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Abstract: The difficulty of unbalanced datasets in classification issues has 
become more noticeable with the fast expansion of data science and machine 
learning approaches. When confronted with uneven data, conventional machine 
learning methods often produce poor prediction of a few classes. Based on 
Bayesian optimisation (BO), we propose in this work an enhanced 
convolutional neural network (CNN) framework (BO-CNN) meant to optimise 
the hyperparameter configuration of CNNs while resolving the class bias 
problem in unbalanced data. Experimental results reveal that BO-CNN shows 
benefits on challenging datasets, lowers miss-detection and false alarms, and 
efficiently enhances the capacity of the model to manage unbalanced data. 
These results offer a fresh approach for unbalanced data categorisation and a 
useful guide for the future optimisation and implementation of deep learning 
models. 

Keywords: BO; Bayesian optimisation; convolutional neural network; CNN; 
unbalanced data recognition. 
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1 Introduction 

Data science and machine learning are developing quickly, hence the range and volume 
of data are expanding (Najafabadi et al., 2015; Ali et al., 2016). But many datasets in 
practice – especially those related to classification problems – often show extreme class 
imbalance. Conventional machine learning methods often struggle on unbalanced 
datasets (Thabtah et al., 2020), which produces bad predictions for a few classes. 
Although several techniques – such as oversampling, undersampling, and cost-sensitive 
learning – have been suggested to solve this issue – these approaches are typically 
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challenging to efficiently raise the performance of classification models on unbalanced 
data (Song et al., 2018). 

In the realm of unbalanced data recognition, conventional classification systems often 
perform badly in the prediction of a few classes of samples, therefore generating large 
misclassification and omission rates (Susan and Kumar, 2021). Scholars have put up 
some ideas to solve this issue. Among the most often used methodologies are integrated 
learning approaches, cost-sensitive learning, and resampling methods. 

The traditional approaches for addressing unbalanced data include oversampling and 
undersampling (Luengo et al., 2011). While undersampling balances the dataset by 
cutting the amount of majority class samples, oversampling replicates minority class 
samples. These techniques may cause over-generation or discarding of samples, therefore 
reducing the generalisation ability of the model even if they can somewhat increase the 
recognition rate of minority class samples. 

By modifying the cost of classification error for various classes, cost-sensitive 
learning guides the model to give more focus on the appropriate classification of minority 
groups. Although this method can solve the issue of unbalanced datasets, it depends on 
the creation of a suitable cost function, which is usually challenging in reality (Zhou and 
Liu, 2015). 

Furthermore, as deep learning develops, convolutional neural network (CNN) and 
other neural network models are progressively turning into useful instruments for 
unbalanced data recognition solution (Jiao et al., 2020). Many researchers have been 
motivated to employ CNN to cope with unbalanced datasets, particularly in  
multi-classification activities, by their success in the field of image recognition. Some 
methods increase the capacity of the model to learn from a few classes of samples by 
means of adaptive weighting loss function and attention mechanism, therefore improving 
the performance of CNN on unbalanced data. CNN can automatically learn the feature 
information of various classes in the imbalanced data identification job; but, due to the 
imbalance of classes, conventional CNN are prone to favour the classes with larger 
sample numbers, therefore reducing the recognition capability of minority classes 
(Sampath et al., 2021). 

Bayesian optimisation (BO) has been progressively used in recent years as an 
effective hyperparameter optimisation tool for deep learning models (Wu et al., 2019). 
By means of BO, CNN’s hyperparameters may be efficiently changed within a 
constrained amount of iterations, hence enhancing the model’s performance on 
unbalanced data. 

All things considered, studies on unbalanced data recognition have put forth a range 
of approaches with pros and drawbacks. This work presents an enhanced CNN 
framework based on BO (BO-CNN), which attempts to optimise the hyperparameter 
configuration of the CNN while tackling the problem of category bias in imbalanced data. 

