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Abstract: Policymaking, economic planning, and corporate decision-making 
all benefit from regional economic forecasting. Traditional forecasting 
techniques, nevertheless, can struggle to handle time dependency and 
complicated causality and this study thus suggests a regional economic 
forecasting model based on the combination of structural equation  
modelling (SEM) and time series analysis (TSA), SEMTSA-Region. The 
SEMTSA-Region model shows better forecasting performance in several 
assessment criteria when the model is employed in the experiment to anticipate 
the economic data of a region in the previous ten years and compared with 
many conventional models. Furthermore, this work performed parameter 
optimisation trials on the model to support its great stability and adaptability 
even more. This paper offers a fresh theoretical framework for regional 
economic forecasting as well as a useful base for actual implementations. 
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1 Introduction 

Regional economic forecasting has grown in relevance for policy formation, economic 
planning, and business strategic decision-making given the fast growth of the global 
economy and the growing connection among national economies (Acs and Szerb, 2007; 
Yang et al., 2008). More and more scholars have started to investigate modelling 
approaches relevant to complicated economic data in order to raise the accuracy and 
dependability of forecasts. Mostly depending on classical statistical models like time 
series analysis (TSA) and regression analysis, traditional regional economic forecasting 
techniques with the complexity of the economic environment, single statistical 
approaches progressively disclose their shortcomings in handling nonlinear relationships, 
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dynamic fluctuations and multivariate interactions, even if these approaches can 
somewhat reflect the trend of economic data. 

TSA techniques dominated most of the early work on regional economic forecasting 
(Hannaford et al., 2001). Widely applied in trend forecasting and cyclical fluctuation 
analysis of economic data, autoregressive integral sliding average model (ARIMA) is 
among the most often used time series forecasting models (Schaffer et al., 2021;  
Yu et al., 2014). By use of historical data analysis, the ARIMA model estimates the 
future values while capturing the time-series properties of the data. The model 
demonstrates some restrictions when confronted with non-smooth and unexpected events; 
nevertheless it mostly depends on the smoothness assumption of past data. Researchers 
have suggested extended models including generalised autoregressive conditional 
heteroskeasticity model (GARCH) and vector autoregressive model (VAR) to offset this 
deficiency in order to capture more volatility and multivariate relationships (Amado and 
Teräsvirta, 2014; Sato and Matsuda, 2021), which have been extensively applied 
especially in financial markets and macroeconomic forecasting. 

These conventional time series models still suffer from the difficulty to handle 
complicated causal interactions and lengthy time dependencies even if they can 
somewhat increase forecasting accuracy. Consequently, more and more research has 
started to present increasingly sophisticated modelling techniques including machine 
learning and deep learning models. Support vector machines (SVM), random forests 
(RF), and neural networks (ANN) have progressively found use in regional economic 
forecasting (Mutale et al., 2024; Lei et al., 2019); they can automatically learn complex 
patterns in data, so capturing nonlinear relationships; and they have produced good 
forecasting results in many different fields. In terms of prediction accuracy, these 
techniques are far superior than conventional statistical models; moreover, they 
particularly exhibit great performance considering large-scale and multi-dimensional 
data. 

Though they greatly increase accuracy, machine learning and deep learning 
approaches sometimes lack a thorough knowledge of the intrinsic structure and causal 
relationships between data, particularly in the field of economics where causality 
analyses are fundamental to the formulation of sensible economic policies. Consequently, 
structural equation modelling (SEM) has progressively become a useful instrument 
extensively applied in the disciplines of economics, sociology (Westland, 2015), 
psychology, etc. Because it may more naturally portray the interaction and internal 
mechanism of variables by means of causation between variables, SEM is well suited for 
simulating multivariate complex systems. In order to raise the interpretability and 
prediction accuracy of the models, some researchers have lately attempted to combine 
SEM with other prediction models (Karimi and Meyer, 2014). For market volatility 
prediction, some studies have, for instance, merged SEM with SVM and produced 
improved results. 

Nevertheless, especially in handling long-term time-dependent and non-stationary 
data, SEM still finds significant difficulties modelling and forecasting time series data. 
More and more academics have begun to investigate the prospect of merging TSA 
techniques with SEM in order to solve these problems (Lou et al., 2020). While SEM can 
expose possible causal linkages between variables, TSA is good in handling  
time-dependent characteristics in data. Combining the two not only efficiently captures 
the time-series properties of economic data but also extensively analyses the causal 
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pathways between variables, thereby enhancing the forecasting power and stability of the 
model. 

