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Abstract: Real-time monitoring and early warning are critical for power 
system stability and security as thermal power units become more crucial in 
power generation. This paper reports a time series neural network-based 
thermal power unit condition warning mechanism. First, time series analysis 
simulates the dynamic changes of the units to capture their long-term trend and 
time-varying characteristics over operation using multi-dimensional thermal 
power unit operation data. Time-series data is processed by long short-term 
memory (LSTM), which also learns features for highly precise defect 
prediction. Furthermore, designed in this work is a multi-dimensional 
performance assessment system based on fault detection rate (FDR), early 
warning lead time (EWLT), false alarm rate (FAR), and diagnostic accuracy 
(DA) to entirely assess the proposed method. Tests reveal that the time series 
neural network-based thermal power unit status warning system can let thermal 
power units run reliably. 
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1 Introduction 

Thermal power units, one of the key tools in the power sector, hold a significant role in 
energy generation as industrialisation develops (Ma et al., 2017). Apart from their 
important contribution to the supply of energy, the steady running of thermal power 
plants is essential for the safety, economics, and environmental preservation of the power 
network. Nevertheless, long-term operation presents several difficulties for thermal 
power units, including aging equipment and frequent fault occurrence that makes 
condition monitoring and fault warning of thermal power units especially crucial. Usually 
depending on manual inspection and periodic testing, traditional thermal power unit 
monitoring systems have low efficiency and lagging response times, which makes it 
challenging to satisfy the need of the current power sector for intelligent and real-time 
equipment management (Stern, 2011). 

The condition monitoring of thermal power units is progressively moving in the 
direction of intelligence and automation as information technology and intelligent 
technology – especially the broad application of sensor technology – especially the 
internet of things – big data analysis and other technologies – develop rapidly. Real-time 
monitoring and data analysis help the operating status of the unit to be dynamically 
assessed, anomalies to be found in a timely manner, and failure warnings to be executed, 
so preventing possible major equipment damage, lowering maintenance costs, extending 
the life of the equipment, and so improving the safety and dependability of power 
production (Lu et al., 2020). In the field of thermal power unit condition monitoring, 
data-driven intelligent monitoring and fault detection techniques – especially those based 
on time series analysis and machine learning – have lately become a major focus of 
research direction. 

Based on conventional approaches and data-driven methodologies, fault monitoring 
and early warning systems for thermal power units mostly concentrate in two categories 
(Jieyang et al., 2023). Although to some extent they help in fault detection of thermal 
power units, traditional methods including empirical-based judgement, expert systems 
and signal processing techniques are difficult to adapt to the complex and dynamically 
changing operating environment due their over-reliance on human factors and fixed 
models. 

Data-driven fault detection and early warning systems based on data have 
progressively become a hot topic for research in recent years as artificial intelligence 
technologies – especially machine learning and deep learning – have grown increasingly 
important. Real-time capture of several operating data (e.g., temperature, pressure, flow, 
current, etc.) from the unit and analysis of them in combination with sophisticated 
algorithms helps to efficiently identify possible fault risks (Ahmad et al., 2022). For 
instance, fault detection of thermal power units has extensively applied conventional 
machine learning techniques such as support vector machine (SVM), decision tree, and 
random forest (RF) (Raczko and Zagajewski, 2017). By understanding the features of the 
previous data of the equipment, these techniques can forecast its condition more precisely 
and alert of possible faults in advance. 

But conventional machine learning techniques have some limits given the growing 
complexity of thermal power unit running circumstances. First, these techniques typically 
involve human feature extraction and perform poorly for nonlinear and time-varying 
system responses; second, it remains a difficulty to provide efficient and accurate failure 
warning in complex and changing surroundings. For this reason, the use of deep learning 
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techniques has grown to be a major research trend in the field of thermal power unit 
monitoring in recent years. With their strong automatic feature extraction and modelling 
capacity, deep learning models including deep neural network (DNN), convolutional 
neural networks (CNN), and recurrent neural network (RNN) have produced amazing 
results in the fields of image recognition, speech recognition, natural language 
processing, etc.; they have also been progressively introduced into fault detection and 
early warning of thermal power units (Nassif et al., 2019). 

Particularly the modelling approach based on time series data as the operation data of 
thermal power units is basically time series data, many researchers have started to 
investigate the integration of time series analysis and deep learning approaches to build 
more accurate fault warning models. Time series data illustrates the long-term trend and 
seasonal changes of the equipment in addition to the historical state of equipment 
operation. By means of thorough investigation of these time series data, the dynamic 
variations in equipment performance may be efficiently recorded and possible indicators 
of failure can be found. 

