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Abstract: To address the domain distribution mismatch between synthetic
scene text data and real-world scene text data in arbitrary orientations,
we introduce SynthBendText3D – a framework based on a 3D graphics
engine that synthesises scene text data in various orientations. The framework
generates a large number of text instances in arbitrary directions and
constructs a 3D scene to position these instances. By leveraging domain
randomisation techniques, it randomises scene parameters such as object
arrangement, materials, lighting, and camera angles, ensuring a high degree
of diversity in the synthesised data. Moreover, the framework incorporates
a polygon reconstruction algorithm to annotate each synthesised text
instance with polygonal bounding boxes. Experimental results demonstrate
the effectiveness of the data generated by our framework.
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1 Introduction

Scene text detection has broad applications in fields such as real-time translation
(Lu et al., 2011), autonomous driving (Janai et al., 2020), and robot navigation
(Mavrogiannis et al., 2023). However, due to the complexity and diversity of both
text styles and natural scene environments, scene text detection remains a challenging
problem in computer vision. Deep learning has become the dominant approach in scene
text detection, and training such detectors typically requires a large amount of data.
Acquiring a significant volume of manually labelled real-world data not only incurs high
labor costs but is also prone to annotation errors.

Figure 1 An example of data synthesised by SynthBendText3D, (a) data image (b) binary
mask map of the text area (c) data annotations, including polygon coordinate point
text boxes, text direction attributes, and text content (see online version for colours)

Synthetic data offers a convenient way to provide large volumes of precisely annotated
information. Introducing synthetic data as a supplement to real-world data is a promising
solution to address the issue of insufficient data (Mumuni et al., 2024). Most scene text
detectors currently rely on synthetic scene text data for pre-training to improve their
performance. There is experimental evidence showing that synthetic scene text data is
effective for training scene text detectors. Typically, the synthetic data used for training
models is considered the source domain, while the real data used for evaluation is
considered the target domain, and discrepancies between these domains are inevitable.
Existing methods [such as SynthText (Gupta et al., 2016), VISD (Zhan et al., 2018),
and SynthText3D (Liao et al., 2020a)] for synthesising scene text data are limited to
generating text instances in horizontal or slanted orientations and can only provide
quadrilateral bounding box annotations for text instances. However, as the complexity
of real-world applications increases, detecting horizontally or slanted scene text is no
longer sufficient. In real-world datasets such as Total-Text (Ch’ng and Chan, 2017) and
SCUT-CTW1500 (Yuliang et al., 2017), the text appears in arbitrary orientations, and
text instance annotations are provided in the form of polygonal bounding boxes. This
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indicates a domain gap between the synthetic scene text data and real-world datasets
containing text in arbitrary orientations.

A key focus in the current methods of generating synthetic scene text data is
determining appropriate regions to place text instances based on scene information to
simulate real-world scene text images. Research has shown that compared to placing
text instances on 2D static images (Gupta et al., 2016; Zhan et al., 2018), methods based
on 3D graphics engines, which construct 3D scenes and accurately simulate real-world
parameters, provide more precise scene information, allowing text instances to be placed
in semantically coherent locations (Liao et al., 2020a). The use of 3D graphics engines
for synthesising data has become quite popular. Studies in synthesising data for other
tasks have also demonstrated that using 3D graphics engines in the synthetic data
domain is feasible and effective (Lee et al., 2023; Zhang et al., 2022; Abou Akar et al.,
2024; Martinez-Gonzalez et al., 2021; Mousavi et al., 2020).

In summary, we propose SynthBendText3D, a framework for generating scene text
data in arbitrary orientations using a 3D graphics engine, filling the gap left by previous
work that did not support the synthesis of scene text data in arbitrary orientations.
Specifically, the framework first synthesises a large number of arbitrarily oriented
text models based on Blender, by using modifiers controlled with random parameters.
Then, the framework constructs a 3D scene in Unity, importing the synthesised text
models and other assets, assigning appropriate regions in the scene, and placing
the text models according to specific rules. Using domain randomisation techniques
provided by the Unity Perception (Borkman et al., 2021) plugin, parameters such as
lighting, material properties, and transformations are randomised to ensure sufficient
diversity in the synthesised images. Each text instance in the scene is accompanied by
complete segmentation mask annotations. Finally, the framework integrates a polygon
reconstruction algorithm to convert the segmentation mask annotations into polygonal
bounding boxes for each arbitrarily oriented text instance, ensuring that the annotations
are consistent with the format used in the Total-Text dataset (Ch’ng and Chan, 2017).
The final dataset generated by SynthBendText3D includes images, binary mask images
of text regions, polygonal bounding box annotations, text orientation attributes, and text
content labels. Several examples of the synthesised data are shown in Figure 1.

