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Abstract: This paper models the monitoring and early warning task of surface 
subsidence in the high-voltage line tower area, this study uses PS-InSAR 
technology to preprocess the clipped satellite remote sensing images to obtain 
surface subsidence data，the predicted values and deformation curves are 
basically coincident, and the trend of change is basically consistent. The 
absolute error of settlement prediction is less than 1%, indicating high 
prediction accuracy. From the experiment, it can be seen that this improvement 
effectively improves the system accuracy and reduces prediction errors. From 
the experimental results, it can be seen that the monitoring and early warning 
model of regional subsidence of transmission line based on the time series 
algorithm proposed in this paper has a certain effect, and can meet the needs of 
monitoring and early warning of regional subsidence of transmission lines. 
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1 Introduction 

As an indispensable part of transmission lines, transmission towers play a key role in 
supporting conductor and ground wires. Therefore, the improvement of power supply 
reliability of power transmission and distribution lines in power grids largely depends on 
the safe and stable operation of transmission towers. However, with the increasing scale 
of power grids, higher voltage levels of transmission lines, longer transmission distances, 
and greater transmission capacities, the operating conditions and environment of power 
systems have also become more complex. Due to the inevitable frequent operation of 
transmission towers in special areas such as mining areas, river beaches, and hillsides, it 
is very easy to cause faults such as the sinking of the tower foundation, the inclination of 
the tower body, the deformation of the tower material, the disconnection of the 
conductor, and even the collapse of the tower. Moreover, the tower fault is a typical 
‘invisible fault’. During the normal manual inspection of the transmission line, it is often 
not found in time. When the tower fault is found, the transmission line is already in a 
relatively dangerous state, seriously threatening the reliable operation of the line (Wu  
et al., 2022). 

The uneven subsidence of ground difference will cause the transmission tower to tilt 
laterally, resulting in the structure to bear uneven tension, and in severe cases, the fittings, 
insulators, conductors, transmission lines and transmission towers will be damaged to 
varying degrees, thereby affecting the normal operation of the power system. Although 
large foundation subsidence is a small probability event, once this happens, it will not 
only destroy the line, but also interrupt the entire transmission system, and even may 
cause the transmission towers to overturn, resulting in the paralysis of the entire power 
system (Xu et al., 2022). 

The monitoring equipment installed on the tower can record the status and operation 
parameters of the equipment in real-time through the real-time online monitoring system 
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of the transmission line. The important measure of condition maintenance and realisation 
of condition monitoring is online monitoring system, and the success of online 
monitoring technology largely determines the possibility of realisation of condition 
maintenance. Moreover, unattended remote monitoring can provide auxiliary judgment 
and guidance for line inspectors to carry out line condition maintenance, provide 
important technical means for improving the level of production and operation, realise 
real-time management of line status, and escort the normal operation of smart grid (Yang 
et al., 2020). In addition, online monitoring of tower tilt, environmental factors and other 
related parameters by modern sensing means can sense the operation information of the 
line in real-time and warn of possible accidents, which have great significance for 
maintaining the safety of the line. 

The purpose of this paper is to study the monitoring and early warning of regional 
subsidence of transmission lines by building a model based on time series algorithm. this 
study uses PS-InSAR technology to preprocess the clipped satellite remote sensing 
images to obtain surface subsidence data， it can be seen that the monitoring and early 
warning model of regional subsidence of transmission line based on the time series 
algorithm proposed in this paper has a certain effect, and can meet the needs of 
monitoring and early warning of regional subsidence of transmission lines. 

2 Related work 

The research on mining subsidence discipline was conducted earlier in foreign countries, 
and the 20th century was a century of rapid development and gradual maturity in this 
discipline. On the basis of actual investigation, Liu et al. (2021) simplified the rock and 
soil in contact with cavities as an ideal linear elastic medium and studied the settlement 
and failure mechanism of rock and soil under elastic limit conditions. Chen et al. (2023) 
use the rock layer above the goaf as a cantilever beam and derives the theory that surface 
strain is inversely proportional to curvature radius. Rodríguez-Arana et al. (2023) applied 
mathematical plasticity theory to propose the famous argument that the sinking profile 
equation takes the form of an exponential function and that horizontal movement is 
directly proportional to surface tilt. Godse and Bhat (2020) proposed the theory of 
stochastic media, which treats rock movement as a stochastic process. Leber et al. (2020) 
proposed the panel principle using elastic theory, combining continuum mechanics with 
the influence function method, laying the foundation for the current boundary element 
method. Li et al. (2024) summarised and summarised the prediction methods for coal 
mining subsidence, proposed the influence function of horizontal movement, and 
developed the circular integral grid method to calculate surface movement. 