For condition monitoring and defect warning of thermal power units, some pressing 
issues still need to be addressed even if current research has made great progress. 
Although most of the methods still depend on manually selecting features, current 
research concentrates on the application of a single model and lacks a comprehensive 
cross-model and cross-technology solution; moreover, the robustness and real-time 
performance of the models have yet to be improved in the face of complex and variable 
operating conditions. Therefore, a major focus of present research is still how to mix 
several new technologies to increase the accuracy, efficiency and adaptability of 
monitoring and early warning. 

This work so suggests an accurate and effective thermal power unit status monitoring 
and fault warning system by means of clever algorithms combined with time series data 
analysis. 

This work has original points of interest as follows: 

1 A multi-model fusion method combining time series analysis and neural network is 
proposed. In this work, we create a thermal power unit status monitoring and defect 
warning model integrating several algorithms by creatively combining time series 
analysis approaches with deep learning methods. Accurate modelling of time series 
helps to capture the long-term trend and dynamic changes of equipment operation; 
incorporating the strong feature learning capability of neural networks enhances the 
accuracy and dependability of failure early warning. 

2 Automatic feature extraction based on DNNs to reduce manual intervention. There 
are certain restrictions in conventional defect warning techniques, which usually 
depend on hand selection of features and rules of thumb. This work uses DNNs – 
especially long short-term memory (LSTM) – through which implicit characteristics 
in the timing data are automatically identified and learnt, therefore overcoming the 
constraints of manual feature extraction and increasing the adaptability and accuracy 
of the model. 

3 Combining multi-source data for comprehensive analysis to enhance the robustness 
of the model. We realise all-round monitoring of unit status in this work by merging 
multi-dimensional operation data (e.g., temperature, pressure, current, etc.) of 
thermal power units with multi-source data fusion technology. Comprehensive 
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analysis of this data helps to improve the model’s resilience, therefore facilitating 
effective early warning in challenging and dynamic settings. 

4 An index method for early warning assessments suitable for thermal power plants is 
developed. This work constructs a set of multi-dimensional evaluation index system 
comprising fault detection rate (FDR), early warning lead time (EWLT), false alarm 
rate (FAR), and diagnostic accuracy (DA) in order to completely evaluate the 
performance of the model. These evaluation indexes more holistically assess the 
performance of the failure early warning system and thermal power unit status 
monitoring, therefore offering a basis for later optimisation and development. 

2 Relevant technologies 

2.1 Time series analysis 

A statistical technique for modelling and forecasting data structured chronologically is 
time series analysis (Parmezan et al., 2019). Its main goal is to expose fundamental data 
patterns like trends, seasonality, and random fluctuations so enabling predictions about 
future behaviour. Dealing with time series data often calls for addressing data’s 
smoothness. Smoothness is the property wherein the mean, variance, and self-covariance 
of a time series do not change with time. Often eliminated by differencing techniques, 
which generates a smooth time series, the trend component helps to make non-smooth 
time series fit for modelling. 

The autoregressive moving average (ARMA) model is a fundamental method of time 
series analysis that models the dependent of a time series by autoregression (AR) on past 
data and moving average (MA) of the error term (Khan and Gupta, 2020). The ARMA 
model resembles this: 

1 1 2 2 1 1 2 2t t t p t p t t t q t qY Y Y Y θ θ θ− − − − − −= + + + + + + + + φ φ φ      (1) 

where ϵt is the white noise error term; ϕi and θi are the model’s parameters; p and q 
respectively indicate the AR and MA component orders. Yt is the observed value at time 
point t. 

Usually used for non-smooth time series is the autoregressive integral sliding average 
model (ARIMA) (Zheng et al., 2023). The ARIMA model combines the concepts of AR 
and MA with the expression by means of difference operations, hence smoothing the 
data. 

( )2 2
1 2 1 2( ) ( )1 1 1p d q

p t q tB B B B Y θ B θ B θ B− − − − − = + + + + φ φ φ   (2) 

where B is the lag operator; d is the number of differences; the other symbols match those 
of the ARMA model. By means of the AR and MA components, the ARIMA model is 
able to capture the dependence in the smooth series and efficiently eradicate the trend in 
the time series. 

