
 
International Journal of Information and Communication
Technology
 
ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

 
Digital dance generation and application based on hybrid
density network
 
Qian Lu
 
 
Article History:
Received: 08 December 2024
Last revised: 18 December 2024
Accepted: 18 December 2024
Published online: 22 January 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2025 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijict
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   Int. J. Information and Communication Technology, Vol. 26, No. 2, 2025 51    
 

   Copyright © The Author(s) 2025. Published by Inderscience Publishers Ltd. This is an Open Access Article 
distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/) 
 
 

   

   
 

   

   

 

   

       
 

Digital dance generation and application based on 
hybrid density network 

Qian Lu 
Conservatory of Music, 
Huanggang Normal University, 
Huanggang 438000, China 
Email: 17798387177@163.com 

Abstract: This article proposes a digital dance generation method based on 
mixture density network (MDN), aiming to effectively capture and generate 
complex dance action sequences. Firstly, we analysed the temporal 
dependencies and diverse features of dance movements, and designed a 
multimodal temporal generation framework using MDN and long short-term 
memory (LSTM) networks to capture dynamic correlations and pose changes 
between dance movements. This framework can generate action sequences that 
match the music style when inputting music or rhythm information, with high 
continuity, coordination, and naturalness. This paper assesses the generated 
dance motions by the model using a publicly available dance dataset, and 
verified the effectiveness of this method through subjective and objective 
quantitative indicators. The experimental results show that compared to 
traditional generative models, the MDN based model has improved the fluency, 
naturalness, and diversity of generated actions. 
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action filtering. 
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1 Introduction 

The complex mapping relationship between music and dance is manifested at the abstract 
algorithmic level as the synchronisation of the spatial patterns of body movements 
involved in dance and the time series patterns in music rhythm. Therefore, generating 
dance movements based on music involves the problem of cross modal transformation. 
For humans, cross modal imagination is the foundation of human brain creativity and an 
important feature that distinguishes the brain from computers (Henrickson, 2020). 
However, for computers, achieving this ‘creativity’ in computer vision (CV) systems is a 
major challenge, primarily because the heterogeneity differences between different modal 
data are difficult to measure (Baltrušaitis et al., 2018). Heterogeneity difference refers to 
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the similarity in content between different modal data, which is manifested in the 
synchronisation of dance action sequences and music beats in music based dance action 
generation tasks. Secondly, dance is a subjective art form, which makes it difficult to 
perform computational modelling and evaluation of dance movement generation tasks. At 
last, the dance’s choreography should represent the content of the music that 
complements the dance rather than merely pursue its artistic value. Whereas artistic 
quality depends on the dance to have authenticity and variation, content of the music 
necessitates the dance to retain continuity with the music style. Therefore, developing 
dance motions based on music using computers is rather challenging, which has since 
been one of the main focus of study in the fields of computer vision and computer 
graphics. 

Digital dance generation has progressively evolved as artificial intelligence and 
computer vision technology advance, one of the research hotspots. Digital content 
creation technology has been extensively used recently in domains such virtual reality 
(VR), augmented reality (AR), electronic games, and digital art, thereby imitating human 
behaviours and emotional expression to create extremely immersive and interactive 
digital experiences. Apart from producing several dance moves, dance generation 
technology can satisfy individual needs in social media, entertainment, and education as 
well as in industry. Nonetheless, the creation of dance movement sequences still presents 
several difficulties since dance movements have great continuity and complicated 
temporal relations and demand great coordination and authenticity of motions. Effective 
capturing of this complexity is challenging for conventional generating models. 

Particularly in the application of generative adversarial networks (GANs) (Creswell  
et al., 2018) and variational autoencoders (VAEs) (Vahdat and Kautz, 2020), which have 
greatly enhanced the diversity and authenticity of generating tasks, the most recent 
developments in deep learning have given new technological means for dance generation. 
Nevertheless, the particular criteria for dance generation challenge conventional 
generation models since they demand models to effectively capture the continuity, 
fluency, and multimodal characteristics of dance movements. The present studies mostly 
concentrate on the creation of a single pattern, missing enough mining and modelling of 
complicated time series data and diverse action sequences, which limits the further 
enhancement of the generating impact. 