2 Related work

2.1 Scene text detection

The task of scene text detection involves detecting textual information from natural
scene images. Early scene text detectors could only detect text instances in horizontal
or slanted orientations. Liao et al. (2017) proposed TextBoxes, which uses a single deep
neural network to output text regions, including bounding boxes and confidence scores.
This method performs well in most cases but struggles with challenging situations,
such as detecting overexposed images or those with large character spacing. Zhou
et al. (2017) proposed EAST, one of the most classic scene text detectors. EAST
utilises a fully convolutional neural network to directly predict text bounding boxes
and character-level confidence scores, avoiding some of the complex steps found in
traditional scene text detection methods, thereby improving both the efficiency and
accuracy of detection.
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With the emergence of more complex datasets, such as Total-Text by Ch’ng and
Chan (2017) and SCUT-CTW1500 by Yuliang et al. (2017) which contain text instances
in arbitrary orientations, represented by polygonal coordinates, the focus of research
in the scene text detection field has shifted towards detecting such complex text data.
Current scene text detectors can be broadly categorised into regression-based methods
and segmentation-based methods. Zhu and Du (2018) proposed SLPR, which enhances
the faster R-CNN/R-FCN framework by adding regression of the vertical/horizontal
coordinates of polygon intersections along the x/y axis, resulting in polygonal text
regions described by 14 points. Zhu et al. (2021) later introduced FCENet, which
applies Fourier contour embedding to represent curved text instances. Liao et al.
(2020b) proposed DBNet, which uses a differentiable binarisation technique for image
segmentation to generate corresponding polygonal text regions. Due to its fast detection
speed and outstanding performance, DBNet has been widely applied in real-world
scenarios.

As with most deep learning tasks, the lack of sufficient data is a significant
bottleneck in improving scene text detection performance. Thus, many scene text
detectors incorporate synthetic data for pre-training to ensure their performance.

2.2 Synthetic data based on 3D graphics engines

With the advancement of computer graphics, 3D graphics engines have become capable
of rendering images that are closer to reality. Constructing 3D scenes and adding
randomised objects, lighting, materials, and other properties to synthesise large amounts
of data for training neural networks is a popular method in the synthetic data domain
(Nikolenko, 2021). This approach has been proposed and validated for its effectiveness
in various computer vision tasks. The Synthehicle dataset, synthesised by Herzog et al.
(2023), is used in the field of autonomous driving. Toro et al. (2024) synthesised a
dataset using a large number of CAD models based on Blender, applicable in the field
of 3D reconstruction. Abou Akar et al. (2024) proposed SORDI.ai, a large synthetic
industrial image dataset based on NVIDIA Omniverse.

To make it easier for users to synthesise data using 3D graphics engines, more
specialised solutions have begun to emerge, such as BlenderProc (Denninger et al.,
2019), BlendTorch (Heindl et al., 2021), Unity Perception (Borkman et al., 2021), and
UnrealCV (Qiu et al., 2017). These tools provide programmable and flexible platforms,
enabling users to synthesise realistic and diverse virtual data more conveniently. The
SAVED dataset proposed by Kim et al. based on UnrealCV (Kim et al., 2022) contains
synthetic vehicle images with movable parts, suitable for vehicle-related recognition
tasks. Unity Technologies used Unity Perception to create the PeopleSansPeople dataset,
designed for human-centric computer vision tasks (Ebadi et al., 2021). Herzog et al.
(2023) introduced Synthehicle, a dataset used for vehicle tracking tasks, where scenes
were created using CARLA in eight pre-designed town maps, and traffic scenes were
recorded using RGB, depth, and semantic LIDAR sensors.