This work mostly produces advancements in the following spheres: 

1 One proposes the Bayesian optimisation-convolutional neural network (BO-CNN) 
framework. Especially in unbalanced data, the framework uses the effective search 
strategy of BO to automatically control the hyperparameters of the CNN, so greatly 
enhancing the model’s capacity to identify samples of a few classes by precisely 
optimising the hyperparameters of the model. 
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2 We investigate the combined BO with CNN approach and suggest its usage in 
unbalanced data recognition. This work generates a new framework combining the 
adaptive property of BO with the depth property of CNN to efficiently address the 
unbalanced data problem, therefore offering fresh approaches for unbalanced data 
recognition. 

3 We employ two standard and unbalanced datasets. Different approaches including 
comparison tests, fusion studies, and ablation experiments confirm the great 
adaptability of the BO-CNN architecture in several application situations. By means 
of these tests, this work not only confirms the efficiency of the suggested approach 
but also offers a reference for deep learning applications in other domains, so 
highlighting the vast possibilities of BO along with CNN. 

2 Relevant technologies 

2.1 Bayesian optimisation 

Particularly suited for optimisation problems when the objective function is 
computationally costly or not derivable is BO, a global optimisation technique (Locatelli 
and Schoen, 2021). The fundamental idea is to build an agent model to approximate the 
objective function and choose the sampling sites most likely to increase the value of the 
objective function by guiding the search process via an acquisition function. The 
Acquisition Function to choose the next sampling point and the Gaussian process (GP) as 
the agent model define the main components of BO (Obrezanova et al., 2007). 

Assume that the function we wish to maximise is the objective function f(x); BO 
models the objective function by constructing an agent model p(f(x) | D), where D is an 
already seen data set. Suppose that at every point x in the input space the values of the 
goal function have a Gaussian distribution. Typically initialised to 0 for the mean 
function and 0 for the covariance function, the GP is defined by a mean function μ(x) and 
a covariance function k(x, x′). 

( )( ) 0, ( , ')f x GP k x x  (1) 

Often used covariance functions are the radial basis function (RBF) expressed as: 

( )
2

2
2, exp

2
x xk x x σ

l

 ′−′  = −
 

 (2) 

where l is the length scale; σ2 is the signal’s variance; the control function’s smoothness 
is determined here. 

The objective function f(x) is unknown in the BO process; hence, the GP model and 
current data points help to deduce the goal function. Bayes’ theorem allows one to derive 
the posterior distribution of the objective function at the new point x* assuming n data 
points X = [x1, x2,…,xn] and the matching objective function values y = [f(x1), 
f(x2),…,f(xn)]. The nature of the GP indicates that the following equation determines the 
expected value and objective function variance: 

( ) ( ) 1, ( , )
T

μ x k x X K X X y∗ ∗ ∗ −=  (3) 
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( ) ( ) ( ) ( )2 1, , ( , ) ,
T

σ x k x x k x X K X X k x X∗ ∗ ∗ ∗ − ∗= −  (4) 

where K(X, X) is the covariance matrix between the data points; y is the known objective 
function value; k(x*, X) is the vector of covariances between the new point x* and the 
known data points. 

The aim function is to choose a new input point x* at every BO step. BO uses 
maximising the acquisition function to choose the next evaluation point. A fundamental 
part of BO, the acquisition function decides how to balance exploration with exploitation. 
Formulated as expected degree to which the objective function is better than the current 
ideal value f* at a given location x*, expected improvement (EI) is a widely used 
acquisition function (Xu et al., 2021). 

( ) ( )( ) ( )
( )

( ) ( )
( )EI

μ x f μ x fx μ x f σ x
σ x σ x

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 
Φ +

 − −= −   


  
  

α φ  (5) 

where ϕ(·) is the probability density function of the standard normal distribution and Φ(·) 
is its cumulative distribution function. BO chooses the next evaluation point x* by 
optimising the acquisition function, hence optimising the search efficiency. 