The seasonal ARIMA (SARIMA) model can be also applied in cases of seasonal data 
changes. Able to handle cyclically changing time series, the SARIMA model adds 
seasonal variations and seasonal components to ARIMA. Mathematically, it is: 

( ) ( )2 2
1 2 1 21 ( 1)1s s ps d s s qs

p t q tB B B B Y θ B θ B θ B− − − − − = + + + + φ φ φ   (3) 
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where Bs is the seasonal lag operator and s is the seasonal period. SARIMA can properly 
record seasonal variations using the seasonal term and seasonal difference. 

Time series data in many actual issues may include complicated nonlinear 
interactions, which the conventional ARIMA model finds challenging to sufficiently 
model. At this point, one can include a support vector regression (SVR) model, 
appropriate for time series forecasting and able to manage challenging nonlinear issues. 
The SVM regression formula is: 

( )t ty w x b= ⋅ +φ  (4) 

where b is a bias term; w is the weight of the model; ϕ(xt) is a nonlinear mapping 
function. Especially appropriate for handling high-dimensional data and nonlinear 
patterns, SVR fits time series data by building a hyperplane. 

Furthermore extensively applied for time series forecasting are neural network 
models, particularly RNN and its variations LSTM and gated recurrent unit (GRU). 
Appropriate for handling large time series and complex nonlinear patterns, these models 
can automatically learn temporal dependencies in time series (Natarajan et al., 2023). 

Time series analysis may reasonably predict and forecast different kinds of time 
series data using these several approaches. The time series analysis approach offers a 
trustworthy theoretical framework and technological support for the accurate prediction 
of equipment failure in the application of thermal power unit condition warning. 

2.2 Neural networks 

Deep learning technology is developing quickly, so neural network techniques have 
become a major instrument for time series data processing. Neural networks can 
automatically extract characteristics from unprocessed data and adjust to complicated 
nonlinear relationships in the data unlike conventional statistical approaches. This reveals 
considerable promise for neural networks in time series prediction, anomaly detection, 
and trend analysis. Particularly for complicated dynamic systems and extended time 
series, neural networks exhibit more adaptability and accuracy than conventional 
techniques. 

Constructing a mapping between inputs and outputs by means of one or more layers 
of neurons, feedforward neural networks (FNN) are the most fundamental neural network 
model (Ojha et al., 2017). By mapping previous data to future values, FNN is able to 
reasonably capture nonlinear correlations in data for time series prediction. The 
fundamental FNN formula is: 

( )y f Wx b= +  (5) 

where x is the input, W is the weight; b is the bias term; f is the activation function; y is 
the output. FNN creates expected values and fits the training data via parameter 
adjustment. FNN cannot, however, capture dynamic changes in time series as later 
recurrent networks can or manage temporal dependencies. 

RNNs were developed to help to tackle this challenge. By using the output of the past 
instant as the input of the current moment, RNNs let the network remember prior data 
and detect temporal dependencies in a time series. The fundamental RNN formula is: 

( )1t xh t hh th σ W x W h b−= + +  (6) 
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where Wxh and Whh are the weight matrices; σ is the activation function; ht is the hidden 
state at the current moment; xt is the input at the current moment. The RNN can 
efficiently record short-term dependencies in the data using this recursive structure. 
Standard RNNs may, however, run into training challenges while handling extended 
sequences by experiencing gradient vanishing and gradient explosion. 

LSTM is intended to address this issue. By including gating mechanism, particularly 
in cases of long-term dependencies, LSTM greatly enhances the performance of 
conventional RNN (Kong et al., 2017). LSTM’s secret memory units – which govern 
information flow through input gates, output gates, and forgetting gates – so avoiding the 
gradient problem – are its key. LSTM has as its basic formula: 

( )tanht t th o c= ⋅  (7) 

where ot is the output gate; ct is the memory cell state right now; ht is the hidden state 
right now. LSTM can thus manage very long time-series data and efficiently capture 
long-term dependencies in time series using this framework (Song et al., 2020). 

Like LSTM, GRU is also a better RNN that simplifies the gating mechanism thereby 
lowering the computing cost of the model. In many applications, GRU shows comparable 
results to LSTM; it is particularly appropriate in cases of restricted processing capability. 
GRU’s formula is as follows: 

( ) 11t t t t th z h z h−= − ⋅ + ⋅   (8) 

where zt is the update gate; th  is the candidate hidden state. Using this framework, GRU 
avoids some difficult computations in LSTM while effectively doing time series 
modelling. 

