(PSO), and differential evolution (DE) – have shown exceptional performance in 
handling challenging optimisation challenges. Industries, economics, scientific research, 
and other disciplines have all benefited much from these algorithms. Still in the 
exploratory stage, nevertheless, is the application of fractal art pattern generating. Though 
they can somewhat increase the optimisation effectiveness of fractal parameters, 
conventional optimisation techniques have limited support for the complexity and 
variation of patterns and are prone to become caught in local optima. Researching more 
effective optimisation techniques to raise the quality of fractal art pattern development is 
thus quite important. 

Inspired by dynamic equilibrium theory, EO is a newly developed intelligent 
optimiser (Faramarzi et al., 2020). EO dynamically changes the search strategy to reach 
both global and local search capabilities and effectively investigates the search space by 
replicating the development process of equilibrium states in nature. Strong 
competitiveness of this method has shown in mechanical design, path planning, and 
engineering optimisation. By means of its effective exploration mechanism, the balanced 
optimiser not only helps optimise the choice of fractal parameters but also improves the 
diversity and complexity of patterns, thereby meeting the needs of art design. 

First presented by Mandelbrot (1975), a mathematician at Harvard University and 
researcher at the Physics Department of IBM Research Centre in the United States, the 
study on fractal theory started in the 1970s. This geometric theory has given people a 
fresh viewpoint and study approach for seeing and comprehending natural objects since it 
helps to explain their chaotic traits. A complement and extension of Euclidean classical 
geometry, fractal theory has enabled mathematical language to be used to describe the 
natural world. Fractals might be argued to be a useful tool for exposing the inherent 
structure of nature and to approach the actual face of nature more precisely than 
conventional Euclidean geometry. Being a novel scientific theory, fractal theory is 
changing people’s perspective of natural objects, correcting their habitual way of thinking 
and examination of art, and has had a great influence on pattern creation and visual 
aesthetics. 
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After years of constant research and development, fractal theory has grown to be a 
significant multidisciplinary topic as a theoretical instrument for investigating the 
objective laws and inherent linkages of complicated natural events. Widely used in many 
disciplines, this viewpoint and approach highlights the presence of the material world and 
generates appropriate development. According to the development trend of recent years, 
notably in the sphere of art and design, adding fractal theory into disciplinary research 
will eventually help the discipline to flourish. 

Theoretically, fractal geometry provides the means to create fractal patterns; its 
fundamental concept is to build intricate patterns by iteratively and recursively. The most 
often utilised fractal structures to create rich and varied geometric designs are Mandelbrot 
fractal and Julia set fractal (Zhou et al., 2016). Commonly utilised fractal generating 
technique iterative function system (IFS) creates fractal patterns with self-likeness 
properties by means of linear transformations (Chua et al., 2005). Research grounded on 
fractal geometry has progressively added randomness to improve the variety and creative 
expression of patterns in recent years (Losa et al., 2016). 

Although conventional fractal generating techniques have great aesthetic value in 
theory, their parameter adjustment procedure depends on the designer’s knowledge, so 
generating efficiency is limited and it becomes difficult to satisfy the needs of 
complicated artistic design. To thus increase generating efficiency and efficacy, 
researchers have started investigating techniques combining intelligent algorithms to 
automatically optimise fractal parameters (Li et al., 2020). 

Because of their strong global search capability, intelligent optimisation algorithms 
are extensively applied to address challenging optimisation problems. By replicating 
natural evolution events, GAs maximise fractal parameters and produce more varied and 
complex patterns (He et al., 2022). Appropriate for fractal synthesis with reduced 
parameter dimensions, PSO method uses the cooperative search properties of particles to 
rapidly locate optimal solutions (Gad, 2022). Furthermore used in graphic design have 
been simulated annealing (SA) (Thirunavukkarasu et al., 2023) and DE methods (Storn 
and Price, 1997). 

Thanks to their strong search performance, certain newly developed optimisation 
techniques including grey wolf optimiser (GWO) (Mirjalili et al., 2014) and firefly 
algorithm (Gad, 2022) have been applied to raise the quality of fractal pattern synthesis 
recently. These approaches still have difficulties, though, in balancing generation 
efficiency with complexity. 