Huang (2020) used probability integration method to predict surface subsidence 
caused by insufficient mining in the working face under a certain mining industrial 
square. Corresponding building protection measures have been proposed. In the past, 
when studying issues such as surface movement and deformation, for the sake of 
convenience, people often oversimplified the overlying rock layers, either as a single 
loose medium or as a pure elastic medium. Overly idealised models often differ greatly 
from reality, especially when there are thick loose layers, using the single medium theory 
is not only difficult in theory, but also deviates greatly in practice. 

Accidents such as tilting, sinking, cracking, deformation, and breakage of 
transmission line towers are mainly caused by the following two factors: geological 
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instability around the tower foundation and imbalance of tension on both sides of the 
tower. To a large extent, the generation and development process of transmission tower 
faults is very complex, including many random factors, which cannot be analysed based 
on relevant basic theories. Effective measurement methods and online monitoring 
technology can only be relied on to timely discover the collapse and deformation 
characteristics of goaf, timely grasp and predict early changes such as tower ground 
collapse and ground settlement, and then take corresponding preventive measures. The 
application of online monitoring and fault diagnosis methods for transmission lines 
mainly relies on monitoring the deformation degree of iron towers using angle sensors 
and comprehensive analysis and judgment of the overall deformation degree of iron 
towers using satellite remote sensing technology (Ansari et al., 2021). These methods can 
play a good substitute role for relying solely on traditional inspections to detect faults in 
the past. If we want to grasp the relationship between the actual settlement and 
inclination of the iron tower and the force on the iron tower, a lot of analysis and 
experimental verification work needs to be done, so it cannot guide the safe operation and 
condition maintenance of the iron tower. The stress monitoring technology for 
transmission towers is to directly and effectively monitor the stress and strain signals of 
the members, and consider the structural characteristics of the tower, ultimately reflecting 
the degree and location of local structural damage to the tower. The stress borne by 
transmission tower members represents a force generated by themselves when subjected 
to external loads, which varies with the magnitude of external loads. At the same time, its 
magnitude can be used to characterise the overall safe stress state of the tower  
(Brito Palma, 2024). At present, there are three widely used methods for monitoring 
stress and strain: first, electrical measurement method; For example, the electrical 
measurement method based on resistance strain gauges has high sensitivity and belongs 
to contact measurement. The signal conditioning circuit is simple, and the measurement 
accuracy is also relatively high. It is suitable for most occasions and has a wide range of 
applications (Liu et al., 2020). Secondly, visual measurement method can follow the 
movement of the target, and its measurement accuracy is closely related to the 
performance of the camera. It is mainly used in non-contact measurement situations 
(Abasi et al., 2022). Thirdly, optical measurement methods; For example, stress 
measurement based on fibre Bragg gratings has developed rapidly, but there are still 
issues such as temperature and strain cross sensitivity, and demodulation of fibre optic 
sensing signals that need to be further addressed (Wu et al., 2021). Currently, only by 
proposing a method that combines stress analysis of transmission towers with monitoring 
technology can the safe operation status of transmission towers be continuously 
monitored and evaluated, making monitoring data an important basis for guiding 
condition maintenance. Therefore, the method of stress monitoring and shape recognition 
system for transmission towers based on resistance strain gauges will achieve real-time 
monitoring of stress information of key member units under settlement, tilting, and lateral 
sliding conditions of transmission towers. Based on the position and stress value of key 
member units, the current working condition and settlement displacement value of the 
tower will be restored and real-time warning will be provided, providing a basis for the 
evaluation and maintenance of the tower’s condition. In addition, the operational 
monitoring data of this system can also be used as a stress database for key member units, 
promoting in-depth research on stress monitoring and failure mechanisms of key member 
units in iron towers, thereby providing reference for tower deformation correction, 
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correction, and monitoring, and further supplementing the completed research results 
(Kozyreva et al., 2022). 

Time series displacement prediction models have become a hot research topic in 
recent years. As a mature observation method in long-term displacement monitoring, 
InSAR has been proposed by some scholars to combine InSAR with prediction models, 
which can better predict displacement in time series. Chen (2020) combines SBAS 
InSAR technology with grey support vector machine (GM-SVR) model to monitor and 
predict the deformation of residential areas caused by mining in mining areas, providing a 
reference method for disaster warning in subsidence areas. Chen et al. (2024) compared 
the surface subsidence monitoring data obtained by D-InSAR technology with GM and 
its improved three models for subsidence prediction. After comparison, it was found that 
the optimised BGM (1,1) model and WGM (1,1) model can effectively reduce the errors 
generated by the classical GM model. Khayrullaev (2023) combines InSAR technology 
with a time model to predict dynamic 3D mining displacement. Firstly, the Weibull 
model and Kalman filter are used to predict the line of sight (LOS) mining displacement 
of the dynamic radar point by point. Then, combined with common prior information 
related to mining deformation, the 3D displacement is calculated from the predicted LOS 
displacement. Chehri et al. (2021) used the settlement values obtained by D-InSAR 
technology as training samples and established a settlement prediction system in 
conjunction with SVM prediction models, which can achieve the integration of 
deformation monitoring and prediction. Lazzaretti et al. (2020) proposed a method for 
learning surface subsidence features based on multi main image coherent target small 
baseline interferometry (MCTSB InSAR) and LSTM model. The model parameters were 
adjusted using grid search to obtain the optimal model parameters for predicting surface 
subsidence. 

