Enhancing link prediction in dynamic social networks: a novel algorithm integrating global and local topological structures Online publication date: Tue, 25-Feb-2025
by Shambhu Kumar; Arti Jain; Dinesh C.S. Bisht
International Journal of Data Mining, Modelling and Management (IJDMMM), Vol. 17, No. 1, 2025
Abstract: The link prediction problem has gained significant importance due to the emergence of many social networks. Existing link prediction algorithms in social networks often prioritise local or global attributes, yielding satisfactory performance on specific network types but with limitations like reduced accuracy or higher computational burden. This paper presents a novel link prediction approach that integrates global and local topological structures, assessing node similarity through a similarity index formula between two node pairs that is based on three key features: the number of common neighbours between nodes with some penalty factor introduced for each common node, node influence, and the shortest path distance between unconnected nodes. Evaluation using AUC has been performed against seven datasets and demonstrates significant improvement over baseline and state-of-the-art methods, enhancing accuracy by 30% and 6.75%. This highlights the efficacy of integrating global and local features for more accurate link prediction.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining, Modelling and Management (IJDMMM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com