Based on balance mechanism, equilibrium optimiser (EO) is a new intelligent 
optimisation method. Its main ability is to simulate dynamic equilibrium states, with both 
global search and local fine optimisation capability, therefore modifying the distribution 
of solutions (Tang et al., 2021). In mechanical optimisation, path planning, and 
engineering design – among other domains – this method has shown outstanding 
performance (Wang et al., 2023). 

In the domains of design and art, EO algorithm application is still in its early phase. 
The effective exploration mechanism of EO algorithm offers the means to overcome this 
challenge since the generation of fractal art patterns requires balancing complexity and 
efficiency (Elmanakhly et al., 2021). This paper presents the EO algorithm into fractal art 
pattern generating and enhances the variety and aesthetic expression of the produced 
patterns by optimising the fractal parameters. 

This work intends to present a fractal art pattern generating method based on the 
balanced optimiser algorithm, which integrates fractal geometry theory with intelligent 
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optimisation algorithms to attain automation and diversification of the creation process. 
This article mostly makes three contributions: specifically, these three points are: 

1 Constructed based on the IFS in fractal geometry, a fractal art pattern generating 
model is built, important parameters and their corresponding solution space are 
determined, and a fundamental framework for algorithm optimisation is developed. 

2 Design an optimisation approach that fits fractal generating models, apply EO 
algorithm to globally search and locally optimise model parameters, and enhance the 
quality and diversity of produced patterns. 

3 Comprehensively compare the performance variations between the balanced 
optimiser algorithm and conventional optimisation algorithms in fractal pattern 
generation. 

2 Relevant technologies 

2.1 Fractal theory 

Mathematically speaking, fractals still lack a consistent definition and Mandelbrot 
himself has not offered a thorough theoretical one. Although his knowledge of fractals is 
still increasing, the always divided idea of fractals is continuously enhancing this theory. 
We may investigate some special characteristics of fractals since we are more interested 
about their application and development. 

A set is said to be fractal if its operational or descriptive definitions match each other: 

1 Any ratio has minute elements. Zooming in or out of fractal images will not lose 
features, so the nested structure of layers will always show and more levels can be 
split. 

2 Both locally and internationally are somewhat erratic; conventional geometric 
terminology cannot adequately explain them. Fractals cannot be measured with the 
conventional scales like area and volume. Simple repetition rules allow one to 
understand the self-resemblance between the total and the parts even if their form is 
somewhat complicated. 

3 Having a shape like this, one may use statistics or approximations. Usually, fractal 
images feature multi-level self-similar patterns. 

4 The dimension exceeds that of topological dimension. In fractal theory, dimension is 
a crucial metric that shapes people’s perspective of environment. People thus come 
to see that dimensions are not only integers but also fractions or even irrational 
quantities. 

5 Most of the time, fractals may be produced iteratively and are characterised by quite 
basic techniques. Research of complicated forms depends much on IFSs. 

2.2 Topological dimension and fractal dimension 

Euclidean classical geometry and Cartesian coordinate system theory define the 
dimension in geometric space as the count of coordinates defining a point’s position. 
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The relationship between points, lines, and surfaces can be represented by a 
mathematical expression, and this expression is related to the dimensionality. For 
example, an arbitrary point M(x, y) on a plane can be represented in the following form: 

1

2
:

x c
M

y c
=

 =
 (1) 

where c1 and c2 are the coordinates of point M, which are constants, so their geometric 
dimension is zero. 

Any line segment (straight or curved) on a plane can be represented in the following 
form: 

( )y f x=  (2) 

The points (x, y) that satisfy the function f form a line segment in the plane. y can be 
represented by a function variable x with a geometric dimension of one. A line has only 
one dimension of length and is one-dimensional. 

Any surface (plane or curve) in space can be represented in the following form: 

( , )z f x y=  (3) 

The points (x, y, z) that satisfy the function f form a surface in the plane. z can be 
represented by two functional variables x and y, with a geometric dimension of two. A 
surface is two-dimensional, and the space composed of surfaces is three-dimensional, 
with dimensions of length, width, and height. That is, points are zero dimensional, lines 
are one-dimensional, and surfaces are two-dimensional. The dimensions defined in this 
way are called topological dimensions. 