2.3 Synthetic scene text data

Several methods for generating synthetic scene text data have been proven effective in
the field of scene text detection. Gupta et al. (2016) introduced SynthText, which blends
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text into specific regions of real background images by estimating the depth of the
background. Zhan et al. (2018) proposed VISD, which emphasises semantic coherence
and visual saliency, using semantic segmentation and saliency maps to determine
the placement of embedded text. The model adaptively learns the characteristics of
real-world scene text images to determine the colour and brightness of the embedded
text. However, the method of embedding text directly into 2D images used by SynthText
and VISD can lead to inaccurate perspective relations of the text within the scene. In
response to this, Liao et al. (2020a) introduced SynthText3D, which, based on the Unreal
Engine, calculates suitable areas for placing text instances in 3D scenes according to
surface normals. This was the first study using 3D graphics engines to synthesise data
for scene text detection, demonstrating the feasibility of using such synthetic data to
enhance the performance of scene text detectors.

However, the aforementioned methods only support generating horizontally or
slanted scene text data, which overlooks the diverse orientations of text instances in
real-world scenes. Unlike them, our proposed method supports generating scene text
data in arbitrary orientations.

3 Structure

We propose a synthetic scene text data framework named SynthBendText3D, which is
designed based on Blender, Unity, and Unity Perception (Borkman et al., 2021). The
framework has the following characteristics:

• Modularity: The framework is divided into independent modules, each of which
can be tested and maintained separately.

• Flexibility: Users can adjust the selected assets or related parameters according to
the problem requirements, allowing control over the appearance and distribution
of the synthesised scene text data (such as the scene of the image, the proportions
of text forms, etc.).

• Realism: By using a 3D graphics engine for realistic rendering, the synthesised
images closely simulate real-life conditions such as uneven lighting and complex
environments in scene text scenarios.

• Diversity: The synthesised data exhibits sufficient variation, with text instances
appearing in arbitrary orientations. For neural networks, this kind of synthetic data
reduces the domain gap between synthetic and real data.

The pipeline of SynthBendText3D is illustrated in Figure 2. Specifically, the
framework is divided into three modules: synthetic text models, synthetic images, and
post-processing. In the synthetic text models module, a large number of text models are
generated using Blender, with specific attributes assigned to the text models according
to a predefined ratio, forming text models in arbitrary orientations. The synthetic images
module utilises Unity’s high definition render pipeline (HDRP) to render images by
placing the text models in specific locations within a 3D scene. With the assistance of
Unity Perception, the generated images are annotated with corresponding segmentation
maps of the text instances. In the Post-processing module, based on the segmentation
maps generated in the previous module, a polygon reconstruction algorithm is designed
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to convert the segmentation maps into polygonal bounding box annotations, resulting in
the final dataset.

Figure 2 The pipeline of SynthBendText3D (see online version for colours)

Notes: It consists of three modules: synthetic text models, synthetic images, and post-processing.

3.1 Synthetic text models

This module synthesises a large number of text models in arbitrary orientations for use
in subsequent modules.

In this module, text objects are created in bulk using Blender, with random
adjustments made to their ‘extrude’ and ‘bevel depth’ properties to give these text
objects a small amount of thickness and beveling. Modifiers such as ‘twist’, ‘bend’,
‘taper’ and ‘stretch’ are added. Based on the proportion of curve-oriented text in the
Total-Text dataset (Ch’ng and Chan, 2017), some text models are designed to have
a certain curvature effect. The angles of the modifiers follow a truncated normal
distribution (Burkardt, 2014). The synthesised models are annotated with information
such as text content and text orientation, as shown in several examples of the synthesised
text models in Figure 3. The synthesised text models exhibit more diverse orientations
compared to the text instances in other works.

Figure 3 Examples of text models

The text content for the created text models is randomly selected from words in the
Newsgroup20 dataset, and the fonts used are randomly selected from Google Fonts.

3.2 Synthetic images

This module constructs 3D scenes in Unity, placing the text models at specific locations
within the 3D scene to render images of the synthesised data. Image realism and domain
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randomisation are considered effective and general methods in the field of synthetic data
(Abou Akar et al., 2024), and this module is designed based on these principles.