Regarding application, dance generation techniques grounded on MDN offer great 
possibilities. First of all, this approach can give consumers real-time and highly 
interactive dance experiences in virtual reality (VR) and augmented reality (AR) settings 
fit for virtual dance performances, virtual idol stages, and other scenarios. Second, 
automated dance generation can lower creative expenses, increase the variety and 
originality of produced material, and give players individualised dancing interactive 
experiences in digital entertainment and game development. Using created dance motions 
to give novices demonstrations, help them in understanding and copying movements, and 
increase dance learning efficiency, this approach may also be used in dance instruction 
and auxiliary activities in the field of education. 

By incorporating mixed density networks and temporal modelling approaches, this 
paper suggests a fresh and efficient generating method for digital dance, so offering new 
technological assistance for domains such virtual reality, digital entertainment, and 
education. We intend to improve the model’s generating accuracy going forward, 
increase its flexibility in other dance forms, and investigate its expanded uses in other 
artistic disciplines. 



   

 

   

   
 

   

   

 

   

    Digital dance generation and application based on hybrid density network 53    
 

    
 
 

   

   
 

   

   

 

   

       
 

Deep learning methods’ ongoing development in the field of dance generation 
research has given fresh concepts for digital dance generation. Many researchers have 
recently produced notable findings in VAEs, GANs, and deep learning approaches 
grounded on sequence modelling. 

First of all, generative adversarial networks find extensive use in dance generation. 
Wei and Mahmood (2020), for instance, proposed a GAN based generating technique 
whereby a generator creates dance sequences and a discriminator evaluates the 
authenticity of the dance. In a similar vein, Liu et al. (2014) created action sequences 
under music direction using Conditional GAN, therefore producing more harmony 
between the created dance and music. Concurrently, long variations of GAN, such 
CycleGAN and AttnGAN, have shown benefits in multimodal information fusion 
generation tasks and have been extensively used in the joint generating of music and 
dance (Ma et al., 2021). 

Generating high-dimensional action data shows benefits from variational 
autoencoders (VAEs). Zheng et al. suggested a dance generation model based on VAE, 
for instance, which learns the possible structure of dance in hidden space so improving 
the variety of produced dances (Kritsis et al., 2022). To increase the coordination and 
temporal consistency of produced dance, VAE based generative models have also been 
applied for joint learning of music and dance (Chen et al., 2021). Based on VAE storing 
the temporal information of dance movements, Guo et al. (2021) study produces more 
natural and smoother created dance movements. 

Temporal generating models are progressively being applied in dance generation. The 
production and modelling of dance motions extensively benefit from time series models 
including LSTM and gated recurrent unit (GRU). Using LSTM, Yuan and Pan (2022) 
generated smooth motion sequences and captured temporal correlations of dance 
motions. Furthermore preferred for effective processing of extended sequence creation is 
GRU because of its straightforward nature. Using GRU, Shailesh and Judy (2022) created 
dance sequences and confirmed the value of GRU in motion generating fluency. 

To better reflect the diversity and probability of dance movements, probability 
distribution based generative models – such as mixture density networks (MDNs) – have 
lately been progressively included into the field of dance generation. For instance, Akber 
et al. (2023) suggested an MDN-based action generating technique that may create 
diverse dance movements. Furthermore included in the application of MDN in dance 
generation is the mix with other models such LSTM and Transformer, which helps the 
produced dance motions to have more delicacy and randomism (Myhrmann and Mabit, 
2023). 

Because the transformer model models extended sequences, it has also been used in 
dance generation. Yin et al. (2023) achieved effective matching of dance and music by 
using Transformer to create music and dance sequences and by means of a multi-level 
attention mechanism, therefore capturing complicated temporal information. 
Furthermore, in practice the dance generation model motivated by music has also 
produced decent outcomes. Based on audio input, Valle-Pérez et al. (2021) developed a 
Transformer dance generating technique that greatly increases the variety of produced 
dances. 