3 Research methods 

3.1 Data preprocessing 

This article focuses on the initial data collection of settlement data in the area of  
high-voltage transmission towers. The research area has the characteristics of wide 
coverage, difficult data collection, complex geographical environment, and difficult 
maintenance of monitoring facilities. The monitoring work is difficult, and traditional 
surface settlement monitoring techniques cannot meet the requirements. Therefore, this 
article collects satellite remote sensing images as basic data, establishes an environmental 
database in complex environments, continuously supplements database data through 
intelligent learning, compares imported data with database data, and combines  
multi-dimensional data fusion technology to improve data preprocessing efficiency. 

The initial data collection of the subsidence data of the high-voltage line tower area 
shows that the research area has the characteristics of wide coverage, difficult data 
collection, complex geographical environment, and difficult maintenance of monitoring 
facilities. Moreover, the monitoring work is difficult, and the traditional surface 
subsidence monitoring technology cannot meet it. Therefore, this paper collects satellite 
remote sensing images from Sentinel-1A as basic data. Meanwhile, in this study,  
PS-InSAR technology is used to preprocess the clipped satellite remote sensing images, 
SARProz software is used as the experimental platform, and Matlab2022 is used as the 
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operation basis to obtain surface subsidence data. The preprocessing process of 
meteorological and environmental factor data in this paper is shown in Figure 1. 

Figure 1 Flow chart of pretreatment of meteorological and environmental factors (see online 
version for colours) 

 

The range of meteorological and environmental factors is different, so the data are 
normalised to speed up the convergence speed of the model. This paper uses the z-score 
method to perform data normalisation processing. The formula is as follows: 

x μZ
σ
−=  (1) 

Among them, x represents the original data, μ represents the mean value of the original 
data, and σ represents the standard deviation of the original data. Through data 
normalisation processing, different features can be in the same scale range, so as to avoid 
the problem that different feature scales have different effects on model training. 

3.2 Time series forecasting 

In this study, the relationship between the meteorological research site and various PS 
monitoring sites is established, and the subsidence monitoring results of high-voltage line 
towers are obtained. By calculating the straight-line distance between each PS monitoring 
point and the meteorological research point, the nearest meteorological research point is 
taken, so as to confirm the meteorological and environmental factors data of each PS 
monitoring point. We assume that there are two sets P and W, where set P contains n 
monitoring points and set W contains m meteorological study points, and they are 
represented as P = {(x1, y1), (x2, y2), …, (xn, yn)} and W = {(a1, b1), (a2, b2), …, (am, bm)}, 
respectively. In order to determine the data matching between P and W, this paper 
chooses the minimum distance as the matching distance by calculating the distance 
between each monitoring point and each study point. 
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For each monitoring point (i, i) in P, the distance between it and each study point  
(k, k) in W is calculated: 

( ) ( )2 2( , ) i k i kdis i k x a y b= − + −  (2) 

Then, the smallest value min(dis(i, k)) is selected from these distances, and the data 
match between P and W is determined by comparing the smallest distance between all 
monitored and studied sites. The minimum of all distances is selected as the matching 
distance between the two points by calculating the distances between all monitoring 
points in P and all study points in W. Then, the (ak, bk) matched to the minimum distance 
is given to (xi, yi) as its meteorological point data, and it can be determined that there is a 
data matching relationship between (ak, bk) and (xi, yi), otherwise there is no matching 
relationship between them. 

3.3 Foundation model 

The main components of transformer include encoder and decoder, and its network 
structure is shown in Figure 2. 

Figure 2 Transformer network structure (see online version for colours) 
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The encoder is a stack of n layers with the same structure, and the residual connection 
and layer normalisation are used in the middle of each sublayer to avoid the problem of 
gradient disappearance. The output for each sublayer is: 

( )( )LayerNorm x Sublayer x+  (3) 

Among them, x is the input sequence, LayerNorm represents the normalised layer, and 
Sublayer(x) represents the sub-layer itself (multi-head self-attention or feed-forward 
neural network). The structure of the decoder side is also a stack of n layers of the same 
structure, and the overall structure is similar to that of the encoder. The difference is that 
a third sublayer is added here. The result of self-attention is used as query, and the output 
of the encoder is used as Key and Value for cross-attention. In addition, a mask is added 
to the bulls’ attention part here, so that all positions after the current predicted position 
are masked off to retain the autoregressive characteristics of the model. 