Apart from RNN and its variations, CNN has been extensively applied in time series 
analysis (Canizo et al., 2019). CNNs were first utilised for image processing, but their 
strong local feature extraction powers help them to also effectively process time series 
data. CNN uses local characteristics extracted by a convolutional layer in time series 
forecasting applications subsequently using a fully connected layer. CNN’s convolutional 
operation can be shown as: 

1

0

K

t k t k
k

y w x b
−

−
=

= ⋅ +  (9) 

where yt as the output, xt–k as the input data, wk as the convolution kernel’s weight, b as 
the bias term, and K as the convolution kernel’s size. CNNs may effectively extract 
locally dependent characteristics in the time series using this convolutional structure, 
hence enhancing the prediction accuracy. 

Particularly LSTM, GRU, CNN, neural network techniques are able to manage 
intricate nonlinear time series data and fit for applications requiring local or long  
time-dependent feature collecting. Neural networks can effectively early warning and 
decision support, predict equipment failure in advance, and automatically learn the laws 
from a lot of historical data for the thermal power unit status warning problem. 
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3 Theory of condition monitoring and early warning of thermal power 
units 

Ensuring the safe and stable functioning of thermal power units depends much on 
condition monitoring and early warning of thermal power units. Its main goal is to 
examine the unit’s real-time data in order to find aberrant trends and timely project 
possible problems. Usually comprising many fundamental processes of data collecting, 
feature extraction, model building, and early warning issuing, traditional condition 
monitoring and early warning systems 

Monitoring starts first with data collecting. Through the sensor network, including 
temperature, pressure, vibration, flow, etc., thermal power units gather, in real-time, the 
operating parameters of every important component of the unit. Usually time series data, 
these records have a definite dependent relationship between each time point. Thus, 
sensible feature selection and processing are rather important. 

Second, the process of analysis depends absolutely on feature extraction. Effective 
features have to be retrieved from the raw data after data collecting for additional study. 
These characteristics comprise, among others statistical numbers (e.g., mean, variance, 
etc.), frequency domain features (e.g., frequency features following Fourier transform), 
and trends, fluctuations, etc. of the time series. Feature extraction aims to convert 
redundant, high-dimensional raw data into low-dimensional features reflecting the unit’s 
health condition, therefore enabling early warning and fault diagnostics later on. 

Establishing a defect diagnostic model comes next from feature extraction. 
Conventional models consist in discriminant analysis models, statistically based 
regression models, etc. By means of historical data, these techniques are trained to 
generate a predictive model capable of spotting equipment flaws or deviations. This 
model allows the system to evaluate the unit’s real-time health condition during operation 
and ascertain whether failure risk exists. 

At last, warning signals are set out when the monitoring system identifies anomalies 
in the running condition of the unit or forecasts a future breakdown. Usually depending 
on defined criteria or model output forecasts, early warning signals are issued. In this 
process, a crucial phase is threshold setting. Usually, analyses of past data define a safe 
range for some important parameters (e.g., temperature, pressure, etc.). The system 
generates an alert when the real-time data crosses the range. More and more monitoring 
systems are using data-driven techniques including machine-learning-based models to 
automatically modify these thresholds and forecasts for smarter warnings, hence 
improving the accuracy of predictions. 

Although conventional techniques can somewhat provide condition monitoring and 
early warning of thermal power units, their accuracy and adaptability are more limited. 
Traditional approaches might have more restrictions for handling complicated and 
nonlinear system failures since they mostly depend on rule setting and empirical 
judgement. Monitoring and warning systems based on deep learning and neural networks 
have progressively taken front stage in research as technology develops since they exhibit 
more flexibility and prediction accuracy when addressing dynamic and complex systems. 
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4 Methodological framework for condition monitoring and early warning 
of thermal power units 

This methodological framework based on ARIMA and LSTM proposes a thermal power 
unit condition monitoring and warning approach by combining time series analysis with 
neural networks. It can effectively extract the temporal features in the data and achieve 
the accurate monitoring of the unit status and fault warning by employing the ARIMA 
model for the preliminary analysis of time series data together with the deep learning 
capacity of LSTM network. The exact framework’s structure and the unique linkages are 
shown here. 

4.1 Data acquisition and pre-processing 

Through sensors, the thermal power unit condition monitoring system gathers in real-time 
important operating parameters of the unit, including temperature, pressure, flow rate, 
etc. Usually showing temporal order, this data may have noise and missing values. Data 
preparation is a necessary first step to guarantee the stability and correctness of the 
model. Operations in normalisation, missing value filling, and noise reduction define data 
preparation mostly. Particularly for time-series data, sliding averages or filters help to 
remove noise and fill missing values using suitable interpolation techniques. 