Combining music and dance has drawn interest in the process of producing 
multimodal information. Combining dance action sequences with music aspects, Ferreira 
et al. (2021) attained multimodal generation of dance and music. Polignano et al. (2021) 
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investigated music driven action generation, in which the produced dance can show 
matching emotional styles by means of emotional data attached to the input music. 

This work attempts to increase the diversity and authenticity of produced dances by 
combining mixed density networks with LSTM for dance creation, therefore leveraging 
multimodal inputs. These current investigations support this research both theoretically 
and technically and show that deep learning based digital dance creation has great 
possibilities in terms of model scalability and application potential. 

This work presents a hybrid model based on MDN and LSTM, which captures the 
dynamic correlations between dance movements by building a multimodal temporal 
generating framework, in order to solve the aforesaid problems. MDN may provide 
varied alternative actions during the development of time series data, therefore addressing 
the issue that the conventional generating model does not adequately capture enough 
actions in a single mode and acting as a model for creating probability density 
distribution. Combining the temporal modelling capacity of LSTM, this framework is 
able to capture the continuity and correlation between dance motions during the 
generating process, therefore giving more naturalism and realism for dance creation. 
Furthermore, this approach permits dance generation depending on music or rhythm 
information, so improving the alignment of the produced action sequence with the 
musical style and hence improving the interaction between dance motions and 
background music. 

The research objective of this article is to design a model that can automatically 
generate diverse, coordinated, and smooth dance action sequences based on input music 
or rhythm information. In the training phase, we used a publicly available dance dataset 
and captured the probability density distribution between different dance styles and 
movements through MDN, resulting in a dance action sequence with higher richness and 
coordination. Meanwhile, in order to enhance the effectiveness of generated dance, we 
conducted subjective and objective quantitative evaluations from the perspectives of 
motion fluency, naturalness, and diversity in the experiment. In terms of the precision and 
fluidity of produced dance movements, the experimental findings reveal that the 
suggested approach in this study is much better than conventional techniques, thereby 
improving the visual authenticity and emotional expression of the produced dance. 

2 Relevant technologies 

2.1 Musical features 

Widely employed as characteristics for automatic speech and speaker recognition, MFCC 
are grounded in human auditory perception. Originally applied for several speech 
processing applications, MFCC has benefits in timbre representation according to 
research conducted in the field of MIR in machine learning. 

The pre-emphasising processing equation looks like this: 

( ) ( ) ( 1)y n x n x n= − −α  (1) 

where n is the number of samples in each frame, x(n) is the input signal, y(n) is the output 
signal, and the filter coefficient α is usually 0.95, so that 95% of any sample is 
considered to come from previous samples. 

The form of Hanming window w(n) during the window addition process is as follows: 
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2( ) (1 ) cos
1

πnw n a a
N

 = − −  − 
 (2) 

where 0 ≤ n ≤ N – 1, a is proportional parameters. 
The Mel frequency can be calculated using the audio frequency f using the following 

equation, in Hz: 

10( ) 2959 log 1
700

fF Mel  = × + 
 

 (3) 

Spectral Flux is the measurement of spectral changes between two consecutive frames 
and is calculated by the square difference of the normalised amplitudes of the spectra of 
two consecutive short-term windows. The equation is as follows: 
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=

=
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where Ei(k) is the k-th normalised discrete Fourier transform (DFT) coefficient of the i-th 
frame. Spectral flux can be used to determine the timbre or initial detection of audio 
signals. 

Compared to recorded audio, music has a unique rhythm in the temporal dimension. 
As a cognitive skill, beat induction (BI) allows us to hear the regular pulsations in music, 
perceive this regularity in music enables us to dance and create music together. 

Ellis et al. used dynamic programming to achieve beat tracking, first setting the 
following equation as the objective function: 

{ }( ) ( ) ( )1
1 2

,
N N

i i i i p
i i

C t O t F t t τ−
= =

= + − α  (6) 

Δ(Δ , ) log tF t τ
τ

 = − 
 

 (7) 

where {ti} is the beat moment sequence found by the tracker, O(t) is the ‘fixed intensity 
envelope’ derived from the audio, α is the weight that balances the two target terms, and 
F(∆t, τ) is a function that measures the difference between the beat interval ∆t and the 
ideal beat interval τp defined by the target beat. 