Generally speaking, even with the several successes of the current regional economic 
forecasting systems, the conventional models still have some restrictions and cannot fully 
and successfully address the difficult economic forecasting issues. Therefore, in order to 
cope with the multilevel, multidimensional and nonlinear characteristics in the economic 
system, how to mix the advantages of several approaches? This has become a major topic 
in present study. This paper suggests a regional economic forecasting model  
(SEMTSA-Region) based on the mix of SEM and TSA to tackle this difficulty. This 
paper intends to increase the accuracy of regional economic forecasting and offer a new 
theoretical framework and practical basis for economic forecasting by including these 
two approaches. 

This paper’s innovations consist as follows: 

1 Combination of SEM and TSA. We present a regional economic forecasting model 
(SEMTSA-Region) combining SEM and TSA. The model achieves a complete 
multi-level and multi-dimensional analysis by fully playing SEM’s advantages in 
causality modelling and TSA’s capacity to record time-dependent aspects. 

2 Multifactor fusion modelling. This work addresses the restriction that conventional 
economic forecasting models cannot fully reflect the complicated interaction effects 
in economic data by merging the causality analysis of economic variables with the 
dynamic evolution of time series data. 

3 Optimising model adaptivity. By optimising the settings of the TSA approach, the 
model increases the flexibility of the forecasting model to many economic cycles and 
event shocks, thereby aiming at the unpredictability and uncertainty of regional 
economic data. 

4 Experimental validation and comparative analysis. The SEMTSA-Region model is 
confirmed for its benefits in forecasting accuracy and stability by means of 
comparison with numerous conventional economic forecasting models, therefore 
offering an experimental basis for the future enhancement of regional economic 
forecasting techniques. 

2 Relevant technologies 

2.1 SEM 

Widely applied in economics and social sciences, SEM is a statistical technique for 
analysing the link between latent and observable variables (Muthén, 2002). Though they 
are indirectly measured through a collection of observed variables, latent variables are 
not immediately observable. Particularly appropriate for the study of complicated 
multivariate systems, SEM has strong theoretical modelling capacities and flexibility and 
can cope with several causal paths and correlations between variables at the same time 
(Lowry and Gaskin, 2014). Two components make up SEM: latent causal links between 
variables and the measurement model and structural model that explain the link between 
observed variables and latent variables. 
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The measurement model first addresses the link between the latent variables and the 
observable ones. Expression of the measurement model is Y as the observed variable and 
ξ as the latent variable: 

( )1 2, , , T
mY y y y=   (1) 

( )1 2, , , T
kξ ξ ξ ξ=   (2) 

Λ +yY ξ=   (3) 

where Λy is the factor loading matrix linking the latent to observed variables; ξ is the 
latent variable; ϵ is the error term for the observed variable. Every observable variable 
includes some measurement error and is a linear mix of the latent variables. The equation 
shows how random errors of the latent variables affect the observable variables. 

Conversely, the structural model explains the causal link among the latent variables 
(Fan et al., 2016). Let the latent variables have a causal link; the structural model may 
thus be expressed in the following form: 

+ Γ +ξ Bξ Z ζ=  (4) 

where Γ is the matrix representing the effect of the exogenous variable Z on the latent 
variables; ζ is the error term of the latent variables; B is the matrix of path coefficients 
between the latent variables, therefore reflecting the causal relationship between the 
latent variables. Covering the roles of endogenous and exogenous factors, this equation 
shows the interactions among the latent variables. 

Maximum likelihood estimation (MLE) is the most often applied approach in SEM 
model parameter estimation (Asosega et al., 2022). Under a model parameter θ, let the 
observed dataset be Y and its probability density function be f(Y| θ). By optimising the 
likelihood function with the goal function, MLE identifies the model parameters: 

( )
1

ˆ arg max
n

i
θ

i

θ f y θ
=

= ∏  (5) 

Often used to streamline the computations, the log-likelihood function is stated as: 

( )
1

( ) log
n

i
i

L θ f y θ
=

=  (6) 

Optimising the log-likelihood function produces the best model parameter estimations. 
Commonly used optimisation strategies such the Newton-Raphson technique and the 
proposed Newton method update the parameters in the iterative process until 
convergence to the optimal solution, therefore improving the estimation efficiency. 