Actually, especially in the realm of deep learning, BO is frequently employed for 
hyperparameter optimisation (Karl et al., 2023). The performance of the model in neural 
network training depends much on the choice of hyperparameters like learning rate, 
regularisation factor, batch size, etc.BO can provide better results with less experiments 
by effectively searching the hyperparameter space, therefore avoiding the inefficiencies 
of the conventional grid search or random search strategies. The optimisation problem 
can be stated assuming that the hyperparameter θ has to be improved and the aim is to 
minimise the loss L(θ) of the validation set: 

arg min ( )
θ

θ L θ∗ =  (6) 

BO aims to maximise the acquisition function by means of hyperparameter θ*, therefore 
optimising the model performance. 

In unbalanced data categorisation issues, BO might also be really crucial. Often 
times, the loss function must be changed for unbalanced data to enhance the classification 
performance for a small number of classes. One often used weighted cross-entropy loss 
function has the form: 

( )weighted
1

log
i

N

y i i
i

L w p y x
=

= −  (7) 

where wyi are the weights of category yi, BO can automatically change these weights to 
balance the effect of several categories on the loss, hence enhancing the capacity to 
classify a limited number of categories. 

Usually, BO is implemented by means of GP and acquisition function computations 
(Surianarayanan et al., 2023). Libraries including scikit-optimise, GPyOpt, etc. let BO be 
applied. Here’s a simple Python code example that shows how to use scikit-optimise to 
Grid search: 
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from skopt import gp_minimise 
from skopt.space import Real, Integer 
 
def objective(params): 

learning_rate, batch_size = params 
return train_model(learning_rate, batch_size) 

 
space = [Real(1e-5, 1e-1, name=‘learning_rate’), 

Integer(16, 128, name=‘batch_size’)] 
 
result = gp_minimize(objective, space, n_calls=50, random_state=42) 
 
print(“Best parameters:”, result.x) 
print(“Best validation loss:”, result.fun) 

Iteratively updating the agent model and maximising the acquisition function helps the 
next evaluation point to be chosen effectively in BO implementation. This procedure 
increases the efficiency of BO application in high-dimensional space over conventional 
random or grid search. 

2.2 Convolutional neural network 

Especially in cases of unbalanced data, CNN can enhance performance by automatically 
changing its hyperparameters with the help of BO. The fundamental ideas and CNN 
structure will next take the stage in this part. 

Figure 1 Structure of CNN 
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Particularly suited for processing data with a grid structure – that of photos, videos, and 
audio signals – CNN is a deep learning model. As demonstrated in Figure 1, CNN’s 
central concept is to automatically extract characteristics from the data by means of 
several convolutional, pooling, and fully connected layers (Akhtar and Ragavendran, 
2020). CNN is able to automatically discover the ideal representation of the features 
during the training phase, unlike conventional human feature engineering techniques, 
thereby considerably simplifying processing difficult tasks. 

CNNs’ architecture makes the convolutional layer the most important element. By 
sliding a filter – or known convolution kernel – over the input data and doing a weighted 
summation over a particular region, the convolution operation extracts local features. 
Divining the convolution operation into two parts assuming the input data is a  
two-dimensional matrix X and the convolution kernel is a matrix W The point-by-point 
product of the convolution kernel and the input data comes first; then, the summation of 
these products yields the convolution result at last: 

( , ) ( , ) ( , )Z i j X i j W i j= ⋅  (8) 

( ( ), ,)
m n

Y i j Z i m j n= + +  (9) 

where Z(i, j) is the indicated result of the point-by- point product of the input data and the 
convolution kernel elements following convolution. Y(i, j) denotes the result of the 
convolution operation; m and n indicate the convolution kernel’s dimensions. This allows 
the convolutional layer to efficiently extract low-level features such image edges and 
textures, therefore providing the basis for later high-level feature learning. 