1 1
1 2

t t
t t

X XX X + −
−

−= +  (10) 

where Xt is the estimation of the missing value; Xt–1 and Xt+1 are respectively the data 
before and after the missing value. 

4.2 Time series modelling (ARIMA) 

ARIMA model is a classical approach extensively applied for forecasting and modelling 
that can help to model trends in time series data. By capturing the AR, I, and MA 
components of the data, ARIMA model can extract patterns and seasonality in time series 
data, therefore enabling projections of future states. Appropriate for smooth time series 
data, ARIMA model can manage trend and seasonality elements. 

ARIMA model has a general form as: 

1 1

p q

t i t i j t j t
i j

Y Y θ− −
= =

= + + + α φ    (11) 

where the observed time series value is Yt. 
The ARIMA model’s fundamental idea is to estimate the future trend of the unit state 

by use of AR and sliding averages thereby modelling the dependencies in the time series. 

4.3 LSTM network modelling 

While LSTM network displays a strong modelling capability for complicated nonlinear 
interactions, ARIMA model can efficiently capture linear features in time series. 
Particularly appropriate for analysing and forecasting time series data, LSTM is a unique 
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form of RNN. By use of its internal gating mechanism – that of forgetting gate, input 
gate, and output gate – LSTM can efficiently preserve the information in the long time 
series. By efficiently preserving information in extended time series, LSTM can handle 
the long-term reliance issue. 

LSTM has as its primary structural equations these: 

[ ]( )1,t f t t ff σ W h x b−= +  (12) 

[ ]( )1,t i t t ii σ W h x b−= +  (13) 

[ ]( )1tanh ,t C t t CC W h x b−= +  (14) 

1t t t t tC f C i C−= ⋅ + ⋅   (15) 

[ ]( )1,t o t t oo σ W h x b−= +  (16) 

( )tanht t th o C= ⋅  (17) 

By progressively optimising the parameters over the back-propagation technique during 
the training process, the LSTM model is able to automatically capture the complicated 
temporal correlations in the data and hence generate effective prediction of the thermal 
power unit state. 

4.4 Fault warning mechanism 

Based on LSTM model prediction, the design of the early warning mechanism seeks to 
ascertain whether a thermal power unit is in a probable fault state. More specifically, the 
system sets an alert to let the operator know when the LSTM model’s prediction value 
surpasses a specified preset threshold therefore enabling maintenance or inspection. 

The early warning system operates with a simple formula: 

( )ˆ ;t ty f x θ=  (18) 

ˆif Threshold, Trigger Alarmty >  (19) 

where Threshold is the defect warning threshold established depending on historical data 
and expert knowledge; ˆty  is the condition of the unit expected by the LSTM model. 

Should the system’s prediction value above this level, a defect could develop and the 
system will send an early warning signal asking the pertinent personnel to act. 

4.5 Integrated optimisation 

LSTM paired with ARIMA for integrated learning helps to raise the prediction accuracy 
and resilience. Combining the strengths of several models helps the system to better 
handle challenging operating conditions and lower the bias resulting from one model. 

One often used type of integrated optimisation technique is weighted averaging, that 
is, 



   

 

   

   
 

   

   

 

   

    A time series neural network-based early warning system 115    
 

    
 
 

   

   
 

   

   

 

   

       
 

1

n

final i i
i

y w y
=

=  (20) 

where yi is the prediction result of every base model; yfinal is the ultimate prediction result; 
Wi is the weight of every base model. 

This weighting system may dynamically change the weights of every model based on 
performance, therefore enhancing the general prediction performance. 

Algorithm 1 exhibits the framework’s workflow. 
Algorithm 1 Pseudo-code for fire power plant state monitoring and early warning 