Considering the measurement error, SEM may estimate the path coefficients of every 
latent variable in addition to exposing the causal linkages between them. SEM clearly 
benefits the study of complicated economic systems since it can simultaneously manage 
several causal routes and correlations among variables unlike in conventional regression 
analysis. In regional economic forecasting, SEM can be applied to expose the effects of 
possible factors such economic growth potential and market activity on observed 
variables such GDP and employment rate, so enabling researchers to thoroughly grasp 
the several causal relationships in economic systems. 



   

 

   

   
 

   

   

 

   

    Regional economic forecasting based on structural equation modelling 93    
 

    
 
 

   

   
 

   

   

 

   

       
 

Semantic analysis can construct the following model, for instance, if the observed 
variables include GDP (y1) and unemployment rate (y2) while the capacity for economic 
growth (ξ1) and market activity (ξ2) in the regional economic system are potential 
variables: 

1 1 1 2

2 1 2 2

1 1 1

2 2 2
+y ξ y ξ

y ξ y ξ

λ λy ξ
λ λy ξ
      

=       
      




 (7) 

And logical links between possible variables: 

1 11 12 1 1 1 1

2 21 22 2 2 2 2
+ +

ξ b b ξ r z ζ
ξ b b ξ r z ζ
         

=         
         

 (8) 

One can determine the interrelationships between economic elements and their influence 
on regional economic development by means of the preceding equations. This modelling 
method offers a theoretical framework for policy analysis and forecasting as well as a 
means of clearly exposing the influence of possible elements on economic results. 

Still, SEM has significant difficulties as well. First, SEM depends on high data 
quality and sample size; inadequate sample size could result in erratic estimations. 
Second, the accuracy of the theoretical framework determines the validity of the model; 
so, improper setup of the model could produce biassed estimation results. Consequently, 
while applying SEM, model validation and goodness-of-fit evaluation are very crucial. 

Finally, being a potent statistical analysis tool, SEM finds great use in regional 
economic forecasting. By exposing the causal links among possible variables, it can offer 
more accurate theoretical basis for economic forecasting and simultaneously offer 
important policy references for decision makers. 

2.2 TSA 

Particularly for economic variables, TSA is absolutely important in regional economic 
forecasting (Ahlert, 2008). Like GDP, unemployment rate, inflation rate, economic data 
often show certain time series and trends. Appropriate time series models are absolutely 
essential for effective prediction of future economic developments. 

Particularly suited for handling non-stationarity in economic time series data, 
autoregressive integral sliding average (ARIMA) model is a classic TSA technique 
(Dorais, 2024). Three components form the ARIMA model: sliding average (MA), 
autoregressive (AR), and differencing (I). The autoregressive part shows the link between 
the time series values and their historical values; the differencing part converts a  
non-stationary time series into a stationary one; and the sliding average part explains the 
effect of random perturbations in the time series on the current values. 

Defined as the lagged relationship of the time series, the lag operator L in the ARIMA 
model reflects: 

k
t t kL y y −=  (9) 

where Lk refers to lagging the time series yt by k time units. The ARIMA model has as its 
standard form: 

( )( )2 2
1 2 1 21 1p q

t p q tL L L θ L θ L θ L y= − − − − − − − − φ φ φ  (10) 
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where φ1, φ2, …, φp is the autoregressive coefficient; θ1, θ2, …, θq is the sliding average 
coefficient; yt is the observation at time point t; L is the lag operator; ϵt is the error term. 
Thus, the ARIMA model can effectively capture both long-term patterns and transient 
variations in the economic time series. 

Usually non-stationary, that is, their mean and variance change with time, are 
economic time series data. Data has to be smoothed if it is to be acceptable for an 
ARIMA model. Smoothing usually is accomplished by differencing (Diaz et al., 2016). 
By computing the difference between the current value and the value at the prior 
moment, differencing eliminates the trend component. The difference operation defined 
for first order differencing is: 

1t t ty y y −′ = −  (11) 

Should non-stationarity persist following the first-order differencing, a second-order 
differencing procedure can help to further remove the trend component of the data. 
Following the differencing process, the time series can attain a smooth condition enabling 
the application of ARIMA model for forecasting and modelling. 

