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Abstract: 6D object pose estimation, crucial for applications such as scene understanding, 
AR/VR, and robotic grasping, focuses on determining an object’s rotation and translation from 
single-view images. Despite advancements in 3D deep learning, existing methods still struggle 
with large shape variations, high training demands, and unseen poses. This paper addresses these 
issues by introducing a rotation-invariant neural network. We propose a rotation-invariant 3D 
convolutional network that processes a point cloud to predict per-point canonical coordinates, 
from which the 6D pose, is estimated. The network utilises relative distances and angles within a 
representative point set. Experiments on a public dataset show that our method outperforms 
several state-of-the-art baselines, excelling in handling novel poses and severe occlusions. 
Ablation studies further highlight the importance of the individual components. 
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1 Introduction 
Estimating the 6D pose of an object, involving the 
estimation of both its 3D rotation and translation from a 
single-view image, constitutes a major challenge within 
robotics. This task is pivotal in various applications, 
including scene interpretation (Nie et al., 2020; Zhang et al., 
2021; Peng et al., 2023, 2024), AR/VR (Su et al., 2019), and 
robotic manipulation (Deng et al., 2020). 6D object pose 

estimation can be classified into two distinct types, 
depending on whether a CAD model of the target object is 
available: instance-level pose estimation (Kehl et al., 2017; 
Zakharov et al., 2019) and category-level pose estimation 
(Chen et al., 2020; Wang et al., 2019b). The former is 
commonly applied in industrial contexts, such as bin 
picking of predefined objects, whereas the latter pertains to 
broader applications that demand more sophisticated 
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capabilities to accommodate untrained objects within 
specified categories. 

Learning-based approaches have dominated the recent 
progress in 6D object pose estimation (Chen et al., 2020; 
Tian et al., 2020; Zakharov et al., 2019). Various methods 
have been proposed to tackle this problem. Most of these 
methods employ learned or manually designed 
regularisation networks to predict the pose, and utilise either 
the raw point clouds or pose consistency to better handle 
variations in shapes within the same category (Chen et al., 
2020, 2021; Chen and Dou, 2021; Zakharov et al., 2019). 
Despite the progress, existing approaches still face various 
challenges, including large shape variations, high training 
consumption, and unseen poses. 

In this paper, we advocate using rotation-invariant 
neural networks to tackle the above problems. Standard 3D 
convolution networks are not rotation-invariant, resulting in 
networks that cannot generalise to arbitrary rotations. 
Rotating the input data would lead to a serious performance 
drop. Incorporating the 3D convolution networks with 
rotation-invariant modules would potentially augment the 
training data and make the networks generalise to unseen 
rotations without training on all possible shape poses in the 
SO(3) space. 

To do so, we propose a rotation-invariant 3D 
convolutional network that takes a point cloud representing 
an object as input and predicts the per-point canonical 
coordinates. The 6D object pose is then estimated from the 
per-point canonical coordinates. The proposed network 
leverages several fundamental geometric features, such as 
the relative distances and angles within a representative 
local point set, aggregating the rotation-invariant features. 
To incorporate these fundamental geometric features with a 
3D graph convolutional network (3D-GCN) (Lin et al., 
2020), we achieve rotation-invariant feature extraction with 
strong capability on complex shapes. The proposed network 
is easy to implement and requires less training data and 
time, facilitating the application of it to downstream 
applications. We extract rotation-invariant from point cloud 
rotation and scaling, which include geometric feature 
extraction method and 3DGC feature extraction. We further 
incorporate losses for the three parallel branches, which are 
used to predict the object’s pose, the reconstructed point 
cloud P, and the relevant parameters for each point 
regarding the bounding box (Figure 1). 

Experiments on a public dataset demonstrate the 
advantages of the proposed method. It achieves better 
performance compared to several state-of-the-art baselines. 
In particular, the proposed method is especially suitable for 
handling challenging scenarios, including objects with novel 
poses and severe occlusion. Moreover, ablation studies 
reveal the significance of the individual components. 

Our work makes the following contributions: 

• A novel design of rotation-invariant 3D convolutional 
network. 