All points, lines, and surfaces can be represented by f(x), f(x, y), and f(x, y, z), and 
geometric objects with integer dimensions are regular and smooth geometries that can be 
measured using an integer dimensional ruler. 

Figure 1 The generation of Koch curve 

 

Step 2, at this time n = 2, repeat the process of the previous step for E1 composed of four 
folded line segments to obtain E2, a line segment composed of 16 polylines. Continuing 
to repeat the process of dividing each line segment into three equal parts and removing 
the middle line segment can be understood as a recursive process from En to En+1. The 
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Koch curve is obtained when n approaches infinity. The first few steps of the Koch curve 
generation process can be illustrated in Figure 1. 

Fractal geometry reaches the description of ‘irregular’ geometric objects by extending 
the dimensionality from integers to fractions. Different fractal events demand different 
fractal dimensions to explain: the Koch curve with a dimension of 1.26, the shoreline 
with a dimension of 1.05–1.25, and the mountain and ocean surfaces with dimensions 
larger than 2. The fractal dimension value shows the complexity of the fractal set; hence, 
the more space the fractal set may fill. 

2.3 Cantor triple diversity 

Constructed recursively from the interval [0, 1], Cantor triplets follow these steps: 

1 starting from the closed interval [0, 1] 

2 divide the interval into three equal parts, remove the middle third of each interval 
again; repeat the process endlessly 

3 remove the middle third of each interval once more. 

Cantor triplet is the outcome, a set with an unbounded number of points. 

Figure 2 Cantor triple diversity 

n=0

n=1

n=2

n=3

n=4  

Typical examples of fractals include Cantor triplets, in which every component has a 
form reminiscent of the whole. Expand any section while maintaining the general 
integrity of the construction. Each stage of the construction removes finite length 
intervals, while the remaining collection of points is still infinite. Cantor triplets have a 
total length that usually 0, hence the conventional ‘length’ of the set does not exist but the 
set contains an endless number of points. Cantor’s triplet has infinite points, but it is 
uncountable, hence the number of points in its set is equipotential to the set of real 
numbers even though. Once perplexed mathematicians in the 19th century, the 
paradoxical character of its design now baffles them. From the standpoint of geometric 
relationships, however, the distribution of produced points is locally similar – that is, 
even locally similar between every stage of the process – called self-similarity. 
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2.4 Sierpinski gasket 

It is a two-dimensional fractal structure widely used in the research of mathematics, 
computer graphics, and fractal geometry. 

Constructed recursively from an equilateral triangle, Sierpinski shims follow these 
guidelines: 

1 The initial state starts from a large equilateral triangle as the basis of the fractal. 

2 Recursive rule, divide the current triangle into four small equilateral triangles, with 
each side measuring 1/2 of its original length. Remove the small triangle at the centre 
(forming an inverted triangular void). Apply the same rule recursively to the 
remaining three small triangles. 

3 Infinite iteration, the remaining triangles get smaller as the number of recursion rises 
and finally create an infinitely fine Sierpinski shim with a self like structure. Figure 3 
exhibits a Sierpinski triangle. 

Figure 3 Sierpinski triangle (see online version for colours) 

  

2.5 Sierpinski gasket 

Inspired by the equilibrium in physics, EO is a fresh metaheuristic optimisation method. 
It simulating the process of particles reaching equilibrium in a physical system helps it to 
realise optimal aims. This method with great convergence speed and solution quality 
combines local development with global search. 

Many elements affect the process of particle systems achieving equilibrium in 
physics: interactions between particles, internal random fluctuations, and external 
environmental variables of the system. EO models the process of solving optimisation 
challenges by using these properties. Starting from the first non-equilibrium state, the 
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system gradually moves towards equilibrium state by means of particle contact; fine tune 
close to the equilibrium state to identify the best solution. 

EO abstracts the ‘equilibrium state’ of the system, therefore capturing the ideal 
solution of the problem. The method dynamically changes the search methodology to 
progressively approach this equilibrium condition of the population. 