Usually, partial autocorrelation function (PACF) of the data and autocorrelation 
function (ACF) define the orders p and q of the ARIMA model (Petrusevich, 2019). 
Whereas the PACF shows the correlation following the removal of the mediating lag 
components, the ACF explains the relationship between the time series and its lagged 
values. One may find the order of the MA and AR parts by use of analysis of the ACF 
and PACF graphs. The following two ideas guide the model order selection assuming 
smooth time series data after difference processing: 

The order of the AR portion should be that order if the PACF plot collapses 
significantly following a given lag order. 

The order of the MA portion should be that if the ACF plot falls significantly 
following a given lag sequence. 

Usually depending on the MLE approach for parameter estimation, ARIMA models 
undergo training. Maximum likelihood estimate maximises the likelihood function of the 
observed data to guarantee the best fit, hence, guiding the model parameters. Estimating 
the autoregressive coefficient φ and the sliding average coefficient θ helps one to 
minimise the residuals – that is, the variation between the anticipated and actual values of 
the model. 

Verifying the efficiency of the ARIMA model fit requires first residual analysis. The 
residuals should ideally be white noise, that is, have a zero mean, constant variance, and 
not be connected with temporal lags. Should the residuals show notable trends or 
relationships, the model fit is incomplete and either re-selection of the model parameters 
or adjustment of the model is necessary. 

Forecasting future economic indicators can be done using the ARIMA model if it is 
trained and passes residuals diagnostics. ARIMA models have a forecasting formula: 

+ + +
1 1

ˆ + +
p q

t h i t h i j t h j
i j

y μ y θ− −
= =

=  φ   (12) 

where +ˆt hy  is the anticipated value for the following h time steps; µ is the mean of the 
time series; ϵt+h–j is the historical error term applied in the forecast. 
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In particular in regional economic forecasting, the ARIMA model can assist in 
capturing the long-term trends and short-term variations of economic variables (such as 
the GDP). For instance, firstly we must do smoothness test and difference processing on 
the GDP data, then use ACF and PACF plots to choose the suitable model order, and 
lastly fit the ARIMA model by MLE and use the model to project the future GDP. 

The Algorithm 1 pseudo-code reflects ARIMA model training and forecasting: 
Algorithm 1 ARIMA model training and prediction 

Input: Historical GDP time series data, chosen order parameters (p, d, q), forecast horizon N 
Output: Forecasted GDP values for future time steps 
1: begin 
2:  Import GDP time series data; 
3:  Check for missing values and handle them (e.g., imputation); 
4:  Perform augmented Dickey-Fuller (ADF) test to check if the data is stationary; 
5:  If p-value > 0.05 then 
6:   Apply differencing: 1t t ty y y −′ = −  

7:   Recheck stationarity of the differenced series; 
8:  end if 
9:  If the series is still non-stationary, apply second-order differencing or further 

transformations; 
10:   Plot the ACF and PACF to identify appropriate values for AR (p) and MA (q); 
11:   Determine p based on PACF plot (look for cut-off after lag p); 
12:   Determine q based on ACF plot (look for cut-off after lag q); 
13:   Choose d based on the number of differencing applied; 
14:   Initialise ARIMA model with parameters (p, d, q); 
15:   Fit the ARIMA model to the differenced data; 
16:   Estimate the coefficients φ (AR coefficients) and θ (MA coefficients); 
17:   Calculate residuals: t t te y y= −  (predicted values from the model); 

18:   Plot residuals to check for white noise (zero mean, constant variance, no 
autocorrelation); 

19:   If residuals are not white noise then 
20:    Adjust p, q, or apply different transformations to the model; 
21:  end if 
22:  For h = 1 to N (forecast horizon) do 
23:  

Forecast future GDP: + + +
1 1

+ + ;
p q

t h i t h i j t h j
i j

y μ y θ− −
= =

=  φ   

24:  end for 
25:  Visualise the forecasted values against the actual historical data; 
26:  Calculate prediction intervals (e.g., 95%) to quantify uncertainty in the forecasts; 
27:  Re-train the model periodically as new data becomes available; 
28:  Output forecasted GDP values for future time steps; 
29: end 



   

 

   

   
 

   

   

 

   

   96 Y. Wu    
 

    
 
 

   

   
 

   

   

 

   

       
 

By means of these processes, the ARIMA model can offer efficient support for regional 
economic forecasting, therefore enabling us to grasp economic trends and generate 
reliable forecasts. To guarantee the dependability of the model, the training process of the 
model calls not only appropriate smoothing and parameter selection but also residual 
analysis. ARIMA model is clearly a quite useful and efficient tool for economic data with 
robust time series. 