Based on the objective function, to recursively combine the best score time series to 
obtain the optimal score, the state transition function in dynamic programming is set as 
follows: 

( ){ }
0...

*( ) ( ) max , *( )pτ t
C t O t F t τ τ C τ

=
= + − +α  (8) 
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2.2 Dance movement data acquisition 

Motion capture (MoCap) is a technology that generates high-precision motion data by 
capturing the actual movements of actors. Its core lies in obtaining key point motion 
information of the human body through various sensors, converting it into formats such 
as three-dimensional coordinates or angles, and recording action details in a digital way. 
The common methods of motion capture are as follows: 

1 Optical motion capture, which uses infrared cameras or high-speed cameras to 
capture the movement of markers on the actor’s body. 

2 Inertial motion capture captures the movement of body parts through inertial sensors 
(accelerometers, gyroscopes, etc.) without the need for optical equipment. The 
advantage of this method is convenience, but it may be slightly inferior to optical 
capture in terms of accuracy and stability. 

3 Depth camera capture, using depth sensors such as Kinect to capture human body 
contours and postures, suitable for motion capture scenes that do not require marker 
points. These types of devices typically have lower accuracy, but lower cost and are 
easy to operate, making them suitable for rough capture of dance movements. 

Figure 1 3D dance generation process (see online version for colours) 

 

Motion capture technology may more easily recreate complicated motions and realistic 
physical interactions than conventional keyframe-based 3D model computer animation, 
therefore producing more realistic motion data and less effort in getting actions. For 
small-scale production, the cost of necessary software, tools, and staff may be too high; 
motion capture calls for certain hardware and software to record and process the 
generated data. Moreover, the gathered data is challenging to change once more. Should 
data error exist, the scene can only be re-shot. 

More and more applications call for a lot of real-world human motion data as 
computer animation and robotics technologies improve; motion capture and manual 
production cannot satisfy this demand alone. Research into motion creation has so started 
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to take front stage. Two generalised action-generating algorithms can be distinguished: 
one is to learn the internal mapping and constraint relationships of action data by neural 
networks, so producing entirely new action sequences; another is to reuse and edit 
existing action fragments in the database, so combining them into new action sequences. 

First category conventional dance synthesis algorithms based on music and action 
feature matching fit computer automatic choreography tasks. Action segments in the 
database provide the synthetic dance action sequences; hence, the variety of dance is 
constrained. Machine learning and deep learning techniques have started to be used in the 
field of action generating in order to create fresh action data. Though compared to the 
great learning capacity of neural networks, conventional machine learning methods have 
limited ability to capture data changes; HMM models, Gaussian processes, and 
dimensionality reduction techniques can all capture the intrinsic dependencies and 
potential correlations of action data. For action generation, this paper so decides to apply 
a sequence generating model grounded on deep learning. 

The representation of dance movement data directly affects the input structure and 
feature extraction of the generative model. Common ways of representing actions include 
keypoint coordinates, joint angles, skeleton models, and motion feature vectors. The 
keypoint coordinate representation method describes human body posture through the 
positions of keypoints in three-dimensional space. Each keypoint corresponds to the 
three-dimensional coordinates of a body part (such as shoulders, elbows, knees, etc.). For 
dance generation, keypoint coordinates can fully record human posture, providing high 
detail resolution. Common representations include: 

( ) ( ) ( ){ }1 1 1 2 2 2, , , , , , ..., , ,n n nP x y z x y z x y z=  (9) 

where n represents the number of keypoints, and (xi, yi, zi) represents the three-
dimensional coordinates of each keypoint. 