Usually, pooling layers lower the output spatial dimensionality of a convolutional 
layer (He et al., 2015), therefore lowering computational cost and improving model 
resilience. Max Pooling is the most often used pooling technique since it chooses the 
maximum value in a limited area therefore lowering the dimensionality of the data. The 
pooling procedure has this formula below: 

,
, max (( ) , )

m n
Y i j X i m j n= + +  (10) 

By reducing the number of parameters in the model while preserving the important 
information, the pooling operation increases the computational efficiency. 

Usually following the convolutional and pooling layers, CNNs feature one or more 
fully connected layers. By linking all the input nodes to the output nodes, the fully 
connected layer conducts worldwide feature learning. Based on the characteristics 
extracted from the convolutional and pooling layers, the network further processes in this 
layer to produce the final classification result. The calculation of the completely 
connected layer can be stated assuming that the input of the fully connected layer is x, the 
weight is W, the bias is b and the output is y as follows: 

( )y f Wx b= +  (11) 

where f is a nonlinear connection introducing activation function such ReLU or Sigmoid. 
The usual training approach of CNNs may be influenced by the minority class 

samples when handling unbalanced datasets, therefore producing a model with great 
prediction accuracy for the majority class but poor recognition of the minority class. 
Usually, the training process is tuned – that is, using weighted loss functions, 
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oversampling or undersampling methods, etc. – to solve this challenge. In order to better 
handle the difficulties presented by unbalanced datasets, BO is essential in this process 
and helps to automatically modify the hyperparameters of the CNN, including the 
learning rate, batch size, convolutional kernel size, etc., in order. 

Together with BO, the CNN training process gets more effective. By helping to 
choose the ideal hyperparameter setup, BO can enable CNN to reach great classification 
performance in less training cycles. When confronted with complicated and unbalanced 
datasets, this capacity to automatically modify the hyperparameters helps the CNN to 
greatly increase the generalisation capacity and accuracy of the model. 

We acknowledge the role of integrated learning in handling imbalanced data. While 
our primary focus is on the BO-CNN framework, we incorporate elements of integrated 
learning through the BO process, which implicitly considers various model 
configurations to optimise hyperparameters. This approach allows us to leverage the 
benefits of multiple learning strategies without explicitly training an ensemble, 
streamlining our method and enhancing its adaptability to class imbalance. 

3 BO-CNN: a BO-CNN based framework for unbalanced data recognition 

3.1 BO-CNN framework recognition process 

Two basic modules make up the BO-CNN architecture: BO and CNN, the former is 
mostly in charge of optimising the hyper-parameter configuration of the CNN while the 
CNN module is utilised to extract features from the data and carry categorisation.  
BO-CNN automatically changes CNN’s hyperparameters using BO to enhance the 
model’s performance on a small number of classes of samples on unbalanced datasets. 
BO-CNN consists of the following five components. Figure 2 shows the BO-CNN 
framework’s workflow: 

Figure 2 Structure of BO-CNN (see online version for colours) 
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1 Define the objective function 

 CNN on unbalanced datasets is evaluated using a criterion known as the objective 
function. Usually, our optimisation goal is F1-score, Recall or Precision. The 
equation looks like this: 



   

 

   

   
 

   

   

 

   

    Unbalanced data identification based on Bayesian optimisation 103    
 

    
 
 

   

   
 

   

   

 

   

       
 

2 Precision Recall1
Precision Recall

F × ×=
+

 (12) 

Precision TP
TP FP

=
+

 (13) 

Recall TP
TP FN

=
+

 (14) 

 where TP is the true case count; FP is the false positive case count; FN is the false 
negative case count. 

2 Selection of hyperparameter space 

 The hyperparameter space of the CNN must be precisely defined in the BO-CNN 
framework if BO is to conduct efficient search (Song et al., 2014). Common 
hyperparameters consist in the number of convolutional layers, convolutional kernel 
size, learning rate, batch size, and so on. Assume the hyperparameter space is: 

Kernel Size, Number of Layers, Learning Rate, Batch e{ }SizΘ =  (15) 

 Through exploration of this area BO will discover the ideal mix of hyperparameters. 