Each generation (iteration), the equilibrium solution is computed by weighting the 
outstanding solutions of the current population: 

1

K

eq k k
k

x ω x
=

= ⋅  (4) 

where xk is the kth excellent solution in the population, ωk is the weight factor, which is 
inversely proportional to the fitness of xk, and K is the number of excellent solutions. 

EO reaches adaptive switching between global search and local development by 
varying the balancing factor. Changing formulas and parameter values is really easy and 
low processing complexity. The lower complexity has strong adaptability and robustness 
to various optimisation problems. The equilibrium solution helps the population stay out 
from local optima. Fit for discrete, continuous, and multi-objective optimisation 
problems. Therefore, EO model is easy to be combined with various optimisation 
techniques, such as anti-learning, anarchy and so on. 

3 A fractal art pattern generation method based on balanced optimiser 
algorithm 

Combining intelligent optimisation technology with fractal geometry theory, the fractal 
art pattern generating approach based on the EO algorithm suggested in this article 
achieves efficient and varied fractal pattern generating by optimising important 
parameters of the IFS. Combining lens imaging learning approach with tent chaos 
strategy to improve global search capability and local development capability, so 
obtaining better quality fractal pattern generating. 

3.1 Construction of fractal generation model 

The foundation of fractal geometry is the IFS, whose core lies in defining a set of affine 
transformations that can generate self-similar patterns. The IFS model is described in the 
following mathematical form: 1 Introduction of dynamic convolution. 

( , ) , 1, 2, ...,i i i
i

i i i

a b x e
w x y i N

c d y f
     

= + =     
     

 (5) 

where ai, bi, ci, di, ei, fi is the parameter of the transformation, and N is the number of 
transformations. By continuously iterating these transformations, fractal patterns with 
complex geometric properties can be generated. 

In this study, the Mandelbrot set, Julia set, or other specific fractal structures were 
first selected as initial templates. Then, the key parameters of IFS are defined as 
optimisation objectives, which control the shape, complexity, and symmetry of the fractal 
pattern. 
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3.2 Design and adaptation of balanced optimiser algorithm 

Driven by dynamic balancing theory, the balanced optimiser algorithm is a global 
optimisation method. The central concept is to balance global exploration and local 
development by progressively approaching the ideal solution by modifying the 
distribution trend of the solution. 

3.2.1 Tent chaotic mapping sequence. 
By modelling the principle of equilibrium and hence approximating the global optimal 
solution, EO dynamically moves between solution exploration and development. EO’s 
fundamental procedure consists in: 

1 randomly producing starting solutions 

2 dynamically updating the balance pool, guide the population to progress towards the 
optimal direction 

3 balancing global exploration and local development using parameter perturbation 
and balance control. 

The EO algorithm starts with a randomly generated population, where each individual 
represents a possible solution to the IFS parameter. The initial solution space is defined 
as: 

( ){ }, , , , , | , , ..., [ , ]i i i i i i i i iP a b c d e f a b f L U= ∈  (6) 

where L and U are the upper and lower limits of the parameter, respectively. 
The EO algorithm achieves population evolution through the following update rules: 

( ) ( )1
1 2

t t t t t t
eq eqi i i ix x r x x r x x F+ = + − + − ⋅  (7) 

where t
ix  is the parameter value of the ith solution in the tth iteration, t

eqx  is the parameter 
value of the equilibrium state, r1, r2 is the random factor, and F is the control factor, 
dynamically adjusting the search intensity. 

Through the introduction of chaotic variables, the Tent chaos technique enhances 
population initialisation and search variety. Early stage chaos mapping accelerates the 
convergence speed of the algorithm by means of unpredictability, ergodicity, and 
orderliness, therefore enhancing the population variety. Thus, this paper enhances the EO 
algorithm using the sequence initiation population produced by tent chaos, stated as 
follows: 

( )
2 , 0 0.5
2 1 , 0.5 1

d d
i id

i d d
i i

Y Y
Y

Y Y
≤ ≤= 

− ≤ ≤
 (8) 

where d is the variable dimension and i matches the particle count. As the process of 
creating Tent mapping sequences inside the reasonable domain generates small periods 
{0.2, 0.4, 0.6, 0.8} and unstable fixed points {0, 0.25, 0.5, 0.75}. Random variables are 
incorporated in the above formula to disturb the sequence and help one avoid becoming 
caught in small and unstable periodic points during iteration. The Tent mapping sequence 
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guarantees additionally the randomisation, traversal, and orderliness within a controllable 
random range. 