The joint angle representation method represents human posture by describing the 
rotation angles of each joint. This method can directly reflect the skeletal structure of the 
human body, reduce data dimensions, and is suitable for action generation under physical 
constraints. Joint angles are usually represented by Euler angles or quaternions, and their 
calculation equation is: 

arccos i j
ij

i j

v v
θ

v v
⋅ 

=   
 

 (10) 

where θij is the angle between two adjacent bone vectors vi and vj. 
The skeleton model representation considers the human body as a tree like structure 

composed of joints and bones, and describes the posture of the human body through the 
relative position of each joint. This model can reflect the hierarchical structure of human 
motion, making it easy to add physical and structural constraints during the generation 
process. Skeleton models are typically composed of nodes and edges, where nodes 
represent joint positions and edges represent bones, and are typically stored in a 
topological structure. 

( ){ }, | ,i jS n n i j joints= ∈  (11) 
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This structure is suitable for multi joint constraints in generation to ensure the 
coordination of actions. 

The motion feature vector method simplifies the representation of motion data by 
extracting feature values such as velocity, acceleration, etc. Feature vectors can reduce 
the dimensionality of input data and are suitable for feature driven dance generation. 

Assuming a three-dimensional coordinate sequence {Pt}, its velocity and acceleration 
can be expressed as: 

1 1,
Δ Δ

t t t t
t t

P P V V
V A

t t
− −− −

= =  (12) 

This method provides important information about the motion characteristics for 
generating models, which helps to generate more natural actions. 

2.3 Mixture density network 

Fit for creating tasks with multimodal outputs, a mixed density network is a neural 
network able to forecast conditional probability distributions at the output layer. Learning 
these distribution parameters helps MDN to represent several ways for creating actions 
since the outcome is modelled as a weighted sum of several Gaussian distributions. 

Minimising the sum of squares or cross error function on the input vector might help 
a network to produce approximative the conditional average of the goal data. Following 
the choice of a suitable encoding method, these average values reflect the posterior 
probability of every category in classification problems, hence guiding the network. 
However, the description of the target variable by the conditional mean is quite limited 
for the prediction (generation) problem of continuous variables, particularly with regard 
to multi value mapping, which frequently faces difficulties since the average of several 
correct target values may not always be the correct value. Separately modelling the 
conditional probabilities of the target data will help one to gain a full description of the 
data and solve the prediction problem of input vectors. Bishop put out a fresh network 
model combining mixed density models with conventional neural networks. The whole 
system is called a mixed density network; in theory, it can depict any conditional 
probability distribution. 

MDN proposes to parameterise the distribution of numerous mixed components with 
neural network output. More especially, the whole network generates the probability 
density function of every dimension in the tensor rather than a single position tensor. The 
output data is used to define the weights α of each mixed component, as well as to 
parameterise the mean and variance σ of each mixed component. The weight α is 
normalised using the softmax function to ensure that they form an effective discrete 
distribution, while other outputs are processed using appropriate functions (such as 
exponential functions) to keep their values within a meaningful range. In RNN/LSTM 
networks, the mixed density model influences not only the current input but also limits 
the output distribution by the past input history. 

A linear combination of several mixed components reflects the probability density of 
the target data; the probability of the target vector t given the output x is: 

( ) ( )( )
1

| ( ) |
m

i i
i

p t x x φ t x
=

= α  (13) 
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where m is the total number of the mixed components and αi is the mixing coefficient for 
every mixed component of the input x. Usually utilised as a Gaussian kernel function, 
function φi is the conditional density of the i-th kernel of the target vector t. 

Therefore, written as a tensor, MDN has m (c + 2) output variables: 

1 1 1 2 ( 2), ..., , , ..., , , ...,μ μ σ σ
m m mc m mc m m cz z z z z z z+ + + + + + =  

α α  (14) 

This includes all the parameters required to construct a hybrid model. The number of 
mixed components m is arbitrary and can be understood as the number of different 
choices that the network can make at each time point. 

3 Method 

The MDN-L algorithm proposed in this article is a digital dance generation method based 
on a hybrid density network and a LSTM network, aiming to generate dance action 
sequences that conform to the rhythm of music. This method introduces a multimodal 
temporal generation framework of MDN and LSTM, which can generate complex and 
natural dance movements driven by music. The algorithm design, model construction, 
and overall framework will be described in detail below. 