Because transformer is based on a fully connected network structure, it lacks position 
information in convolution operations. To solve this problem, transformer uses position 
coding. Position coding is to embed the position information of each element in the 
sequence into the vector, so that the model can distinguish the distance relationship 
between elements. The sine and cosine functions are used, and the calculation formula is 
as follows: 

( )2

( ,2 ) sin /10000
i

dpos iPE pos=  (4) 

( )2

( ,2 1) cos /10000
i

dpos iPE pos+ =  (5) 

Among them, pos represents the position, i represents the dimension in the position 
coding, and d represents the dimension of the embedded vector. The advantage of 
position coding is that it can effectively capture the distance relationship between 
elements, so as to help the model understand the order information in the sequence. 
Moreover, the calculation amount of position coding is small, and it will not increase too 
many model parameters, so it will not affect the calculation efficiency of the model too 
much. The self-attention mechanism is a core component of Transformer, which can find 
relevant information in the input sequence and perform weighted summarisation at 
different positions. 

The attention weight of each element is determined by performing a SoftMax 
operation on the attention score and converting it into a probability distribution. The 
calculation formula is: 

( , , ) max
V

T

k

QkAttention Q K V soft
d

 
=   

 
 (6) 

Among them, Q, K, and V represent the query vector (query), key vector (key), and value 
vector (value) respectively, kT is a scaling factor, and dk represents the vector dimension. 
The model proposes a multi-head attention mechanism, which uses a group of mapping 
matrices mod el qQ d d

iW R ×∈  to map key vectors, query vectors and value vectors 
respectively. Each i corresponds to one of the heads: 
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( ), ,Q K V
i i i ihead Attention QW KW VW=  (7) 

Among them, Attention( ) is the scaling dot product attention mechanism described 
above. All the heads are then outputted and then mapped to the original dimensions dmodel 
using a mapping matrix. 

( ) 0
1( , , ) , ..., hMultiHead Q K V Concat head head W=  (8) 

Due to the excellent performance of the transformer model in time series analysis 
modelling and prediction, this paper uses it to model the dataset in this paper to realise 
the prediction of the subsidence value of the high-voltage line tower area, and uses it as a 
benchmark model to compare and evaluate with other models. 

Based on the idea of moving average, smooth period items and highlight trend items 
are: 

( )( )tX AvgPool Padding X=  (9) 

s tX X X= −  (10) 

Among them, X is the hidden variable to be decomposed, Xt and Xs are the trend term and 
the period term respectively. In the encoder part, autoformer gradually eliminates the 
trend term (this part will be accumulated in the decoder) to obtain the periodic term ,1l

enS  
and ,2.l

enS  The information aggregation process can be expressed as: 

( )( ),1 1 1l l l
en en enS SeriesDecomp AutoCorrelation X X− −= +  (11) 

( ) ( )( ),2 ,1 ,1l l l
en en enS SeriesDecomp FeedForward S S= +  (12) 

( )( ),1 ,1 1 1,l l l l
en de de deS T SeriesDecomp AutoCorrelation X X− −= +  (13) 

( )( ),2 ,2 ,1 ,1, ,l l l lN
en ende de deS T SeriesDecomp AutoCorrelation S X S= +  (14) 

( )( ),3 ,3 ,2 ,2,l l l l
en de de deS T SeriesDecomp FeedForward S S= +  (15) 

,1 ,2 ,31
,1 ,2 ,3

l l ll l
l l lde de de de deT T W T W T W T−= + ∗ + ∗ + ∗  (16) 

For a real discrete-time process {Xt}, autoformer calculates its autocorrelation 
coefficients Rxx(τ) based on the stochastic process theory: 

1

0

1( ) lim
L

xx t t τ
L

t

R τ x x
L

−

−
→∞

=

=   (17) 

Among them, the autocorrelation coefficient Rxx(τ) represents the similarity between the 
sequence {Xt} and its τ delay {Xt–τ}. Autoformer regards this delay similarity as an  
un-normalised period estimation confidence level, that is, the confidence level of a period 
length of τ is R(τ). 

Autoformer realises sequence-level connection by aggregating similar sub-sequence 
information. According to the estimated cycle length, the information is aligned by using 
ROLL function operation, and then the information is aggregated in the form of query, 



   

 

   

   
 

   

   

 

   

   10 L. Guo et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

key, and value, so that the seamless replacement of the self-attention mechanism is 
realised. 