3 Perform BO 

 BO searches for the best hyperparameter combination step by step and models the 
hyperparameter space using an agent model – e.g., a GP. Assuming θt as the present 
hyperparameter combination, BO chooses a new hyperparameter θt+1 by maximising 
the objective function using agent model evaluation. 

 BO aims to identify the optimal hyperparameters by raising the expected value ˆ ( )f θ  
of the agent model – for instance, a GP – as highest as feasible. The recipe calls for: 

1
ˆarg max ( )t θ

θ f θ+ =  (16) 

4 Optimisation of hyperparameters 

 Particularly the recognition ability on a few classes, the BO automatically changes 
the hyperparameter configurations of the CNN to enhance the performance of the 
model. By evaluating the performance of the present set of hyperparameters on the 
validation set, the optimisation process maintains the best hyperparameters current 
state. 

 One can find the BO iterative updating procedure as follows: 

1t tθ θ θ+ = +  (17) 

 where depending on the prediction outcomes, Δθ is the hyperparameter variance 
modified by BO in every iteration. 

5 Training the CNN model 



   

 

   

   
 

   

   

 

   

   104 Y. Wang    
 

    
 
 

   

   
 

   

   

 

   

       
 

 Training the last CNN model will be done using BO-tuned hyperparameters. Using 
the modified hyper-parameter settings, we will train the optimal CNN, hence 
improving the performance of the model on the unbalanced data. 

3.2 Imbalanced data processing strategy in BO-CNN 

Using the hybrid loss method helps the BO-CNN framework recognise minority class 
samples in the processing of unbalanced datasets. This approach combines cross-entropy 
loss with contrast loss, therefore enabling the model to pay greater attention to the 
learning of minority classes and preserve a high degree of classification accuracy 
appropriate for many application situations of unbalanced datasets. 

To maximise model performance, the hybrid loss function aggregates conventional 
cross-entropy loss with contrast loss (Goceri, 2024). Minority class samples are less 
important in most unbalanced datasets, hence using cross-entropy loss by itself could lead 
to the weak identification of minority classes. Through the blending of the two losses, the 
framework helps the model to maintain the general classification accuracy while 
increasing the attention on the minority class, so boosting the recognition of minority 
class data. 

The hybrid loss function has the particular formula: 

(1 )hybrid ce contrastiveL λL λ L= + −  (18) 

where equation represents the cross-entropy loss and Lce marks: 

( ) ( ) ( )
1

1 [ log 1 log 1 ]
N

ce i i i i
i

L y p y p
N =

= − + − −  (19) 

where pi is the expected probability of sample i and yi is the actual label of the sample. 
Mostly, the cross-entropy loss helps to maximise the model’s general classification 
accuracy. 

Conversely, contrast loss enhances the discriminative power of the model by 
increasing the boundary variations between classes (Huang et al., 2021), particularly in 
regard to minority class data. The contrast loss formula is: 

( ) ( ) ( )( )22

1

1 , 1 max 0, ,
2

N

contrastive i i i i i i
i

L y d x y y m d x y
N =

 = + − −   (20) 

where m is a constant denoting the minimum distance between classes and d(xi, xj) is the 
Euclidean distance between samples xi and xj. 

BO is a useful hyperparameter optimisation tool that may automatically change the 
hyperparameter λ in the hybrid loss function throughout the training phase. λ is a 
hyperparameter here that decides the weight distribution between the cross-entropy loss 
and the contrast loss.BO aims to maximise the performance of the model on the 
validation set and to automatically choose the ideal value of λ, therefore enabling the  
BO-CNN framework to use varied unbalanced datasets to obtain optimal learning 
outcomes. 