Figure 2 MDN-L algorithm diagram (see online version for colours) 

…
…

Neuron Network Generation Matrix
Generate continuous values Action sequence

Generate matrix  

3.1 Algorithm design 

The core of digital dance generation lies in capturing the temporal dependencies and 
diverse features of dance movements. In temporal modelling, dance movements have 
significant temporal characteristics, meaning that the previous movement state greatly 
influences the present condition. Therefore, the LSTM model is chosen to capture 
temporal dependencies in action sequences. LSTM can effectively solve the problem of 
gradient vanishing during the generation of long sequences, ensuring that the generated 
action sequences are smooth and natural. Dance movements have diversity and 
randomness, and a single generated result cannot meet the diverse needs of dance. To this  
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end, this article introduces a mixed density network (MDN) as the generation layer,  
which captures multimodal characteristics by outputting multiple Gaussian distributions 
through MDN. The output of MDN is a weighted Gaussian mixture distribution, it offers 
several action sample options during the production process therefore producing a variety 
of actions. Music features are employed as conditional inputs to drive the created dance 
motions to alter with music characteristics, therefore matching dance movements with 
rhythm information. This article selects features such as rhythm, beat, and musical 
emotion to ensure that the generated action sequence conforms to the music style. 

3.2 Model building 

3.2.1 Music feature extraction 
Extensive feature extraction reflecting the commonalities of music and motions is 
essential while doing computer music choreography to choose dance routines that 
complement the provided target music. To first match action segments and guarantee that 
the style, speed, and other features of each action segment in the final overall 
choreography are unified and more aesthetically pleasing, this article analyses the general 
characteristics of music and investigates the impact and control of its overall features on 
dance movements. 

One can classify music features into low-level and high-level ones somewhat broadly. 
Among the low-level characteristics are amplitude envelope, spectral characteristics, 
short-term energy, short-term power spectral density, etc. The high-level elements of the 
music consist in its emotions, styles, etc. The present widely used music emotion style 
classification algorithms use machine learning algorithms to acquire the mapping link 
between music low-level features and emotional styles since the difficulties in 
quantifying and evaluating the high-level aspects of music. Stated differently, low-level 
qualities allow one to characterise the high-level aspects of music. Consequently, this part 
mostly examines the general low-level aspects of music. 

We extracted the waveform and Mel spectrum of music as basic music features, and 
also extracted beat, note chromaticity, and note onset intensity as advanced music 
features. Among them, waveform and Mel spectrum are basic acoustic features, beat 
refers to the total number of notes in each bar of music, reflecting the temporal 
information of the music, and note chromaticity projects the spectrum into 12 different 
intervals, representing 12 different semitones within a time interval. The initial intensity 
of a note is used to define the rhythm of music. 

3.2.2 Action feature extraction and matching 
By extracting action features, the model can understand and reproduce the dancer’s 
posture, action sequence, and temporal relationships, ensuring that the generated dance 
movements are natural, smooth, and artistic. 

This paper mostly depends on the matching degree of rhythm and intensity elements 
when matching music and action sections. Four steps define the feature matching 
algorithm: rhythm feature matching, connectivity analysis, constructing action graphs to 
extract connected action sequences, and intensity matching. The algorithm flow is shown 
in Figure 3. 
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Figure 3 Calculation process of music and action matching degree (see online version  
for colours) 

Rhythm matching

Action 
segmentation

Music 
segmentation

Connectivity analysis Strength matching

 

The rhythm matching between music and action mainly tests the synchronisation degree 
of rhythm points between each action segment in the action database and the given music 
segment. The degree of rhythm synchronisation is measured by the number of rhythm 
points that match the music and action segments. The higher the degree of matching, the 
stronger the temporal correspondence between the rhythm points of the two. Furthermore 
allowed during matching is a limited proportion of scaling to fully use action data and get 
better matching results. This article uses a scaling ratio applicable for any values with a 
step size of 0.05 within the range of 0.9 to 1.1. The equation to find rhythm matching 
degree is: 