( )1, ..., arg , ( ) {1, ..., }k Qτ τ Topk R k τ τ L= ∈  (18) 

( ) ( ) ( ) ( )( )1 1, , ..., , , , ..., ,Q Q k Q Q kR k τ R k τ SoftMax R k τ R k τ=
 

 (19) 

( ) ( )
1

( , , ) , ,
k

k Q k
i

AutoCorrelation Q K V Roll V τ R k τ
=

=


 (20) 

Due to the excellent performance of autoformer model in long-term time series analysis 
modelling and prediction, this study uses it to model the dataset in this paper to realise 
the prediction of the subsidence value of high-voltage line towers, and uses it as a 
benchmark model to compare and evaluate with other models. 

4 Model and experimental analysis 

4.1 Model construction 

This article predicts the settlement values of various PS monitoring points in the research 
area, calculates the surface settlement rate, and establishes a complete settlement warning 
model for high-voltage transmission tower areas based on the cumulative settlement 
values and settlement rates. This model can provide risk level warnings for the predicted 
cumulative settlement values of each PS monitoring point. In order to reduce the 
systematic error caused by severe weather on the model, this paper adopts a method of 
comprehensive data induction and processing for different monitoring points. When the 
data of one point is abnormal due to severe weather, it is compared with the data of other 
nearby points, and combined with visualisation data technology for comprehensive 
judgment, to minimise the impact of severe weather on prediction accuracy 

Figure 3 Schematic diagram of CORS working process (see online version for colours) 
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Continuously operating reference system (CORS) builds a local area network system in a 
local area composed of several continuously operating reference stations to provide users 
with GPS navigation and positioning related services. It is composed of several 
continuously running reference stations, data communication link layer, data centre and 
user terminal. The schematic diagram of the CORS working process is shown in Figure 3. 

Figure 4 CORS hardware system and data flow (see online version for colours) 

 

Figure 5 CORS structure diagram (see online version for colours) 

  

The working principle of CORS is: It establishes one or more continuous GPS reference 
stations in a region or a country, and forms an organic network with the monitoring 
centre to automatically send different GPS original data and RTK correction information 
to various users. At this time, users only need a GPS receiver to achieve high-precision, 
real-time navigation and positioning. The data centre collects the data processed by the 
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network software from the reference station and shares it in a wide area to meet the needs 
of different users in the society. The CORS hardware system and data flow are shown in 
Figure 4, which has the characteristics of all-weather, automatic, real-time navigation and 
positioning. 

The CORS system is composed of a monitoring centre subsystem, a reference station 
subsystem, and a user subsystem, as shown in Figure 5. 

1 The monitoring centre subsystem is the brain part of CORS, consisting of two parts: 
the user management centre and the system data centre. Not only responsible for 
analysing, processing, calculating, and storing GPS satellite positioning raw data, but 
also building a virtual reference station system model, generating differential 
correction data information, and transmitting, recording, managing, and maintaining 
it. Effectively manage user information and provide corresponding positioning 
services to users. So the monitoring centree subsystem is a guarantee for the safe, 
reliable, and continuous operation of the CORS system. 

2 The reference station subsystem is composed of a GPS receiver, GPS antenna, power 
supply, network equipment system, and lightning protection system. Responsible for 
GPS satellite positioning tracking, collection, and storage, transmitting data to the 
system data centre of the monitoring centre subsystem, it is the GPS satellite data 
receiving functional unit of the CORS system. 

3 The user subsystem consists of a GPS receiver, GPS antenna, and communication 
submodule, and is the end user of the CORS system. The end user receives the RTK 
differential correction data shared by the monitoring centre subsystem through the 
communication module, while the GPS antenna receives the original satellite data, 
which is then analysed and processed by the GPS receiver. After differential 
processing, the end user obtains high-precision positioning information. 

Schematic diagram of the system as shown in Figure 6. This article is mainly responsible 
for transmitting the correction data of the GPS system to the monitoring mobile station. 
When the deviation exceeds the warning value, it will alarm in a timely manner to 
eliminate power accidents in the bud. 

Figure 6 Schematic diagram of the system (see online version for colours) 
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Figure 7 Basic flow chart of SBAS-In SAR (see online version for colours) 

  

In reality, the ground objects collected by the satellite in the second return visit usually 
have a certain degree of deformation. Therefore, the radar interferometric phase includes 
not only the flat ground phase and terrain phase caused by reference ellipsoid and 
elevation change, but also the noise phase caused by other factors, and the deformation 
phase caused by surface deformation. The basic method of In SAR to monitor the surface 
deformation information is to remove the remaining phase, so as to obtain the 
deformation phase caused by the surface deformation. Small baseline subset in SAR 
(SBAS-In SAR) divides all SAR images that meet the conditions into several small sets 
by setting different spatio-temporal baselines, and simply and efficiently synthesises all 
available small baseline interference pairs. Then, based on the minimum norm criterion 
of the deformation rate, it uses the singular value decomposition (SVD) method to obtain 
the deformation rate of the ground target point, as shown in Figure 7. 