BO has as its objective function: 
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ˆ arg max ( )
θ

θ f θ=  (21) 

where f(θ) is the performance metric of the model on the validation set, say accuracy or 
F1 score; θ is the collection of hyperparameters to be optimised. 

By including hybrid loss – which combines contrast loss and cross-entropy loss – the 
category imbalance issue in unbalanced datasets can be essentially resolved in the  
BO-CNN architecture. This method guarantees increased recognition of minority class 
samples while preserving the general classification performance. Furthermore, the use of 
BO in the framework enables the intelligent and efficient choice of hyperparameter λ, 
hence optimising the performance of the model on unbalanced data. 

4 Experimental results and analyses 

4.1 Data sets 

In order to assess the effectiveness of the BO-CNN framework in unbalanced data 
recognition, this work chooses two common unbalanced datasets: the UCI Adult dataset 
and the KDD Cup 99 dataset. These two sets of data obviously exhibit category 
imbalance. They thus provide application cases in the domains of tabular data and 
cybersecurity, respectively, so enabling complete testing of the model’s performance with 
various kinds of data. 

We obtained the UCI Adult dataset from the UCI Machine Learning Repository in 
order to forecast whether a person’s annual salary surpasses $50,000. With 32,561 
samples total, more than half of which fell into the minority category – that is, earning 
less than $50K. The dataset has a somewhat large category imbalance of roughly 1:3. 
There are 14 features in the dataset – age, education, job type, etc.; the feature types are 
numerical and categorical. 
Table 1 Overview of datasets 

Item UCI Adult Dataset KDD Cup 99 Dataset 
Dataset name UCI Adult Dataset KDD Cup 99 Dataset 
Sample size 32,561 4,898,434 
Feature count 14 (e.g., age, workclass, education, 

marital-status, etc.) 
41 (e.g., protocol_type, service, 

src_bytes, dst_bytes, etc.) 
Class 
distribution 

Imbalanced; Income > 50K (24%) vs. 
Income <= 50K (76%) 

Highly Imbalanced; Normal (97%) vs. 
Anomalous (3%) 

Class labels Income > 50K, Income <= 50K Normal, DoS (Denial of Service), 
Probe, R2L, U2R 

Missing 
values 

Some missing values in ‘workclass’, 
‘occupation’, and ‘native-country’ 

fields 

Some features have missing values, 
mostly categorical fields 

Feature types Mixed (Numerical: age,  
hours-per-week; Categorical: 

workclass, education) 

Mixed (Numerical: src_bytes, 
dst_bytes; Categorical: protocol_type, 

service) 
Imbalance 
degree 

High (Minority class makes up only 
24% of total samples) 

Extreme (Normal traffic 
overwhelmingly outnumbers attacks) 
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Considered as a tool for network intrusion detection, the KDD Cup 99 dataset 
distinguishes several network threats. There are 49 attack types in the dataset; some 
attack categories have a somewhat low sample count while normal traffic and some 
assault categories have most of the samples. With a great degree of category imbalance, 
the dataset has 4,898,434 total samples, most of which fall into regular traffic or common 
attack categories. Mostly numerical, the features comprise a range of network 
communication statistics including traffic amount, connection length, protocol type, etc. 

The foundation for the studies in this work will be Table 1, which lists the main 
characteristics, sample sizes, and category distributions of these two datasets. 

4.2 Comparative experiments 

We have developed a model comparison experiment with the intention of validating the 
advantages of the BO-CNN framework in unbalanced data recognition by means of other 
standard models handling unbalanced data and evaluating BO-CNN on several criteria. 
Two imbalanced datasets will be used in the experiment under which we apply the 
following models for training and testing: normal CNN (without BO), BO-CNN, and 
CNN models employing classical data balancing techniques including SMOTE and 
weighted loss function. Every model will be tested and trained using the same dataset and 
hyperparameter setup. 