3 Regional economic forecasting model based on structural equation 
modelling and time series: SEMTSA-Region 

By means of multilevel modelling, this chapter suggests a regional economic forecasting 
model combining SEM and TSA, SEMTSA-Region, which is able to simultaneously 
consider the potential causal relationships in economic data and the dynamic 
characteristics of time series, so improving the accuracy of future trend of the regional 
economy. This model particularly captures the long-term trend of economic indicators by 
modelling the possible causal factors in the structural equation model using TSA 
techniques, therefore preserving sensitivity to short-term volatility. 

3.1 Data pre-processing and differencing module 

First, data preparation in economics. Usually, economic time series data shows trend or 
seasonal fluctuations; so, we must apply a differencing operation on the data to bring it 
into a smooth condition. Should the data show a non-smooth series, differencing removes 
the trend component to satisfy the smoothness assumption – a necessary condition for 
next modelling. 

With an original economic time series yt, the first-order differencing formula is as 
follows: 

1Δ t t ty y y −= −  (13) 

Second or higher order differencing can be carried on until the data attain a smooth 
condition if their stillness is still lacking. 

Subsequent modelling and analysis using the data Δyt following the differencing 
process guarantees that the data is fit for the time series model. 

3.2 Module for modelling time series dynamics 

This module’s major goal is to use TSA techniques – especially AR and MA models to 
model the economic data and guarantee that the fundamental patterns and fluctuations in 
the time series are caught – capturing the dynamic aspects in the regional economic data. 
To get more accurate economic projections, this modelling approach will combine the 
dynamics of latent variables in SEM with the fundamental theory of time series. 

We approach the time series data as a combination form of AR and MA models. 
ARMA models specifically allow one to depict the time series of the economic variable 
yt: 

1 1 2 2 1 1 2 2+ + + + + + + +t t t p t p t t q t q ty y y y θ ε θ ε θ ε− − − − − −=  φ φ φ   (14) 
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where ϵt is the residual of the model and εt is the white noise error term. 
This model helps one to understand how the past residuals affect the present value of 

an economic variable in addition to its historical value. Since many latent elements in the 
economic system often interact and are influenced by the external environment, in 
economic forecasting we often mix this time series modelling approach with latent 
variable modelling in SEM. Introducing the time series differential data Dt and the lag 
term of the autoregressive model helps one to consider the dynamic aspects of the time 
series in line with the causality in the structural equations. 

This fusion method lets us evaluate the causal link between the latent variables in 
addition to catching the dynamic trend of the time series using historical data. In the end, 
for regional economic forecasting the multidimensional framework integrating SEM and 
TSA offers a more accurate modelling tool. 

3.3 Model integration and optimisation module 

This module aggregates the outputs of the two models using weighted integration since 
SEM and TSA respectively describe causality and time series aspects in economic 
systems. We characterise the weighted average of the SEM and TSA models as the 
forecast output ˆty  of the integrated model: 

1 , 2 ,ˆ ˆ ˆ+t SEM t TSA ty w y w y=  (15) 

where ,ˆSEM ty  is the structural equation model’s prediction result; ,ˆTSA ty  is the prediction 
result of the TSA; w1 and w2 are the weight coefficients to be optimised; the sum of the 
weight coefficients is one: 

1 2+ 1w w =  (16) 

The appropriate weighting factors are determined by optimising the objective function: 

( ) ( )2
1 2

1

ˆ,
N

t t
t

L w w y y
=

= −  (17) 

3.4 Prediction effectiveness evaluation module 

Commonly used assessment criteria include mean square error (MSE), root mean square 
error (RMSE), and mean absolute error (MAE), which this module evaluates the 
prediction efficacy of the integrated model using. These measures give us a platform for 
more model modifications and enable us to measure the forecast accuracy of the model. 