( )
( )0

0

, 01

( )
max

( )

Mc MoL
R R
Mc Mos f

R Rf

F f F s f f
s

F f F s f f=

⋅ ⋅ +
=

+ ⋅ +  (15) 

where L is the length of Mi and Ni, s is the scaling factor, and f0 is the translation amount. 
In order to ensure that the synthesised actions look more natural and harmonious, it is 

necessary to perform connectivity analysis on the adjacent actions obtained from 
matching. When calculating the distance between two frames of actions, it is not only 
necessary to ensure that the individual two frames are complete, but also to take a 
window of length k frames and calculate the sum of the distances between k pairs of 
frames within the window: 

( ) ( )
1

1
0

, ,
k

i j i k l j l
t

D f f diff f f
−

− + + +
=

=  (16) 

where diff(fi, fj) is the sum of the distances between the corresponding joint positions of 
two frames of actions. 

Based on the results of connectivity evaluation, it can be determined whether adjacent 
candidate action segments that match the music segment can be connected. In order to 
obtain a complete and connectable action sequence, this paper uses a graph based depth 
first algorithm to traverse the rhythm matched action segments. Consider action 
fragments as nodes in the action graph, and if two action fragments are connectable, 
establish a directed edge between these two nodes. 

Perform strength matching on the target music sequence and each candidate 
connected action sequence. The action sequence with the highest strength similarity is the 
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one with the highest matching degree, and it is used as the synthesised dance action 
sequence of the target music. 

When analysing intensity similarity, the first step is to obtain intensity histograms of 
music and action segments, and measure the degree of intensity matching based on the 
similarity of the histograms. This article uses the Bhattacharyya coefficient to measure 
strength similarity, and the strength matching equation for music and action segments is: 

1 1

1 1 11 1

( ) ( )

( ) ( )

MC

MC MO

L Mc Mo

L LMc Mo
f

k k

F f F fD
F k F k=

= =

= ⋅
 

 (17) 

where LMC is the length of Mi, and LMO is the length of Ni. 

4 Experiment 

4.1 Data set 

The AIST++dataset provides significant advantages in the richness and accuracy of dance 
movement data and music features. It not only includes multiple dance styles, but also 
encompasses various music genres, and all motion data is captured with high precision in 
3D using professional equipment. In addition, the AIST++dataset also provides 
synchronised music data and corresponding feature annotations, making the dataset 
widely applicable to tasks such as generative AI, action generation, and dance style 
transfer. AIST++contains 3D dance data for 10 music genres, each containing multiple 
dance segments. It contains multiple types of music, ensuring the harmony between 
dance movements and music. Music data is stored in MP3 format, accompanied by 
detailed music beats and rhythm annotations. The AIST++ dance video scene is shown in 
Figure 4. 

Figure 4 AIST++ dance video scene (see online version for colours) 
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4.2 Evaluation 

Using structural similarity index (SSIM) and Fréchet inception distance (FID) as 
evaluation metrics can help assess the quality and diversity of generated 3D dance 
movements. SSIM is a metric used to measure the similarity between images, initially 
used for image quality assessment, but can also be used for similarity evaluation in 
sequences generated from 3D actions through feature images of skeleton keyframes. We 
project the skeleton actions in the generated dance sequence onto a two-dimensional 
plane (such as front view, side view), and calculate the SSIM score between each frame’s 
generated action and the real action to measure the structural similarity between the 
generated action and the real data. Convert the generated skeleton action sequence into a 
2D skeleton image sequence and perform SSIM calculation with the real skeleton image 
sequence. The SSIM calculation equation is as follows: 

( )( )
( )( )

1 2

2 2 2 2
1 2

2 2
( , ) x y xy

x y x y

μ μ C σ C
SSIM x y

μ μ C σ σ C

+ +
=

+ + + +
 (18) 

where µx and µy are the average values of two images, 2
xσ  and 2

yσ  are the variances, σxy is 
the covariance, and C1 and C2 are constants used for stable calculations. 