Three primary phases comprise the comparison experiment: data preprocessing, 
model training, and model evaluation. We first normalise the data for every dataset so 
that it satisfies the models’ input needs. Second, using the same training set and test set, 
all models – standard CNN, BO optimised CNN, conventional data balancing method 
CNN) – will be trained. Except for the BO portion, which will be hyperparameter tuned 
in the BO-optimised CNN model, the first values of hyperparameters, the number of 
training rounds, and the optimiser settings remain the same for all models, thereby 
guaranteeing the fairness of the trials. 

Figure 3 Results of the comparison experiment on the UCI Adult dataset (see online version  
for colours) 
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Every model will undergo 10-fold cross validation to validate their training process; each 
fold’s F1-score, recall, and precision will then be assessed. Each model’s performance 
will be thoroughly assessed using these criteria in handling the imbalanced data, 
particularly with regard to the model’s capacity to recognise minority classes – that is, 
less classes in the unbalanced data. Figure 3 and Figure 4 exhibit the experimental 
outcomes. 

With an F1-score of 0.75, recall of 0.70, and precision of 0.80, the standard CNN 
performs somewhat poorly in the experiments on the UCI Adult dataset, particularly in 
regard to lower in Recall. By modifying the hyperparameters via BO, BO-CNN increases 
the F1-score to 0.83, Recall to 0.81, and Precision to 0.85, so greatly improving the 
model’s capacity to manage unbalanced data. 

Figure 4 Results of the comparison experiment on the KDD Cup 99 dataset (see online version 
for colours) 
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The F1-score of the conventional CNN in the KDD Cup 99 dataset is 0.72, recall is 0.68, 
and precision is 0.76, so suggesting low recall in intrusion detection. On complicated 
datasets, BO-CNN greatly increases the recall and precision; after BO, the F1-score of 
BO-CNN is enhanced to 0.80 and recall and precision are 0.78 and 0.82, respectively. 

Especially in the indices of F1-score, recall and precision, BO-CNN clearly beats 
both conventional balanced method CNN and standard CNN taken combined. 
Particularly in imbalanced data, BO is able to efficiently control the hyperparameters and 
enhance the performance of the model; it also helps to successfully increase the recall 
rate and precision and so lower the leakage and false alarms. 

4.3 Hyperparametric sensitivity analysis experiments 

First we choose three important hyperparameters for examination in the hyperparameter 
sensitivity study: learning rate, batch size, and convolutional kernel size. The 
fundamental elements of CNN performance, these hyperparameters significantly affect 
the training process and model output. We developed two experimental setups: one for 
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manually choosing hyperparameters and the other for automatically altering 
hyperparameters by BO to further assess the benefits of BO for hyperparameter tuning. 

In the hand-selected hyperparameter experiment, we selected a set of typical 
hyperparameter values grounded on knowledge and literature. For example, we choose 
the batch size to be 32, the learning rate to be 0.01, and the convolutional kernel size to 
be 5. Using typical CNNs, we trained on the UCI Adult dataset and the KDD Cup 99 
dataset in this arrangement; the evaluation metrics – F1-score, recall, and  
precision – were noted on each dataset. This phase aims to offer a baseline performance 
for next BO. 

We next automatically tweak these hyperparameters using BO-CNN under the BO 
framework.BO explores the hyperparameter space and chooses the optimal configuration 
step by step, hence optimising the model. BO-CNN trains again on the same two datasets 
and automatically optimises the hyperparameters including learning rate, batch size, and 
convolutional kernel size during the training process. BO’s method not only lowers the 
bias of human-selected hyperparameters but also investigates a larger hyperparameter 
range, so enhancing the model’s performance. 

We evaluate and analyse the performance of the standard CNN and BO-CNN 
correspondingly under every hyperparameter setting. In this sense, we can see how 
automatically changing the hyperparameters BO enhances the recognition performance of 
the CNN on unbalanced datasets. Figure 5 and Figure 6 present the experimental results 
for two datasets: KDD Cup 99 and UCI Adult dataset respectively. 