• A specialised geometric relationship is introduced to 
encode the rotation-invariant geometric structure. 

• Three parallel losses branches are incorporated to 
predict the object’s pose, the reconstructed point cloud 
P, and the relevant parameters for regarding the 
bounding box. 

2 Related works 
2.1 Instance-level 6D pose estimation 
Instance-level 6D pose estimation represents a critical 
domain in computer vision, concentrating on precisely 
determining the three-dimensional pose of an object 
instance from image or sensor data (Chen et al., 2021; Kehl 
et al., 2017; Labbé et al., 2020; Li et al., 2018b; Manhardt  
et al., 2019, 2018; Xiang et al., 2018; Zhang et al., 2024b). 
This involves estimating both translation and rotation, 
typically represented as six degrees of freedom (DOF). 
During both training and testing, CAD models for the 
objects of interest are accessible (Kehl et al., 2017; 
Zakharov et al., 2019). Specifically, when CAD models of 
the target instances and its corresponding monocular 
RGB/RGBD image is available, the next step involves 
estimating the pose P ∈ SO(3) of the target instance within 
the image, where P can be decomposed into camera rotation 
R ∈ SO(3) and translation T ∈ R3. Instance-level pose 
detection techniques can be classified into RGB-based and 
RGBD-based methods due to different forms of data input. 
The RGB-based methods typically employ deep learning 
models to estimate pose-related parameters directly  
(Di et al., 2021; Hu et al., 2020; Wang et al., 2021a). 
However, the estimation of 6D pose from a single RGB 
image is a challenging problem due to the absence of depth 
information, which introduces significant complexity. The 
presence of CAD models can help by establishing 2D-3D 
correspondences between the object model and the input 
image. Nevertheless, the development of monocular RGBD 
cameras has improved RGBD-based 6D pose estimation 
methods, which use depth masks or RGBD images as inputs 
and leverage point cloud representations to predict object 
poses (He et al., 2021, 2020; Li et al., 2018a; Wang et al., 
2019a). However, instance-level pose estimation often deals 
with a single or a few targets, and finding a CAD model for 
the specified object can be challenging, which limits its 
widespread practical application. 

2.2 Category-level pose estimation 
This research area, significant in computer vision, focuses 
on predicting object instance poses by extracting latent 
information from single-view images, without the need for a 
pre-existing accurate CAD model of the target (Di et al., 
2022; Manhardt et al., 2020; Sahin and Kim, 2018; Wang  
et al., 2019b, 2021b; Zhang et al., 2024a). Studies in this 
area are generally categorised into two types. Methods 
based on correspondence identify the alignment between 
canonical space coordinates (such as NOCS and NUNOCS) 
and the target points, and then refine pose and scale through  
post-processing. In contrast, direct regression methods, such 
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as DualPoseNet (Lin et al., 2021b) and FS-Net (Chen et al., 
2021), focus on extracting pose-sensitive features from the 
input using advanced network architectures and learning 
schemes to achieve accurate pose estimation (Deng et al., 
2022; Lin et al., 2022; Liu et al., 2022; Zhang et al., 2022). 
Additionally, category-level methods aim to predict poses 
of previously unseen objects using techniques like the 
intrinsic structure adapter and the Umeyama algorithm 
(Umeyama, 1991), as introduced by Wang et al. (2019b) 
and Sahin and Kim (2018). Despite its development, 
category-level pose estimation has recently gained renewed 
attention due to new deep learning approaches. Many of 
these algorithms utilise either learned or manually 
constructed canonical object spaces to determine poses, and 
they incorporate pose consistency constraints or point 
cloud-based shape priors to address intra-class shape 
variations. Despite notable advancements in benchmark 
performance, these methods still face limitations due to 
insufficient exploitation of geometric relationships between 
poses and point clouds. 