4.2 Experiments 

The development language of the host computer server software of the transmission 
tower attitude monitoring and analysis system is Visual Basic. NET, the development 
environment is Microsoft Visual Studio 202022, and the database used is Microsoft 
Office Access 2022. The server software consists of five parts: system setting, user 
management, network service, equipment management and data centre. The overall 
framework of the host computer server software is shown in Figure 8. 

The main operation interface of the host computer server is shown in Figure 9. The 
main interface displays the three-dimensional model for monitoring the attitude of the 
transmission tower of the mobile station and other parameters related to the monitoring 
mobile station. Moreover, the early warning value is set in the system settings. When the 
monitoring value of the monitoring mobile station exceeds the early warning value, it will 
alarm and prompt the staff to solve emergencies. In addition, the setup functions of the 
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system include initial setup, start service/pause service, and exit the system. When users 
first use the software, they need to configure initial values, including longitude, latitude 
and altitude, X-direction tilt angle, Y-direction tilt angle and Z-direction tilt angle. 

Figure 8 Function of host computer server software system (see online version for colours) 

  

Figure 9 The main interface of the host computer server (see online version for colours) 

  

Combined with the existing research, it can be seen that LSTM has a higher accuracy in 
predicting wave displacement, while Elman has a better effect in predicting trend 
displacement. 

After that, this paper proposes a neural network prediction model Elman-LSTM, 
which combines LSTM and Elman. First, the cumulative displacement value of the study 
area is calculated by SBAS. Taking a transmission line area as an example, 10 sampling 
points are selected, and 82 periods of data from each sampling point are used for model 
training and prediction. Then, the total cumulative displacement obtained by SBAS is 
decomposed into wave displacement and trend term displacement by time series 
decomposition principle, and the wave displacement is predicted by LSTM model, and 
the trend term displacement is predicted by Elman model. Finally, the final cumulative 
total displacement is obtained by accumulating the displacements predicted by the two 
models. 
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4.3 Results 

The displacement prediction results of the Elman-LSTM model for point N are shown in 
Figure 10. 

Figure 10 Displacement prediction result diagram (N) of Elman-LSTM, (a) prediction of the 
trend-term displacement at point A (b) prediction of the fluctuation term displacement 
at point A (c) cumulative displacement prediction at point A (d) the cumulative 
displacement prediction interval at point A (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

In order to further analyse the data, the data in Figure 10(c) are counted, and the 
corresponding absolute errors and relative errors are calculated. The specific values are 
shown in Table 1. 

The displacement prediction results of Elman-LSTM model for point A are shown in 
Figure 11. 
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Figure 11 Displacement prediction result diagram (B) of Elman-LSTM, (a) prediction of the 
trend-term displacement at point B (b) prediction of the fluctuation term displacement 
at point B (c) cumulative displacement prediction at point B (d) the cumulative 
displacement prediction interval at point B (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

In order to analyse from the data aspect, the data in Figure 11 above are counted, and the 
corresponding absolute errors and relative errors are calculated. The specific values are 
shown in Table 2. 

In order to evaluate the accuracy of the model, three indicators are selected: mean 
absolute error (MAE), root mean square error (RMSE), and R2 certainty coefficient for 
model evaluation. The test results of the four models are compared together. The results 
are shown in Table 3 and Table 4. 
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In order to further verify the progressiveness of the model in this paper, the model in 
this paper is compared with Liu et al. (2021), Leber et al. (2020), Liu e al. (2020) and 
Kozyreva et al. (2022). Liu et al. (2021) use an in-depth learning model, Leber et al. 
(2020) use a multi-mode deformation monitoring model, Liu e al. (2020) use a wireless 
sensor network model, and Kozyreva et al. (2022) use a geomagnetic field disturbance 
model. Through simulation and comparison of prediction accuracy, a total of four groups 
of tests were carried out, and the comparison results of displacement prediction accuracy 
shown in Table 5 were obtained. 
Table 1 Displacement prediction accuracy and error comparison (A) of Elman-LSTN 

Date True value/mm Predicted value/mm Absolute error Relative error (%) 
2023.2.18 86.4468 86.7933 0.3465 0.40% 
2023.3.07 85.1202 85.4073 0.2871 0.34% 
2023.3.16 86.2884 86.6151 0.3267 0.38% 
2023.4.11 86.5953 86.9220 0.3267 0.37% 
2023.4.22 88.7139 88.9416 0.2277 0.26% 
2023.4.30 92.1591 92.1987 0.0396 0.04% 
2023.5.08 90.9513 90.6642 0.2871 0.32% 
2023.5.19 92.3373 91.9611 0.3762 0.41% 
2023.6.05 94.0797 93.5550 0.5247 0.55% 
2023.6.20 96.4359 95.6835 0.7524 0.77% 