Figure 5 UCI Adult dataset experiment results (see online version for colours) 

 

With low recall – shown by missing some positive class samples – the F1-score of the 
standard CNN on the UCI Adult dataset is 0.75. Following BO’s BO-CNN, the F1-score 
rises to 0.83 and the recall and precision are much enhanced, therefore demonstrating the 
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value of BO in managing unbalanced data. Though still not as good as BO-CNN, the 
manually tweaked CNN performs somewhat better. 

Figure 6 KDD Cup 99 dataset experiment results (see online version for colours) 

 

With limited recall and prone to miss detection of intrusion events, the F1-score of the 
standard CNN is 0.72 on the KDD Cup 99 dataset. By BO, the BO-CNN increases the 
F1-score to 0.80 by means of notable recall and precision enhancement as well as a better 
identification of samples of few classes. Though still performs poorly relative to  
BO-CNN, the manually tweaked CNN also improves. 

Especially in recall and precision, BO-CNN exhibits notable benefits on both the UCI 
adult dataset and the KDD Cup 99 dataset by means of comparison of their experimental 
results. Dealing with an unbalanced dataset, BO is able to automatically modify the 
hyper-parameters to maximise the performance of the model, hence improving F1-score, 
recall and precision. On the other hand, although the manual CNN improves the 
hyperparameters to some degree, it cannot equal the performance of BO-CNN in terms of 
handling unbalanced data; the conventional CNN performs really poorly. BO-CNN thus 
has a broad spectrum of uses and more adaptability and performance in unbalanced data 
recognition tasks, particularly for complicated and high-dimensional datasets. 

5 Conclusions 

This paper suggests a BO-based CNN architecture aiming at unbalanced data recognition 
problem solution. The work is conducted with two usual imbalanced datasets for 
experimental validation. Especially in the identification and recall of minority class 
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samples, the experimental results reveal that BO-CNN shows more notable improvement 
in the evaluation metrics such F1-score, Recall and Precision than the conventional 
standard CNN and manually optimised CNN. BO-CNN shows benefits on challenging 
datasets since it can more effectively handle unbalanced datasets and lower false alarms 
and missed detections than conventional balancing techniques. 

The BO-CNN model suggested in this work has certain restrictions even if it shows 
improved experimental results in unbalanced data recognition. First of all, the computing 
cost of the optimisation process is significant and the BO process itself could be more 
time-consuming, particularly in the case of big-scale datasets and intricate models. 
Although this work uses a quite small dataset for validation, how to effectively execute 
hyperparameter tweaking in useful applications is still a topic of interest that calls more 
investigation. Second, this work mostly ignores the possibilities of other deep learning 
models (e.g., recurrent neural networks, graph neural networks, etc.) in unbalanced data 
processing by concentrating just on the mix of CNN and BO. 

Future investigations might look into the following: 

1 Improving BO efficiency: Future research could investigate more effective 
optimisation algorithms, such as sampling strategies to accelerate BO, or combining 
other optimisation methods (e.g., genetic algorithms, particle swarm optimisation, 
etc.), so improving the optimisation efficiency. The computational overhead of the 
BO process is a possible bottleneck in this study. 

2 Extension to other deep learning models: Future studies can widen the mix of BO 
with other deep learning architectures. BO can be used, for instance, on sequence 
models like RNN, LSTM, etc. to investigate the possible applications in time series 
analysis and imbalanced data processing. 

3 Integration of multiple unbalanced data processing strategies: Although BO can 
improve CNN’s performance in unbalanced data processing greatly, real applications 
depend much on other elements including data pretreatment and sampling 
techniques. Combining oversampling, undersampling, SMOTE, and other methods 
with BO will help to maximise the CNN model and thereby increase the accuracy 
and robustness of unbalanced data identification. 
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