2.3 Point cloud feature extraction based on 3DGCN 
3D graph convolutional networks (3DGCNs) (Lin et al., 
2020) are deep learning models designed for performing 
convolution operations on graph data in three-dimensional 
space, extending traditional GCNs to accommodate 3D data 
characteristics. The core idea of 3DGCNs is to learn feature 
representations of nodes in 3D space. Unlike 2DGCNs, 
3DGCNs use additional adjacency matrices to capture the 
relative positions and relationships of nodes in three 
dimensions. This enables the model to better understand the 
topological structure between nodes and infer patterns and 
features within 3D data more accurately. 3DGCNs are 
extensively utilised in domains such as computer vision, 
medical image processing, and molecular structure analysis. 
They were developed to address the limitations of 2DGCNs 
in processing 3D data. By incorporating an additional 
spatial dimension, 3DGCNs significantly enhance the 
model’s capacity to capture relationships between nodes. 
This ability makes them especially powerful when handling 
data that exhibits complex spatial structures, such as those 
encountered in 3D object recognition tasks. 

3 Method 
The rotation-invariant 3D convolutional network takes a 
point cloud representing an object as input and predicts the 
per-point canonical coordinates. The network structure is as 
depicted in Figure 1, where firstly, an existing object 
detector, such as mask-RCNN (He et al., 2017), is employed 
to segment the objects of interest from the depth map. 
Subsequently, back-projection techniques are used to derive 
the corresponding point cloud of these objects, which is 
then utilised as the input for the proposed network. Similar 
to 3DGCN (Lin et al., 2020), we extract rotation-invariant 
from point cloud rotation and scaling, which include 
geometric feature extraction method (Section 3.1) and 

3DGC feature extraction (Section 3.2). We further 
incorporate losses for the three parallel branches(Section 
3.3), which are used to predict the object’s pose {R, g, t}, 
the reconstructed point cloud P, and the relevant parameters 
for each point regarding the bounding box. 

The rotation-invariant 3D convolutional network takes a 
point cloud representing an object as input and predicts  
per-point canonical coordinates. The network structure is 
depicted as Figure 1. Initially, an existing object detector, 
such as mask-RCNN (He et al., 2017), is employed to 
segment the objects of interest from the depth map. 
Subsequently, back-projection techniques are used to derive 
the corresponding point cloud of these objects, which is 
then used as input for the proposed network. Similar to 
3DGCN (Lin et al., 2020), we derive rotation-invariant 
features by applying transformations such as rotations and 
scaling to the point clouds. This process encompasses both a 
geometric feature extraction technique (Section 3.1) and the 
extraction of 3DGC features (Section 3.2). We further 
incorporate losses for three parallel branches (Section 3.3), 
which predict the instance’s pose {R, g, t}, the 
reconstructed point cloud P, and relevant parameters for 
each point concerning the bounding box. 

3.1 Geometric feature extraction 
To enhance the uniqueness of the extracted features, a 
specialised geometric relationship is introduced to encode 
the rotation-invariant geometric structure of the points. The 
core concept of this geometric relationship involves 
measuring the relationship using the distance between two 
points and the angle of a point to a plane. Specifically, for a 
central point pi, the k-nearest neighbours P1 are identified 
based on the Euclidean distance of the features using the  
k-nearest neighbour algorithm. After performing k-means 
clustering on these k1 neighbours, the k2 closest points to the 
central point are selected as the feature domain P2. In the 
neighbourhood P2 of the central point pi, each neighbouring 
point pj forms k2 point pairs with the central point. The 
geometric relationship of each point pair is described as 
follows: 

1 Point-to-point distance: the Euclidean distance between 
two points is given by di,j = |pi – pj|. 

2 Angle between the centre point normal vector and the 
point pair vector: two nearest neighbours 1 2andi ip p  are 
selected to form a local plane around pi. The normal 
vector ni of the local plane is computed using the cross 
product. The angle between the point and the plane is 
calculated as ai,j = θ(ni, pj – pi). 