• MSE: 

( )2

1

1 ˆMSE t

N

t
tN

y y
=

= −  (18) 

• RMSE: 

( )2

1

1 ˆRMSE
N

t t
t

y y
N =

−=   (19) 
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• MAE: 

1

1 ˆMAE
N

t t
t

y y
N =

−=   (20) 

These evaluation criteria enable the quantification and adaptation to actual needs of the 
predicted effectiveness of the model. 

Algorithm 2 can depict SEMTSA-Region with the following pseudo-code. 
Algorithm 2 Pseudo-code for calculating SEMTSA-Region 

1: begin 
2:  Initialise time series data yt, latent variables xt, and external variables bt 
3:  Initialise SEM parameters λy, B1, and B2 
4:  Initialise ARMA model parameters φ1, φ2, …, φp, θ1, θ2, …, θq 
5:  Set maximum iterations max_iter and convergence threshold epsilon 
6:  Set iteration count iter = 0 
7:  while iter < max_iter do 
8:   # Step 1: Pre-processing – check if the time series is stationary 
9:   if not stationary(yt) then 
10:    Perform differencing on yt,: 
11:  end if 
12:   # Step 2: SEM-based latent variable modelling 
13:   for t = 1 to length(yt) do 
14:    yt = λyxt, + ϵt # SEM equation for observed variables 
15:    xt = B1xt–1 + B2bt + ηt # Update latent variables 
16:   end for 
17:   # Step 3: Time series modelling (ARMA) 
18:   for t = p + 1 to length(yt) do 
19:    yt = φ1yt–1 + φ2yt–2 + ···+ φpyt–p + θ1εt–1 + θ2εt–2 + ···+ θqεt–q # ARMA model 
20:   end for 
21:   # Step 4: Model fusion (Combine SEM and ARMA predictions) 
22:   for t = 1 to length(yt) do 
23:    γt-pred = λy (B1xt–1 + B2bt) # Combined SEM and ARMA prediction 
24:   end for 
25:   # Step 5: Check convergence 
26:   if abs(γt-pred) < epsilon then 
27:    break # Convergence reached 
28:   end if 
29:   iter = iter + 1 
30:  end while 
31: return γt-pred, xt # Return the predicted values and latent variables 
32: end 
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4 Experimental results and analyses 

4.1 Experimental source 

The China Statistical Yearbook of the National Bureau of Statistics provides the dataset 
used in this study. Covering a wide spectrum of economic variables, including gross 
domestic product (GDP), per capita income, investment, consumer expenditure, and 
inflation rates, the dataset comprises annual economic data for all Chinese provinces, 
municipalities, and autonomous areas. Highly representative and quite valuable, the data 
span 2011 to 2020. 

Table 1 shows particular details on the dataset. 
Table 1 Data overview 

Indicator Data source Time 
range 

Number of 
records Key content 

Gross domestic 
product (GDP) 

National Bureau 
of Statistics 

2011–2020 Ten years × 
31 provinces 

Annual GDP values for each 
province and city 

Per capita 
income 

National Bureau 
of Statistics 

2011–2020 Ten years × 
31 provinces 

Per capita disposable 
income for each province 

and city 
Fixed asset 
investment 

National Bureau 
of Statistics 

2011–2020 Ten years × 
31 provinces 

Fixed asset investment 
values for each province and 

city 
Retail sales of 
consumer 
goods 

National Bureau 
of Statistics 

2011–2020 Ten years × 
31 provinces 

Retail sales of consumer 
goods in each province and 

city 
Unemployment 
rate 

National Bureau 
of Statistics 

2011–2020 Ten years × 
31 provinces 

Annual unemployment rate 
for each province and city 

Consumer 
price index 
(CPI) 

National Bureau 
of Statistics 

2011–2020 Ten years × 
31 provinces 

Annual changes in the 
consumer price index for 
each province and city 

All of the data were pre-processed in the following stages throughout data usage to 
guarantee the accuracy of the analyses: 

• Linear interpolation: it was used to fill in missing values for some provinces with 
missing values in particular years therefore guaranteeing the continuity of the data. 

• Standardisation: every economic indicator has a different scale; so, all the data were 
normalised to guarantee that various variables had equal impact on the model. 

To further enhance data quality, the data were checked for outliers and values much 
outside the typical range were eliminated. 