Table 2 Displacement prediction accuracy and error comparison (B) of Elman-LSTN 

Date True value/mm Predicted value/mm Absolute error Relative error (%) 
2023.2.18 181.665 182.3679 0.7029 0.39% 
2023.3.07 185.229 186.0507 0.8217 0.44% 
2023.3.16 187.506 188.2683 0.7623 0.40% 
2023.4.11 189.981 190.5354 0.5544 0.29% 
2023.4.22 193.842 194.1588 0.3168 0.16% 
2023.4.30 195.624 195.9705 0.3465 0.18% 
2023.5.08 199.485 199.7424 0.2574 0.13% 
2023.5.19 201.267 201.2274 0.0396 0.02% 
2023.6.05 204.831 204.5934 0.2376 0.12% 
2023.6.20 209.979 210.1077 0.1287 0.06% 

Table 3 Precision evaluation of four displacement prediction models (point A) 

 Cumulative 
displacement 

 Trend term 
 

Fluctuation term 

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 
SVM 1.306 1.330 0.858  1.200 1.200 0.745  0.243 0.275 0.961 
LSTM 0.866 1.143 0.892  0.860 1.183 0.752  0.082 0.113 0.985 
Elman 0.558 0.603 0.963  0.364 0.446 0.956  0.267 0.340 0.946 
Elman-
LSTM 

0.348 0.391 0.979  0.357 0.418 0.960  0.040 0.051 0.989 
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Table 4 Precision evaluation of four displacement prediction models (point B) 

 Cumulative 
displacement 

 Trend term 
 

Fluctuation term 

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 
SVM 1.300 1.433 0.962  1.086 1.090 0.966  0.444 0.557 0.894 
LSTM 0.970 1.097 0.974  1.004 1.216 0.960  0.289 0.333 0.955 
Elman 0.717 0.896 0.979  0.572 0.679 0.981  0.524 0.644 0.861 
Elman-
LSTM 

0.417 0.492 0.987  0.434 0.487 0.985  0.197 0.280 0.966 

Table 5 Comparison of displacement prediction accuracy 

 Yang et al. 
(2020) 

Leber et al. 
(2020) 

Liu et al. 
(2020) 

Kozyreva et al. 
(2022) This article 

1 82.21 83.28 65.42 91.18 99.47 
2 73.48 85.98 65.79 90.65 98.86 
3 74.75 80.07 68.77 93.19 98.10 
4 73.74 83.55 71.35 87.71 97.25 

4.4 Analysis and discussion 

It can be seen from Figure 10(a) that the trend term deformation prediction curve of  
N-point is basically consistent with the real deformation curve, but there is a small 
amount of error between February 18, 2023 and June 20, 2023. Figure 10(b) shows the 
change trend between the predicted value and the real value of the wave term 
displacement. It can be seen from the figure that the predicted value basically coincides 
with the real deformation value, and the predicted result is close to the real value.  
Figure 10(c) reflects the change trend between the cumulative deformation predicted 
value and the deformation value. It can be seen from the figure that the predicted value 
and the deformation value basically overlap, and the change trend is basically the same. 
However, after May 8, 2023, there are small fluctuations. The main reason is the result 
affected by the prediction of the trend term. Figure 10(d) shows a reliable change interval 
of the deformation value (± 1 mm), and it can be clearly seen that the predicted result of 
the cumulative displacement at N points is within the predicted interval and is basically 
close to the real value. To sum up, it can be seen that Elman-LSTM has the highest 
overall prediction accuracy for the trend term displacement, fluctuation term 
displacement, and cumulative displacement of point N, and the prediction curves of the 
three displacements are highly consistent with the real curve. Compared with the other 
three methods, the overall prediction effect is the best. 

It can be seen from Table 1 that the maximum absolute error of point A is 0.752, the 
minimum is 0.036, and the average absolute error is 0.347. The maximum relative error is 
0.772%, the minimum is 0.036%, and the average relative error is 0.376%. All predicted 
values are within the allowable range of error. To sum up, it can be seen that the 
cumulative displacement prediction of point A based on Elman-LSTM has the smallest 
deviation between the cumulative predicted value and the real value, and the prediction 
effect is the best. 
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It can be seen from Figure 11(a) that the deformation prediction curve of the trend 
term at point A is basically consistent with the real deformation curve. However, there 
are small-scale fluctuations before April 22, 2023 and after May 19, 2023, which may be 
related to the influence of external factors such as rainfall. Figure 11(b) shows the change 
trend between the predicted value of the fluctuation term and the real value. It can be 
seen from the figure that the predicted value of the displacement of the fluctuation term is 
basically consistent with the real deformation value. Among them, the predicted results 
from March 16, 2023 to April 30, 2023 are close to the real value, and the effect is the 
best. Figure 11(c) reflects the change trend between the cumulative deformation 
prediction value and the deformation value. It can be seen from the figure that the 
predicted value and the deformation value basically coincide, but there will be a small 
range of fluctuations before April 11, 2023. It is mainly affected by the predicted 
displacement of the trend item. Figure 11(d) shows a reliable variation interval of the 
deformation value (± 1 mm), and it can be clearly seen that the predicted result of the 
cumulative displacement at point A is within the predicted interval. To sum up, it can be 
seen that Elman-LSTM has the highest overall prediction accuracy for the trend term 
displacement, wave term displacement, and cumulative displacement of point A, and the 
prediction curves of the three displacements are highly consistent with the real curves, 
and the overall prediction effect is the best. 