Input: Historical time series data of power plant parameters (e.g., temperature, pressure, flow), 
 Model parameters (e.g., ARIMA, LSTM), Predefined threshold for early warning, 
 Number of iterations for training LSTM, Learning rate, Sliding window size. 
Output: Optimised ARIMA model, Trained LSTM model, Early warning output. 
1 begin 
2  Load historical time series data; 
3  Preprocess the data (handle missing values, noise filtering, and normalisation); 
4  Divide data into training and test sets; 
5  Initialise ARIMA model parameters (p, d, q); 
6  Fit ARIMA model on training data; 
7  Predict time series trend using ARIMA (ARIMA prediction); 
8  Initialise LSTM model with random weights; 
9  Define LSTM architecture (input layer, LSTM layers, dense layer); 
10  Train LSTM model using the training data with backpropagation; 
11  for each epoch to max_epochs do 
12   Input time series data to LSTM model; 
13   Forward pass through LSTM network to obtain predictions; 
14   Calculate loss (e.g., Mean Squared Error between prediction and actual values); 
15   Compute gradients of loss function with respect to LSTM weights; 
16   Update LSTM weights using the optimiser (e.g., Adam or SGD); 
17  end for 
18  Evaluate LSTM performance on test data; 
19  if prediction_error > threshold then 
20   Trigger early warning signal (e.g., fire alarm or maintenance request); 
21  end if 
22  Optionally, use ARIMA and LSTM predictions together (ensemble learning); 
23  if ensemble prediction error > threshold then 
24   Trigger early warning signal; 
25  end if 
26  return Optimised ARIMA model, Trained LSTM model, Early warning output; 
27 end 
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Based on a combination ARIMA and LSTM model, this methodological framework can 
efficiently extract important information from the time series data of thermal power units 
for fault prediction and health evaluation. The overall system provides effective unit 
condition monitoring and warning with great robustness and adaptive capability by 
means of the phases of data collecting, preprocessing, time series modelling, LSTM 
modelling, warning mechanism and integration and optimisation. This framework is 
expected to offer a suitable technical solution for maintenance of thermal power plants 
and early warning of faults. 

5 Experimental results and analyses 

5.1 Datasets 

Derived from the online monitoring system of a thermal power plant of Huaneng Group, 
the dataset used in this study spans a broad spectrum of states and environmental 
conditions in the long-term operation of the unit. Key operational metrics like 
temperature, pressure, flow rate, vibration, etc. of the boiler, turbine, generator, and other 
major equipment in the dataset are strongly linked to the operational health state of the 
unit and offer significant information for this study. 

The dataset logs time-series data gathered by several sensors, noting the running 
settings of every main piece of equipment in the unit –boiler, turbine, generator, etc.? 
With an acquisition frequency of one minute and a data time range of three years, every 
record shows the condition of the unit at a given instant in time. Table 1 lists the salient 
characteristics of the dataset: 
Table 1 Dataset statistical information 

Dataset subset Feature variables Description 
Boiler system 
data 

Boiler pressure, boiler 
temperature, combustion 
efficiency 

These data describe the operating status and 
efficiency of the boiler. 

Turbine system 
data 

Inlet temperature, outlet 
temperature, vibration 
frequency 

These data describe the operational status and 
stability of the turbine. 

Generator 
system data 

Generator load, current, 
voltage 

These data reflect the load capacity and 
electrical parameters of the generator. 

Environmental 
data 

Ambient temperature, 
humidity 

These data provide background information on 
the external environment’s impact on the unit. 

To guarantee the quality of the data, data preprocessing including standardisation, noise 
reduction and missing value filling was done. Linear interpolation filled missing values; 
sliding average approach reduced noise; data were normalised to harmonise the scale of 
several features. 

Three categories – normal state, abnormal state and fault state – separate the unit’s 
operational state and fault circumstances identified by the labels of the dataset. Labelling 
generation depends on expert system diagnosis findings and past error data. The dataset 
guarantees the variety of model training since it comprises more than 100,000 records 
spanning the states of the units under various operating settings. 
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Training, validation, and testing sets totalling an 80%, 10%, and 10% ratio temporally 
separate the dataset. This split enables the model to acquire strong generalisation capacity 
in state changes and variations in several time periods. 

5.2 Assessment of indicators 

5.2.1 Fault detection rate 
This statistic especially gauges, in all circumstances when errors actually arise, the 
percentage of faults the model accurately detects. In condition monitoring of thermal 
power plants, where timeliness and accuracy of fault detection is crucial, FDR helps to 
quantify the fault prediction capacity of the model. It is computed applying the formula: 

FDR TP
TP FN

=
+

 (21) 

where TP marks successfully diagnosed fault cases and FN marks missed fault instances. 
A high FDR indicates that the system can give early warning and rapidly and precisely 
identify faults. 