3 Angle between the neighbour point normal vector and 
the point pair vector: similarly, the angle between the 
normal vector of the neighbouring point pj and the point 
pair vector is computed. This is given by aj,i = θ(nj,  
pj – pi), where nj is the local normal vector of pj, 
computed using the cross product. 
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Finally, the geometric feature of each point pair is derived 
by aggregating the distances between points and the angles 
between each point and the plane. This is represented as: 

[ ], , , ,, ,i j i j i j j if d a a=  (1) 

and [-,-] signifies the operation of concatenation. The 
feature corresponding to the central point is derived by 
computing the average of the geometric features from all 
point pairs within the set of k-nearest neighbours: 

( )1 ,1

1
i i jj k

f p f
k ≤ ≤

=   (2) 

3.2 3DGC feature extraction 
A 3D point cloud object with N points is represented as  
P = {pi| i = 1, 2, …, N}, where pi ∈ R3. 

To characterise the features corresponding to each point 
in 3D-GCN (Lin et al., 2020), we use f2(p) ∈ RD to denote 
the corresponding D-dimensional feature vector. In the 
context of 3D-GCN (Lin et al., 2020), the feature vector 
associated with each point pi is denoted f2(p) ∈ RD,  
where D represents the dimensionality of the feature space. 
To capture the local geometric information of each  
point pi, a 3D receptive field for pi is determined by a  
set of K neighbouring points. Specifically, { , |K

i k kiR p p p= ∀  
( , )},iN p K∈  where N(pi, K) denotes the K nearest 

neighbours of pi based on Euclidean distance. For the 
variable convolution kernel KS in 3DGCN, KS = {kC, k1, k2, 
…, kS}, where S represents the number of supports in the 
kernel, kC = {0, 0, 0} denotes the centre of the kernel, and k1 
through kS represent the corresponding supports (Lin et al., 
2020). A weight vector w(k) ∈ RD is defined for each kernel 
point. Given the corresponding convolution kernel and the 
receptive field, the feature convolution operation can be 
defined as: 

( ) ( ) ( )
2

, ,
+ ( )

K S
i CiConv R K f p w k

g A f
=< >

=
 (3) 

where ⋅  denotes the inner product operation and 
2

,

,

( ), ( ) , (1, ), (1, ) .i s i k s

i k s

f p w k d kA k K s S
d k

< >< > = ∀ ∈ ∀ ∈ 
 

For further details, please refer to Lin et al. (2022). 
In summary, the feature F of point P can ultimately be 

represented as: F = [f1, f2]. 

3.3 Loss functions 
We incorporate losses for the three parallel branches, 
comprising the basic pose loss for predicting the object’s 

pose {R, T, S}, which represents {rotation, translation, size} 
respectively, the point cloud reconstruction loss for 
predicting the reconstructed point cloud P (Di et al., 2021; 
Li et al., 2018b; Wang et al., 2021a), and the bounding  
Box-Pose Loss for predicting the parameters of the 
bounding boxes. 

3.3.1 Basic pose loss 
For the rotation matrix R, we decompose the ground truth 
rotation matrix Rgt into the normal vectors of the bounding 
box, i.e., , , .gt gt gt

gt x y zR r r r =    We only need to estimate the 
first two parameters of the rotation matrix, rx and ry, and 
define the corresponding loss term as: 

1 1+gt gtBasic
x x y yrot r r r r= − −  (4) 

To estimate the translation t, the mean of the point cloud, 
denoted as MP, and the residual translation t* are first 
computed. This relationship is expressed as t = t* + MP. 
Consequently, the translation loss can be defined as follows: 

1
Basic gt
trans t t= −  (5) 

For size s, we predict the residual size s*, which represents 
the difference between the actual prediction ss and the  
pre-computed category average size Cm, i.e., s = s* + Cm. 
The corresponding loss term is defined as: 

1
Basic gt
size s s= −  (6) 

In summary, the overall loss function is: 

+ +Basic Basic Basic Basic
rot trans sizerot trans sizeλ λ λ=     (7) 

3.3.2 Point cloud reconstruction loss 
Although most class-level methods derive pose estimates 
from uniformly sampled point clouds, they frequently 
overlook the impact of the relative positions of points within 
the cloud, thereby missing valuable information. In contrast, 
these methods depend on carefully crafted loss terms to 
infer high-dimensional pose information. By transforming 
the point cloud to a canonical view, it becomes simpler to 
compute the relative positions of peripheral points. 
Analogous to the loss functions used in instance-level pose 
estimation, we define the following loss function: 