Often used for evaluating generative models, FID is a metric used to compare the 
distribution of produced data with that of real data. FID is used in dance generation tasks 
to measure the diversity and quality of generated action sequences, and is particularly 
suitable for establishing a global quality evaluation between the generated skeleton 
sequence and the real skeleton sequence. Firstly, the 3D skeleton data is used to extract 
high-dimensional feature vectors through a pre trained feature extraction network (such 
as Inception network), and the feature distributions (mean and covariance) of the 
generated skeleton and the real skeleton are calculated. Then calculate the Fréchet 
distance between the generated data and the real data, using the following equation: 

( )( )12
2( Σ Σ 2 Σ Σg r g r g rFID μ μ Tr= − + + −  (19) 

where µg and µr generate the mean vectors of the feature distributions of the data and the 
real data, respectively, while Σg and Σr are the covariance matrices of the generated data 
and the real data, respectively. 

4.3 Experimental results and analysis 

There is no standard answer for the implementation of dance, so subjective evaluation is 
an important reference for its quality assessment. This section first compares the 
visualisation results of dance sequences predicted using the method in this chapter with 
the baseline method, and then presents the visualisation results of the approach in this 
chapter. 

To validate the effectiveness of the proposed generative model, we examined it using 
three state-of- the-art techniques and compared Zhuang et al.’s (2022) model, DanceNet 
(Li et al., 2020), and Deep Dance (Wang and Ton, 2022), as shown in Table 1. 
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Table 1 Comparison and analysis results of models 

Model FID value(average) SSIM value (average) 
Zhuang et al. (2022) 69.82 0.89 
DeepNet 68.43 0.90 
DeepDance 67.56 0.92 
Ours 46.28 0.94 

Figure 5 Generated 3D dance movements (see online version for colours) 

 

 

Figure 5 shows the experimental findings of this technique, which show that the MDN-L 
model generates high-quality and varied dancing photos and videos outperforming other 
approaches. The FID of the proposed model is significantly lower, about 30% lower than 
other models, indicating an improvement in the quality and variability of the generated 
images. A lower FID score indicates higher authenticity and diversity since the created 
dance motions more precisely depict the distribution of real dance data. 

Furthermore, the suggested model’s greatest SSIM rating emphasises its benefit in 
maintaining the intricate form of the original dance moves. The produced film highlights 
the model’s capacity to generate motions that closely reflect natural dance flows since the 
fundamental elements of dance – such as posture accuracy, movement fluidity, and 
overall spatial configuration – are better retained in this created video. 

Furthermore, the suggested model generates dancing motions that are tightly linked 
with the beat and emotional tone of the music, therefore capturing the dynamic variations 
in rhythm and intensity. This synchronising guarantees that the 3D dance video created 
by the model not only looks like actual dancing motions but also coordinates with the 
music accompaniment, therefore improving the immersive quality of the produced 
performance. 
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5 Conclusions 

Aiming to produce high-quality dance action sequences that fit music rhythm and 
emotion, in this work we offer a digital dance generating approach based on MDN and 
long short term memory (LSTM). Particularly obtaining better performance in FID and 
SSIM, the experimental results show that the proposed method greatly exceeds 
conventional generative models in terms of fluency, naturalness, and diversity in 
generating dance movements. This suggests that the multimodal temporal generating 
framework combining MDN and LSTM can efficiently capture temporal dependencies 
and pose changes between dance movements, and produce dynamic dance videos that fit 
the music style, so improving the structural consistency and diversity of the produced 
results. 

Although this method has achieved certain results in generating dance action 
sequences, there are still some shortcomings and directions for future improvement. The 
dance dataset used in this study has certain limitations in terms of style and variety. In the 
future, richer dance styles and diverse dance action datasets can be introduced to further 
enhance the model’s generalisation ability, making it applicable to multiple dance types 
and action styles. The current model has a large computational load and is difficult to 
achieve real-time dance generation. Through model structure optimisation and 
lightweight design, future exploration can improve generation efficiency and achieve 
real-time dance action generation, which can be applied to interactive scenarios such as 
virtual reality and real-time dance accompaniment. 
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