5.2.2 Early warning lead time 
This indicator gauges the model’s ability to provide an early warning before a fault 
strikes, hence measuring its degree of advanceability. It is especially relevant to early 
warning systems for thermal power units and guarantees rapid reaction and corrective 
action. The computation model is: 

EWLT Time of fault occurrence Time of first prediction= −  (22) 

A higher EWLT shows that the early warning system is more able to detect trouble 
signals ahead and lower the frequency of unplanned mishaps. 

5.2.3 False alarm rate 
The FAR gauges, in the absence of defects, the fraction of cases the model falsely 
forecasts as faults. It can clarify the system’s allergy – that is, the number of false alarms 
among the expected positive cases – that is, how bad the allergy of the system is. It is 
determined with the formula: 

FAR FP
FP FN

=
+

 (23) 

where TN is true negative and FP is false positive – false positive. In condition 
monitoring of thermal power plants, high false positives can cause needless system 
downtime and therefore it is quite crucial. 

5.2.4 Diagnostic accuracy 
Diagnosis is accuracy gauges whether the model can identify the kind of equipment 
condition of fault or type of error. It takes into account the accurate identification of fault 
types, so unlike the traditional classification accuracy. In multi-equipment, multi-state 
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thermal power units, this statistic is especially crucial since the system must not only 
identify the occurrence of a problem but also properly determine the kind of failure. It’s 
computed using the formula: 

 

   
DA fault type

fault type fault type fault type

TP
TP FP FN

=
+ +

 (24) 

where TPfault type is the correctly diagnosed fault type; FPfault type is the misdiagnosed 
fault type; FNfault type is the fault type overlooked. High DA indicates that the model not 
only points up flaws but also accurately detects fault types to guide next maintenance 
actions. 

5.3 Fault detection and early warning performance evaluation experiment 

The experiment’s primary goal is to assess the model’s real-time performance and 
accuracy in defect detection of thermal power units. Strictly differentiated in time to 
prevent data leaking, the test dataset and the training dataset help to guarantee the 
fairness and suitability of the experiment. Every test data point is tagged with the real 
fault occurrence time; so, the model must alert ahead of time about fault occurrence. 

Data preparation, model training and test evaluation comprise the experimental 
process. The data were first split into a training set (70%) and a test set (30%), after being 
preprocessed and normalised to eliminate outliers and fill in missing data. The model is 
then trained using past data from thermal power plants and employs cross-valuation to 
prevent overfitting. At last, the trained model’s capacity to identify unidentified fault 
samples is assessed by means of the test set data. 

Figure 1 shows the experimental findings, which list the model’s performance under 
several fault kinds. 

Figure 1 Experimental results of fault detection and warning performance evaluation (see online 
version for colours) 
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The model boasts a FDR of 92.3%, a fault warning time of 10.2 minutes, a FAR of 3.5%, 
and a DA of 93.4% for the temperature anomaly fault. The FDR under an excessive 
vibration fault type is 88.7%; the fault warning time is 9.5 minutes; the FAR is 4.2%; and 
the DA is 90.1%. The FAR was 5.1%, the FDR was 90.1%, the fault warning duration 
was 8.8 minutes, and the DA was 91.2%. The pump defect was with an overall 
performance of 90.3% FDR, 9.5 minutes fault warning duration, 4.3% FAR, and 91.3% 
DA the model performs better on all fault kinds. 

From the experimental findings, it is clear that the model has a high FDR and DA on 
various fault types, especially on the temperature abnormality and vibration too high fault 
types, the FDR reaches 92.3% and 88.7%, respectively. The somewhat short fault 
warning period indicates that the model can efficiently prevent too many false alarms and 
offer timely warnings before defects start to manifest themselves. 

Particularly the high DA, which indicates that the model is able to effectively identify 
different kinds of faults, the model shows good performance in terms of accuracy and 
fault detection capability and is able to precisely predict and identify faults in thermal 
power units in a rather short period of time. Furthermore, demonstrating the ability of the 
model to offer efficient advance warning for the operation of thermal power units to 
guarantee their safety is the performance of the warning time. 

5.4 Comparative experiments 

We performed comparison experiments with several standard fault detection techniques 
in order to fully evaluate the efficiency of the suggested method in condition monitoring 
and early warning of thermal power units. The approaches of comparison consist in: 

The ARIMA model is a classical time series forecasting tool used in modelling and 
forecasting linear time series. We evaluate its performance against the proposed 
technique as a benchmark model. 

Widely employed in sequence prediction applications, LSTM can efficiently manage 
time series data including long-term dependencies. LSTM is often used in fault detection 
to replicate intricate time-series data. 