1( )PC T c
p P

R p t p
∈

= − −  (8) 

where R, t denote the predicted pose parameters, p 
represents the predicted point cloud, and pc refers to the 
ground truth in the canonical view. 
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Figure 1 Architecture of our network (see online version for colours) p p

 
Notes: In the initial stage, mask-RCNN segments the target instance from the depth image, providing input for the subsequent 

algorithm. A back-projection algorithm then generates 512 points from the target depth maps, which are used as inputs to 
the algorithm. The target point cloud features are extracted using the proposed rotationally invariant 3D convolutional 
layer (highlighted in yellow), which serves as input to the next convolutional network for further feature extraction. The 
first branch (depicted in blue) outputs the rotation parameters {rx, ry, Cx, Cy}, the translation vector T, and the scale S. 
From these, the predicted pose {R, T, S} is derived. The subsequent processing, indicated by the pink boxes, follows the 
approach described in Di et al. (2022). Here, parameters for each point in the target point cloud – such as distance, 
orientation, and confidence level relative to the bounding box – are predicted, serving as potential geometric constraints in 
loss computation. 

Figure 2 (a) Geometric feature representation and (b) final feature representation of point p (see online version for colours) 
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3.3.3 Bounding Box-Pose loss 
We follow the loss terms for bounding boxes as proposed in 
GPV-Pose (Di et al., 2021). For each observation point pj, 
estimate the confidence , distance ,j j

i ic d  and direction j
in  

for each of the six bounding box surfaces, where i ∈  and 
{ , , }.y x z= ± ± ±  Taking the front bounding box plane x+ 

as an example, the corresponding point jp′  on the front 
plane x+ is given by: 

+ ++ j j
j j x xp p n d′ =  (9) 

The plane parameters are characterised by the distance Dx+ 
and the normal vector Nx+ from the origin to the plane. 
These parameters can be inferred from the weights assigned 
to each point in the point cloud, as well as the associated 
confidence levels. Since we can obtain predictions for 

and ,j j
i in d  we directly supervise them using the L1 loss. 

The following loss term can be defined: 

( )
1

exp
j

j j gti
ji i j ijBB

pc i
p P i

d n f p r
c

a∈ ∈

 −
 = −

− 


  (10) 

where a is a constant, and ( )i
jjf p  represents the true 

distance from pj to the plane i in B. Considering additionally 
the front plane x+, we have: 

( ) ( )[ ]

2

gt
xx T gt

j gt jj
s

f p R p t++ = − −  (11) 

where s[x+] is the size along the x+ direction, and Rgt and tgt 
denote the translation and ground truth rotation, 
respectively. 

As previously mentioned, the rotation matrix R is 
decomposed into three columns R = [rx, ry, rz]. However, 
only rx and ry need to be predicted along with their 
associated confidence, as they completely describe the 
corresponding 3D rotation, i.e., rz = rx × ry. Additionally, rx 
and ry correspond to the normal vectors of the bbox planes. 
Therefore, conditional on the predicted bounding box 
parameters {Ni, Di}, i ∈ B, the following loss function can 
be defined: 

( , , ) + +BB BB BB BB BB BB BB
t t s sR RR t s λ λ λ=     (12) 

where each loss term is defined as follows: 

1
BB

i iR i
r N

∈
′= − 

  (13) 

{ , , }

BB T T
t i ii i

i x y z

N t D N t D+ −+ −
∈

= − − −  (14) 

( ) 1| |
/ 2BB T

i iis i
s N t D

∈
= − − 

  (15) 

By leveraging the normals of the bounding box planes to 
predict rotations, which corresponds to utilising the first two 
columns of the rotation matrix R, we address the inherent 

discontinuities within the SO(3) group, thus enhancing the 
learning process. Specifically, rotations are estimated based 
on the normals of two planes from the 3D bounding box. To 
overcome the challenges of accurately recovering distinct 
normals and to increase the robustness of the final rotation 
prediction, we assess the confidence associated with each 
normal. The goal is to ensure that normals with higher 
confidence values correspond to more precise rotation 
predictions. Accordingly, we define: 