To ensure the realism of the synthesised data, a large number of high-quality
textured 3D models and HDRI maps are collected from the Poly Haven public 3D
resource library, supplemented with a certain number of modelled 3D objects imported
into Unity, ensuring that these resources do not contain text instances. The module
uses Unity’s HDRP to synthesise images, allowing the generated images to accurately
simulate material textures found in real environments. Box colliders are used to mark
several areas on the surfaces of certain models, where text objects are placed with a
certain probability, ensuring that the text objects are located in semantically coherent
positions. The synthesised images adhere to perspective principles, avoiding potential
depth estimation inaccuracies found in SynthText and VISD.

Figure 4 Examples of scene design (see online version for colours)

Domain randomisation theory aims to generate sufficiently varied synthetic data to
bridge the gap with real data, allowing neural networks to treat real data as another
variation (Tremblay et al., 2018). Based on the domain randomisation framework
provided by Unity Perception (Borkman et al., 2021), several randomisers are defined
to randomise various parameters in the scene. All randomisable parameter distributions
follow uniform and truncated normal distributions (Burkardt, 2014). Examples of scene
composition are shown in Figure 4. In this module, the following factors are considered
for domain randomisation:

• Transform: An area is defined within the scene, where several coordinates spaced
a certain distance apart are randomly generated using the Poisson disk algorithm.
Random 3D models are placed at these generated coordinates, and parameters are
defined to randomly adjust the transforms of these models.

• Material texture: A shader graph is designed to control the fragment shader of
model materials. This shader graph receives diffuse maps, normal maps, and
ambient occlusion maps as inputs, defining parameters to control the material’s
metallicity, smoothness, and diffuse colour. Several colour pairs P = {{Cb1 , Ct1},
..., {Cbi , Cti}} are collected from the background colour and text colour in real
scene text images, where Cbi and Cti are values in the HSV colour model. A
certain amount of random variation is added to these values as the diffuse colours
of background objects and text objects, ensuring their colour pairing is close to
that of real scenes but not identical.

• Ambient lighting: HDRI maps are used as environment maps, which, along with
additional directional lights and point lights, constitute the lighting of the scene.
The environment map is randomly rotated around the scene’s Y -axis, and the
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intensity, hue offset, and positions of the directional lights and point lights can
also be controlled by parameters.

• Viewpoint: A perception camera is setup in the scene, always facing the center of
the scene. The parameters of the perception camera, such as position, field of
view, and focal length, are then randomised. During the image synthesis process,
the Unity Perception plugin captures the view observed by the perception camera
and the corresponding segmentation map of the text instances.

• JPG artefacts: The output JPG images undergo random compression at varying
ratios to introduce JPG artefacts, simulating possible image distortion found in
real data.

3.3 Post-processing

This module outputs the final synthetic data, ensuring that the annotation format of the
synthesised data is consistent with Total-Text to guarantee the general applicability of
the data.

Figure 5 Post-processing steps, (a) text instance segmentation map (b) edge of the
segmentation map (c) set of coordinates after removing internal vertices
(d) Delaunay triangulation and removal of longer edges after triangulation (e) edge
coordinates set after triangulation (f) final result after reducing vertices with
Douglas Peucker algorithm (see online version for colours)

(a) (b) (c) (d) (e) (f)

The annotations for the synthetic data include transcriptions, orientation, and the
text region. Since the synthesised text instances are in arbitrary orientations, the
corresponding text regions are represented by polygonal coordinates P = {(xP1 , yP1),
(xP2 , yP2), ..., (xPn , yPn)}. The annotations for text transcriptions and orientations
are derived from the information generated by the synthetic text models module. The
polygonal bounding box annotations for the text areas are derived from the segmentation
map S = {(xS1 , yS1), (xS2 , yS2), ..., (xSn , ySn)} of the text instances, which can
be viewed as a polygon reconstruction problem. The edge of the segmentation map
S is obtained by applying an edge detection algorithm. In this paper, we propose a
new polygon reconstruction algorithm. Each column of the image is scanned to retain
the coordinates of the maximum and minimum y values in the set of coordinates, and
Delaunay triangulation is used to convert the point set V on the plane into a set of
triangles T . A length threshold t is set to remove edges longer than t from the triangle
set, yielding a contour formed by the remaining edge set. For the set of coordinates
on the contour C = {(xC1 , yC1), (xC2 , yC2), ..., (xCn , yCn)}, the Douglas-Peucker
algorithm is used, with an approximation accuracy parameter ε set, to approximate the
contour with fewer coordinate points, resulting in a polygon point set P = {(xP1 , yP1),
(xP2 , yP2), ..., (xPn , yPn)}. Finally, the data is reorganised to achieve the annotation
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format that describes a text instance area with polygonal coordinates, consistent with
Total-Text. The process of the algorithm is shown in Algorithm 1, and illustrative
examples of each step and the final result are shown in Figure 5.