Widely employed in classification and regression analysis, SVM is a supervised 
learning technique particularly suited for handling nonlinear issues and hence appropriate 
for abnormal state identification in fault detection activities. 

RF can efficiently record intricate correlations between features and makes judgments 
by combining several decision trees. RF is fit for many nonlinear situations and can 
manage high dimensional data in fault detection. 

CNN: Generally used for image recognition tasks, CNN can also extract local 
features via convolutional layers when working with time-series data and can capture 
spatio-temporal characteristics in the data, so supporting condition monitoring of thermal 
power units. 

Widely utilised in classification problems and especially fit for processing unbalanced 
data and high dimensional data, XGBoost is an optimisation approach based on gradient 
boosting trees. 

All models are trained and tested on the same dataset comprising time-series data of 
normal and fault states of thermal power units. We tweaked all models with 
hyperparameters and employed 10-fold cross-valuation to guarantee the stability of the 
experimental results. LSTM models among deep learning models were trained with ideal 
hyperparameters. 
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Figure 2 displays the experimental findings. 

Figure 2 Results of the comparison experiment (see online version for colours) 
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Particularly in FDR and DA, the suggested approach beats the other comparative models 
in all the assessment indices based on the experimental results: it reaches 96.8% and 
95.4%, respectively. This shows that under normal circumstances the technique can lower 
false alarms and more precisely point up the flaws in thermal power plants. 

Compared to existing techniques, the suggested method demonstrates superior fault 
identification capability on FDR and can better capture aberrant signals in unit operation, 
so lowering the occurrence of missed detection. With a low level of 4.1%, which is much 
lower than the other techniques, the suggested approach on FAR stays at a low level 
indicating less false alarms under typical settings. With an accuracy of 95.4%, the 
suggested approach on DA shows the great efficiency of the method in thermal power 
unit condition monitoring; it also surpasses all the other comparing models. 

6 Conclusions 

This work presents a thermal power unit condition monitoring and warning system based 
on ARIMA-LSTM. An intelligent system able of real-time monitoring and predicting the 
operating state of thermal power units is built by integrating the time series prediction 
ability of ARIMA model with the processing advantage of LSTM model for long  
time-dependent data. We first preprocessed the historical operational data of thermal 
power units and investigated them in time series employing the ARIMA model to capture 
the trends and cyclical fluctuations in them throughout the building of the model. The 
residuals then are modelled using an LSTM network, therefore enhancing the capacity of 
the model to forecast nonlinear and intricate time series data. 
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Though it has some restrictions, the ARIMA-LSTM-based thermal power unit 
condition monitoring and warning approach suggested in this paper has attained 
improved experimental results. First of all, the stability and accuracy of the model could 
suffer if the employed thermal power unit dataset in the study has some noise or missing. 
Second, the model applied in this work was trained on a particular thermal power unit 
dataset; so, the limits of the dataset could influence the generalisation capacity of the 
model. Furthermore, this work mostly depends on time-series data for fault monitoring of 
thermal power units and ignores additional multimodal data (e.g., environmental data, 
vibration data, etc.) that might influence the unit state. 

Future research on the following elements can be directed depending on the outcomes 
of current one: 

1 Multimodal data fusion. Future studies can incorporate more sensor data, ambient 
data and other multimodal information to increase the accuracy and robustness of 
thermal power unit condition monitoring by data fusion. Deep learning techniques 
can help the model to analyse many kinds of data, particularly picture and sound 
data, so improving its integrated capacity for decision-making. 

2 Migration learning and incremental learning. Migration learning and incremental 
learning strategies might be included to solve the generalisation ability of the model. 
While incremental learning can help the model to continually learn and update and 
enhance its prediction capacity under the continuous input of new data, migration 
learning allows knowledge from other similar domains to be employed to improve 
the adaptability of the model in new contexts. 

3 Optimisation of real-time monitoring and warning system. Future studies can 
enhance the current model to improve its response speed and processing capacity so 
attaining real-time monitoring and failure warning for thermal power plants. One can 
investigate lightweight neural network designs or apply distributed computing and 
edge computing technologies to get quick reaction of real-time data. 

4 Further classification and diagnosis of fault types. While categorisation and 
diagnosis of fault types can be further improved in the future, present studies 
concentrate on fault detection and early warning. More accurate diagnosis of various 
kinds of problems is given by deep learning models, thereby enabling targeted 
maintenance and optimisation as well as increasing the running efficiency of the unit. 
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