Optimisation of quantum circuits using cost effective quantum gates
by Swathi Mummadi; Bhawana Rudra
International Journal of Computational Science and Engineering (IJCSE), Vol. 28, No. 2, 2025

Abstract: The importance of reversible operations has increased with the emergence of new technologies. Reversible operations are crucial for developing energy-efficient and cost-efficient circuits. The efficiency of a quantum circuit is measured in terms of quantum cost and quantum depth. In this paper, we propose an optimisation algorithm for reversible gates like the Peres gate, Toffoli gate, and the entanglement purification method. Peres and Toffoli gates play an important role in quantum circuit implementation, and entanglement purification plays a key role in various applications like quantum teleportation, secure communication, quantum key distribution, etc. The proposed algorithm optimises the quantum cost and quantum depth to 20% compared to the existing approaches.

Online publication date: Mon, 03-Mar-2025

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com