It can be seen from Table 2 that the maximum absolute error of point A is 0.82, the 
minimum is 0.0396, and the average absolute error is 0.4158. The maximum relative 
error is 0.436%, the minimum is 0.02%, and the average relative error is 0.218%. All 
predicted values are within the allowable range of error. To sum up, it can be seen that 
the cumulative displacement prediction of point A based on Elman-LSTM has the 
smallest deviation between the cumulative predicted value and the real value, and the 
prediction accuracy is the highest. 

From Table 3, it can be seen that the accuracy of the Elman-LSTM joint model is 
higher than that of the other three prediction models. The Elman-LSTM joint model 
shows an obvious trend of accuracy improvement in the prediction of the two sampling 
points. The reason may be that subsidence displacement is a dynamic change process, 
while SVM belongs to a static prediction model. This model only learns and uses the 
information at the current time, and cannot use historical information. However, both 
LSTM and Elman belong to dynamic prediction models. When predicting the current 
displacement change value, it will first recall the displacement data of the previous 
period, and then predict the displacement value at the current time, so as to achieve 
dynamic prediction, so the prediction effect is better than SVM. In summary, the dynamic 
prediction model is more suitable for subsidence displacement monitoring. 

Compared with the SVM model, the maximum difference of the average absolute 
error MAE of Elman-LSTM model is 1.382, the root mean square error RMSE is 1.364, 
and the certainty coefficient R2 is 0.121. Compared with the LSTM model, the maximum 
difference of the average absolute error MAE of the cumulative displacement prediction 
of the Elman-LSTM model is 0.552, the maximum difference of the root mean square 
error RMSE is 0.753 and the maximum difference of the certainty coefficient R2 0.086. 
Compared with the Elman model, the maximum difference of the average absolute error 
MAE of the cumulative displacement prediction of the Elman-LSTM model is 0.299, the 
maximum difference of the root mean square error RMSE is 0.404, and the maximum 
difference of the certainty coefficient R2 is 0.0158. 
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From the results in Table 5, it can be seen that the model proposed in this paper has a 
very high prediction accuracy and has significant advantages compared to existing 
research. 

On the whole, the model of monitoring and early warning of regional subsidence of 
transmission lines based on time series algorithm proposed in this paper has certain 
effect, and can meet the needs of monitoring and early warning of regional subsidence of 
transmission lines. 

5 Conclusions 

The ground subsidence of high-voltage line tower area has become a serious problem 
affecting the stability and security of transmission lines. Therefore, it is very important to 
monitor and warn the regional subsidence of high-voltage towers. Based on the  
satellite-borne InSAR technology, this paper studies the relevant theories and 
technologies of monitoring and early warning of regional subsidence of high-voltage 
towers, and proposes a method for early warning and evaluation of regional subsidence of 
high-voltage towers. Moreover, this paper uses autoformer-based regional subsidence 
prediction model of high-voltage line towers to predict the subsidence value of 
monitoring points in the study area, and calculate the surface subsidence rate. In addition, 
according to the cumulative subsidence value and subsidence rate, a complete regional 
subsidence early warning model for high-voltage line towers is established in this paper. 
In general, the model of monitoring and early warning of regional subsidence of 
transmission lines based on time series algorithm proposed in this paper has certain 
effect, and can meet the needs of monitoring and early warning of regional subsidence of 
transmission lines. 

In the InSAR time-series meteorological and environmental subsidence dataset 
constructed in this article, only the influence of meteorological and environmental factors 
on surface subsidence was considered, without taking into account the impact of human 
activities, engineering plans, and other human factors on surface subsidence in the  
high-voltage transmission tower area. Moreover, the data in this article was not validated 
through large-scale practical experiments. Therefore, in future work, the above factors 
will be considered as features and included in the dataset for model training and testing, 
establishing a more comprehensive dataset to obtain more accurate prediction results of 
cumulative subsidence values in the high-voltage transmission tower area. 
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