The Tent chaos approach is applied at the population’s beginning stage to produce 
parameters guaranteeing its diversity. Little chaotic perturbations are added to individual 
parameters throughout the iteration process to increase global search capacity and prevent 
local optimal traps. 

3.2.2 Lens imaging anti learning strategy 
We propose a reverse learning technique based on lens imaging principle to increase the 
capacity of EO algorithm to break out from local optima. Inspired by the reverse concept 
of optical lens imaging, lens imaging reverse learning method is an enhancement 
technique in optimisation algorithms, mostly used to improve global search ability, help 
algorithms get rid of local optima, and enable exploration ability of solutions, so enabling 
optimisation algorithms. This approach guides the search process to extend in a more  
all-encompassing direction by imitating the ‘mirror reflection’ or ‘optical path reversal’ 
behaviour of the answer, therefore producing new candidate solutions. By means of 
mirror reflection or reverse mapping, the lens imaging anti-learning technique 
investigates possible ideal areas outside the present search range. 

Solution update in conventional lens imaging learning methods is based on the light 
travelling through the lens approaching the focus point. On the other hand, the anti-
learning approach simulates the reverse path of light or the process of creating virtual 
images, therefore boosting the diversity and unpredictability of exploration. Under the 
following presumption: always exists a corresponding inverse solution X*. Find the 
possible solution X in the solution space. Inverse solution X is revised to the optimal 
solution if its fitness value is higher than that of the feasible solution. 

The lens imaging learning approach is applied to improve the local development 
capacity of solutions by simulating the imaging principle of optical lenses. The revised 
equation is: 

( ) ( )1t t t
f f bi i ix x x x x x+ = + − + −α β  (9) 

where α, β is the dynamic learning factor; xf is the virtual focus, computed depending on 
the position of the optimal and suboptimal solutions; xb is the current worst solution 
utilised to improve directionality. While lowering the likelihood of the algorithm 
stagnating in unsatisfactory solutions, the lens imaging method speeds the local 
convergence of the solution. 

3.2.3 Specific steps of improved EO algorithm (TLEO) 
The specific steps of the improved EO algorithm are as follows: 

1 Initialise the IFS model and parameter range, use the EO algorithm to initialise the 
population, and set the input parameters for algorithm initialisation. 

2 Introduce the sequence generated by Tent chaos to initialise N particle populations, 
iteratively update the populations, and optimise IFS parameters. 

3 Generate fractal patterns and calculate the fitness values of each individual particle, 
record and screen out the 8 best balanced candidate particles so far. 
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4 Build a balanced state pool and select candidates. 

5 Introducing a lens imaging reverse learning strategy to update the optimal solution: 
Introduce a lens imaging reverse learning strategy to X, obtain the reverse solution 
X*, and if the fitness value is *( ) ( ),i if X f X<  add reverse solution *

iX  instead of Xi 
to the particle population and record the optimal particle concentration. 

6 Repeat the iteration until the termination condition is met. 

7 Output optimal parameters to generate the final pattern. 

Figure 4 TLIL-EO algorithm process 

 

start

Introducing Tent chaotic mapping sequence to 
initialize the population

Calculate individual fitness values and select the 
optimal solution

Calculate the index term coefficient F and the 
mass generation rate G

Update particle concentration

Record the optimal solution and its fitness value 
in this iteration

T<Tmax?

Output the optimal ion concentration and its 
fitness value

T=T+1

Introducing a reverse learning strategy for lens 
imaging to update the optimal solution

end

N

Y

 

4 Experiment 

4.1 Experimental setup 

Mostly using hardware devices like Intel (R) Core (TM) i7-12700H, four RTX, 
2080/RTX 2080 Ti, etc., this paper depends on Technical models implemented in this 
paper use PyTorch, Python 3.9, NumPy, Matplotlib, etc. Initialisation uses tent chaotic 
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mapping. The acceleration factor in the PSO technique is 1.5 while the inertia weight is 
0.7. 