4.2 Comparison experiments 

The aim of this experiment is to evaluate in regional economic forecasting the 
performance variation between the SEMTSA-Region model and with several other 
conventional and sophisticated models. Particularly in its capacity to identify possible 
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causal links between economic variables, we aim to confirm, via a comparative 
experiment, if the SEMTSA-Region model can offer better forecasting accuracy. We 
decide to compare the following models: 

Using just historical data and forecasts for economic indicators, traditional time series 
model (ARIMA) generates this paradigm dismisses the possible causal links among 
economic factors. 

Appropriate for economic data with seasonal fluctuations, a seasonal component is 
included to the ARIMA model (SARIMA). 

Particularly fitting for nonlinear and very complex economic systems, long short-term 
memory network (LSTM) uses the LSTM model in deep learning to capture long-term 
dependencies in time-series data. 

Combining SEM (SEM) to model causal linkages between economic variables, which 
are subsequently included into TSA to increase forecasting accuracy, SEMTSA-Region is 
a model. 

Figure 1 Results of the comparison experiment (see online version for colours) 
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The experimental steps include data pre-processing, model training, prediction and 
evaluation. First, the raw data are processed with missing values and standardised to 
ensure the consistency of the input data of each model. Then, we use ARIMA, SARIMA, 
LSTM and SEMTSA-Region models to train the training set. Following all the models’ 
training, we evaluated each one using MAE, RMSE, and MSE by means of the test set. 
Figure 1 exhibits the experimental outcomes. 

The SEMTSA-Region model stands out from the experimental data as doing the best 
on all evaluation criteria. Particularly showing lower error rates than the other analysed 
models, the SEMTSA-Region model has an MSE of 0.017, an RMSE of 0.132, and an 
MAE of 0.098. This suggests that the model greatly helps to forecast economic trends 
and capture the possible relationship between economic factors. 
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Although they have some benefits in handling seasonality and time dependency, the 
conventional ARIMA and SARIMA models fall short in capturing the intricate causal 
linkages among economic variables, hence, reducing the forecast accuracy. Although it 
can capture complicated nonlinear patterns, the LSTM model does not fully use the 
causal relationships among economic variables and suffers from a certain degree of 
overfitting risk during the model training process; hence, its prediction performance is 
rather worse than that of SSTM. Its prediction ability is thus rather worse than that of the 
SEMTSA-Region model. 

4.3 Parameter optimisation experiment 

The objective of this experiment is to evaluate predicting accuracy by means of 
parameter optimisation of the SEMTSA-Region model. By changing the main model 
parameters, we investigate how better performance of regional economic forecasting 
results from. We confirm that the SEMTSA-Region model can attain the best prediction 
effect in actual applications by means of the optimisation experiment, so verifying the 
performance of the model under several parameter configurations. 

This experiment mostly consists in tuning the essential parameters of the  
SEMTSA-Region model, which mostly relates with the following aspects: 

SEM path choice: Forecasting effectiveness in SEM models depends in great part on 
causal path selection. We will evaluate the effect of several path topologies on model 
accuracy by trying several mixes of economic factors. 

TSA parameter adjustment consists on component tuning of ARIMA and LSTM. We 
shall specifically change the ARIMA model’s p, d, and q parameters as well as the 
hyperparameters learning rate in the LSTM network and number of hidden layer units 
respectively. 

The SEMTSA-Region model combines SEM with TSA (e.g., ARIMA or LSTM), 
hence, optimising the fusion strategy. In this experiment, we will investigate several 
fusion techniques, e.g., by fusing the two portions of the predictions through a weighted 
averaging strategy or by changing the SEM outputs as time series inputs. 

Following the models’ training, we assess them under several parameter settings 
using metrics like MAE, RMSE, and MSE. Figure 2 displays the experimental outcomes. 