( )2

1
,

exp gtBB
rc i i i

i x y

c b r r
∈

= − − −  (16) 

where b is a constant, gt
ir  represents the ground truth plane 

normal, and ⋅  represents the L1 loss function. 
In summary, we define the boundary box loss as: 

( , , )+ +BB BB BB BB
pc rcR t s=     (17) 

3.4 Implementation details 
We provide implementation details of the training and 
inference. All experiments were based on GTX 3060. The 
object detector Mask-RCNN was employed for object 
segmentation, and a reprojection algorithm was used to 
uniformly sample 512 points from depth maps as input to 
the network. A range of data augmentation techniques was 
employed, encompassing random rotation, translation, 
scaling, and the addition of noise. The Ranger optimiser was 
employed with a total of 150 training epochs, a learning rate 
of 0.001, and a batch size of 16. A cosine schedule was 
employed to reduce the learning rate during 50% of the 
training phase. The total loss function is as follows: 

+ +Basic PC BB
Basic PC BBλ λ λ=     (18) 

The parameters for all loss components remained constant 
during experimentation, with {k1, k2} = {20.5}, {a, b} = 
{1/303.5, 13.7}, and {λrot, λtrans, λsize, λBasic, λBB, λPC} = {1.0, 
1.0, 1.0, 8.0, 1.0, 1.0}. 

4 Results and evaluation 
4.1 Dataset 
Our network is trained and evaluated using the  
NOCS-REAL275 and NOCS-CAMERA25 datasets (Wang 
et al., 2019b). These pioneering datasets are specifically 
designed for category-level 6D object pose estimation and 
cover six categories: bottles, bowls, cameras, cans, laptops, 
and mugs. The CAMERA25 dataset comprises 300,000 
synthesised RGB-D images (Li et al., 2019). Conversely, 
the NOCS-REAL275 dataset includes 2,750 test images and 
4,300 training images, all of which are RGB-D images 
captured from real-world scenes. 
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Table 1 Quantitative results on the NOCS-REAL275 dataset 

Method IoU25 IoU50 IoU75 5°2cm 5°5cm 10°5cm 10°10cm 

NOCS (Wang et al., 2019b) 84.9 80.5 30.1 7.2 10 25.2 26.7 
CASS (Chen et al., 2020) 84.2 77.7 - - 23.5 58 58.3 
SPD (Tian et al., 2020) 83.4 77.3 53.2 19.3 21.4 54.1 - 
CR-Net (Zhang et al., 2021) 83.4 79.3 55.9 27.8 34.3 60.8 - 
DO-Net (Lin et al., 2021a) - 80.4 63.7 24.1 34.8 67.4 - 
FS-Net(Chen et al., 2021) 95.1 92.2 63.5 - 28.2 60.8 64.6 
GPV* (Di et al., 2022) 84.2 81.3 53.8 18.5 27.8 58.2 67.4 
Ours 84.2 82.3 68.1 29.2 36.6 72.5 74.5- 

Notes: Italic indicates the best of the results, underlining indicates the second best result. The locally replicated GPV-Pose 
(denoted as GPV*) is used as a key reference. 

Table 2 Whether rotation-invariant features participate in convolution 

Method IoU25 IoU50 IoU75 5°2cm 5°5cm 10°5cm 

A1 84.1 80.9 57.5 21.3 31.8 65.1 
Ours 84.2 82.3 68.1 29.2 36.6 72.5 

Table 3 Impact of different points on the network 

Total points Neighbour points IoU25 IoU50 IoU75 5°2cm 5°5cm 10°5cm Chamfer distance 

512 5 83.5 81.7 58.9 18.9 25.4 60.7 0.044569 
512 10 83.7 79.6 56.3 19.6 25.7 57.0 0.04376 
1,024 20 84.1 81.6 68.7 26.6 34.9 52.8 0.043091 
Ours 20 84.2 82.3 68.1 29.2 36.6 72.5 0.038832 