The testing environment runs Microsoft 64 bit operating system and employs 
MATLAB code for all algorithm performance tests; Set the population size to 100; the 
maximum number of iterations to 1,000; then, run the process 50 times. 

This work selected a total of 12 single peak and multi-peak benchmark functions for 
algorithm optimisation testing in order to validate the performance of the proposed TLEO 
algorithm. For function testing the TLEO method was compared with conventional EO 
algorithm (Elmanakhly et al., 2021), PSO algorithm, and moth flame optimisation (MFO) 
algorithm. 

4.2 Experimental results and analysis 

Figure 5 exhibits the test findings. The TLEO method beats most other methods in terms 
of computing performance for the great majority of unimodal and multimodal test 
functions. The TLEO algorithm has greatly enhanced convergence accuracy and stability 
over the EO method, so confirming its benefits in global exploration and the capacity to 
avoid local optima. Early on in the iteration, the TLEO method converges noticeably 
faster than other methods; it also has more accuracy in the middle and later phases of 
convergence This is a result of the Tent chaotic mapping sequence introduced to start the 
population, hence enhancing population diversity and speeding optimisation efficiency. 
By means of high convergence precision, the lens imaging anti-learning method improves 
the capacity to leap out of local optima and carry on global exploration in the middle and 
later stages. 

Figure 5 Test function convergence curve (see online version for colours) 
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Figure 6 Comparative experimental results (see online version for colours) 

 

Figure 7 The generated fractal pattern (see online version for colours) 

     
As shown in Figure 6, the optimisation efficiency of the TLEO method was matched with 
other enhanced algorithms based on the EO algorithm to validate its performance even 
more. Referring to the global minimum value of the test function, a fixed optimisation 
value was specified, and the stopping condition throughout every algorithm iteration was 
less than the fixed optimisation value or reaching the maximum iteration number. Three 
performance indicators – optimisation mean, variance, and average time – evaluated each 
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algorithm’s performance under the identical testing environment and parameter values. 
By means of comparison, it was discovered that the enhanced EO algorithm offers more 
benefits than other such algorithms. In terms of optimisation capacity and efficiency, the 
TLEO algorithm beats the MFO method both in terms of single and multi-peak test 
functions. 

Figure 7 shows the generated fractal pattern. 

5 Conclusions 

Based on the EO algorithm, this work suggests a fractal art pattern generating technique 
and confirms its efficiency by means of tests. Especially in terms of pattern symmetry, 
detail complexity, uniformity of pixel density distribution, and convergence efficiency, 
EO shows advantages over conventional optimisation techniques including GA and PSO. 
The EO method may dynamically balance global exploration and local development 
during the search process by including a dynamic balancing factor, therefore preventing 
the issue of local optimal solutions. Furthermore included in this paper are tent chaotic 
mapping and lens imaging anti-learning techniques, which greatly enhance the diversity, 
exploratory character, and convergence efficiency of the optimisation process and 
produce high degrees of visual effects and structural complexity of the produced fractal 
art patterns. In several respects, the experimental results reveal that the EO method beats 
GA and PSO. In particular, EO produces not only more exact and symmetric fractal 
patterns but also converges to high-quality solutions in a shorter time and produces very 
great stability and durability. Consequently, the EO method finds general use in image 
processing, fractal art pattern synthesis, and other domains. One can investigate future 
directions in line with the following elements. This article mostly uses the EO algorithm 
for single objective optimisation problems; in the future, it can be extended to  
multi-objective optimisation problems, such producing several or unique fractal patterns. 
The EO algorithm is intended to perform well in multi-objective situations by use of 
suitable fitness functions and non-dominant sorting techniques. The EO method has 
shown good performance; yet, on some challenging issues the convergence speed and 
computing efficiency of the algorithm still require development. Future developments in 
adaptive mechanisms, hierarchical search strategies, or hybrid optimisation techniques 
could help to raise local exploration accuracy of the algorithm and global search 
capabilities. Combining EO algorithm with other metaheuristic algorithms (such as GA, 
ant colony algorithm, artificial fish swarm algorithm, etc.) can be tried to form a hybrid 
optimisation algorithm, so using the advantages of various algorithms and improving its 
performance in diverse fractal image generating activities. 
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