In this work, the SEMTSA-Region model was parameterised to greatly raise the 
prediction accuracy. The first (unoptimised) model performs with MSE = 0.017,  
RMSE = 0.132, and MAE = 0.098; so, the baseline model and the outcomes show the 
fundamental prediction performance when untuned. Path optimisation of the SEM (SEM) 
helps to lower the MSE of the model to 0.015, RMSE to 0.122, and MAE to 0.090, 
thereby demonstrating the favourable effect of path optimisation in capturing the causal 
linkages between economic variables. After modifying its p, d, and q parameters, the 
MSE is dropped to 0.014, RMSE dropped to 0.118, and MAE dropped to 0.085. The 
optimisation of the ARIMA model also brings about a notable enhancement. Although 
ARIMA can fit linear time series data better, its fitting effect on nonlinear connection is 
still poor compared to LSTM. 
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Figure 2 Experimental results of parameter optimisation (see online version for colours) 
 

Initial Model
(No

Optimization)

Optimized
SEM Path
Selection
(Path 1)

Optimized
ARIMA

(p=3, d=1,
q=1)

Optimized
LSTM

(Hidden
Units=50,
Learning

Rate=0.001)

Optimized
Fusion

Strategy
(Weighted
Average)

0.00

0.05

0.10

0.15

 MSE
 RMSE
 MAE

M
SE

Parameter Configuration  

By optimising the hyperparameters such the number of hidden layer units and the 
learning rate, the MSE is lowered to 0.012, the RMSE is lowered to 0.110, and the MAE 
is lowered to 0.080, so indicating the superiority of the LSTM in handling the 
complicated nonlinear relationships. Proving the efficient merger of SEM and TSA, the 
weighted average strategy’s optimal outcomes in MSE (0.010), RMSE (0.101) and MAE 
(0.075) are ultimately best. The experimental results show that the prediction accuracy of 
SEMTSA-Region model in regional economic forecasting is much enhanced by precisely 
changing each parameter, so illustrating its advantages in handling economic data, 
particularly in combining causality and time dependence. 

5 Conclusions 

In order to address the causality and time-dependence issues in intricate economic data, 
we suggest in this work a regional economic forecasting model, SEMTSA-Region, based 
on SEM and TSA. First, we use SEM to capture the causal links between regional 
economic variables; then, we mix time series models (e.g., ARIMA and LSTM) to 
forecast economic variables in time series, and lastly we combine the benefits of both by 
means of the weighted average fusion strategy to raise the forecasting accuracy. In terms 
of prediction accuracy, especially when dealing with nonlinear relationships and complex 
time series data, which clearly shows benefits, the model verifies its effectiveness in the 
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experimental part by means of comparison experiments and parameter optimisation trials, 
so surpassing the conventional single model. 

There are still certain restrictions even although the SEMTSA-Region model 
suggested in this paper has shown notable achievements in regional economic 
forecasting. First of all, success of this model depends much on the quality and variety of 
the data. The timeliness, completeness, and correctness of the data may still influence the 
prediction of the model even if the dataset utilised in this study comprises of multiple 
economic factors. Second, the model implies that the economic data used in this study 
reflect future economic trends; so, they are mostly based on historical statistics. 
Nevertheless, erratic outside events (such as natural catastrophes, policy changes, 
unexpected epidemics, etc.) often influence the real economic environment, therefore 
producing historical data that might not be relevant for future projections. Furthermore, 
although the SEMTSA-Region model effectively combines SEM and TSA, the great 
model complexity and significant computing resource consumption – particularly in 
relation to large-scale data – may cause computational bottlenecks in pragmatic 
applications. This will influence the model’s real-time prediction capacity particularly in 
situations involving economic decision-making that call for quick reaction. 

Future research could be expanded in several areas: 

1 Optimising the computational efficiency of the model. Although the  
SEMTSA-Region model has a good prediction accuracy, its computational cost is 
somewhat significant, particularly in cases of large-scale datasets where 
computational bottlenecks could arise. Thus, by using effective algorithm 
optimisation strategies like parallel computing and distributed computing to increase 
the feasibility of its use, particularly in the big data environment, the computational 
efficiency of the model can be increased in the future. 

2 Comprehensive model considering the influence of multiple factors. Regional 
economic forecasting can be influenced by social, environmental, and other elements 
in addition to economic ones. Through multimodal learning approaches (e.g.,  
multi-input networks, graph neural networks, etc.), future research can include more 
external aspects – such as climate change, social policies, international markets, etc. 
– and integrate these factors into the model. 

3 Multi-level fusion models. Models’ fusion technique is implemented using weighted 
averaging at present. Multilevel fusion techniques can be tried to mix several model 
outputs through more sophisticated combination methods (e.g., model integration, 
meta-learning, reinforcement learning, etc.) to further improve the prediction 
accuracy, especially the performance when different kinds of data sources are fused. 
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