 
4.2 Evaluation metrics 
For evaluating category-level 6D pose estimation, we 
employed standard performance metrics on the  
NOCS-REAL275 dataset. IoUX, which refers to the 
intersection over union (IoU), measures the accuracy of 3D 
object detection by assessing overlap at various thresholds. 
A prediction is considered valid if the volume overlap 
between the predicted and ground-truth 3D bounding boxes 
exceeds a specified percentage. Following the guidelines 
outlined in references (Chen and Dou, 2021; Lin et al., 
2019b; Wang et al., 2019b), we report evaluation thresholds 
of 25%, 50%, and 75% to jointly assess rotation, translation, 
and object size. The notation n°m cm is used to denote 
errors in rotation and translation pose estimation, where the 
results are accepted if the rotational error is less than n° and 
the translational error is under m cm. Specifically, we use 
the following metrics: 5°2 cm, 5°5 cm, 10°5 cm, and 10°10 
cm. Additionally, to evaluate the similarity between the 
ground-truth and reconstructed point clouds, Chamfer 
distance is utilised as a metric. 

4.3 Performance on NOCS-REAL275 
Table 1 presents a comparison of our algorithm’s prediction 
results with those from alternative methods on the  
NOCS-REAL275 dataset. Noteworthy findings include that 
our approach exhibits superior performance in position 

estimation, outperforming previous methods on the 5°2 cm, 
5°5 cm, 10°5 cm, and 10°10 cm metrics, thereby confirming 
its effectiveness in predicting object pose. However, there is 
a noticeable gap in object detection performance compared 
to FS-Net, with the IoU25 and IoU50 metrics indicating 
areas for improvement and suggesting that further 
enhancements are needed in object detection. 

Figure 3 Visual comparison of the estimated pose (see online 
version for colours) 

（a1） (b1) (c1) (d1) (e1) 

(a2) (b2) (c2) (d2) (e2)  
Note: Green bbox represents the ground truth, the red 

box depicts the predictions from the replicated 
GPV-Pose method, and the blue box indicates the 
results obtained using our algorithm. 
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Figure 3 presents a qualitative comparison of our method  
on REAL275. Our method accurately forecasts the 
displacement and rotation of the target instance, as 
illustrated in Figures 3 (a1), (c1), (e1), among others, 
whereas the GPV method frequently fails to achieve 
comparable results in these scenarios. 

4.4 Ablation study 
Table 2 shows an ablation study quantifying the 
contribution of the rotation-invariant feature extraction 
network to our method. Table 3 examines the impact of 
different network constructs on overall performance. All 
experiments were performed using the NOCS-REAL275 
dataset for both training and validation. 

• Network structure: we investigated the effect of 
incorporating rotation-invariant features on overall 
network performance. By excluding these features from 
subsequent convolution operations, we obtained  
result A1. The findings indicate that including  
rotation-invariant features significantly enhances 
network performance, confirming their beneficial role 
in pose estimation algorithms. 

• Number of points: as mentioned in Section 3,  
rotation-invariant features are computed from 
neighbouring points of target points, which may affect 
network performance. Multiple experiments with 
varying numbers of neighbouring points were 
conducted to retrain our network, as shown in Table 3. 
We observed that a relatively small number of 
neighbouring points significantly degrades network 
performance, likely due to the loss of high-dimensional 
information from the point cloud, leading to inaccurate 
predictions. Additionally, while increasing the total 
point cloud sample size correlated with improved final 
prediction results, excessively large point clouds may 
negatively impact algorithmic performance. 

5 Conclusions 
This paper introduces a technique for extracting rotationally 
invariant features, which are used in a category-level  
bit-position estimation algorithm. The integration of these 
features substantially enhances the precision of pose and 
size estimation and exhibits consistent performance across 
different object rotations, yielding promising outcomes. 
Additionally, the method is capable of reconstructing 
corresponding point clouds. Future research will aim to 
advance the network’s capabilities to enhance performance 
with more intricate objects and to integrate pose estimation 
with point cloud reconstruction. 
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