Algorithm 1 Convert segmentation map into polygon vertex text boxes
Input: Text instance segmentation map S = (xS1 , yS1), (xS2 , yS2), ..., (xSn , ySn), edge
length threshold t, maximum distance from contour to approximated contour ε
Output: Polygon P = (xP1 , yP1), (xP2 , yP2), ..., (xPn , yPn)

1: Use edge detection algorithm to obtain the edge coordinates set E from the segmentation
map

2: Scan each column of E, retaining the vertices in E with the maximum and minimum y
values in each column to form the set V

3: Perform Delaunay triangulation on V to get the set of triangle edges T
4: Create an empty list L
5: for e in T do
6: if e is shorter than threshold t then
7: Add e to the list L
8: end if
9: end for
10: Connect the vertices in L, find the edges of L, represented by the point set C = (xC1 , yC1),

(xC2 , yC2), ..., (xCn , yCn)
11: Use Douglas Peucker algorithm with ε to approximate C into a polygon with fewer vertices,

obtaining the polygon point set P = (xP1 , yP1), (xP2 , yP2), ..., (xPn , yPn)

4 Experiments

4.1 Settings

In the experiments, 3D text models were synthesised using Blender 3.5, and images were
generated based on Unity 2021.3.11f1 and Perception Package 1.0.0-preview-1. The
defined randomisers, along with the specified parameters and distributions, are shown
in Table 1. The hardware environment for synthesising the data consisted of a laptop
equipped with a 2.20 GHz Intel Core i9-13900 CPU, Nvidia GeForce GTX 4060 GPU,
and 16 GB RAM. The synthesis speed for data images was approximately 0.2 seconds
per image, with a resolution of 800 × 600. The framework achieved a good synthesis
speed under this configuration. A total of 10,000 images containing curve-oriented text
instances and their corresponding annotations were synthesised using our method.

The DBNet model used in the experiments is derived from the open-source
implementation of MindOCR. In all training tasks, the backbone network is ResNet-18,
pretrained on the ImageNet dataset. The optimiser used is SGDM with a momentum of
0.9, weight decay set to 0.0001, and a batch size of 20, training for 1200 epochs each
time. All model training and evaluation were conducted on a workstation equipped with
an Ascend 910 chip.
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Table 1 Design and distribution of the randomiser

Category Randomiser Parameters Distribution

Camera Camera Field of view TN(40, 80, 60, 100)

Position X U(0, 1) + TN(−3, 3, 0, 1)

Position Y U(1, 3) + TN(−3, 3, 0, 1)

Position Z U(10, 15) + TN(−3, 3, 0, 1)

3D object Background Scale TN(0.8, 1.2, 1, 0.005625)

Rotation X TN(−15, 15, 0, 25)

Rotation Y TN(−45, 45, 0, 225)

Rotation Z TN(−45, 45, 0, 225)

Foreground Scale U(0.7, 1.3)

Light Lights Light intensity U(0, 1)

Position X U(−6, 6)

Position Y U(1, 5)

Position Z U(−7.5, 7.5)

Material Materials Multiply TN(10, 30, 20, 25)

Metallic TN(0, 1, 0.8, 0.04)

Smoothness TN(0, 1, 0.2, 0.04)

Colour offset H TN(−0.2, 0.2, 0, 0.01)

Colour offset S TN(−0.2, 0.2, 0, 0.01)

Colour offset V TN(−0.2, 0.2, 0, 0.01)

Skybox Skybox Rotation Y U(0, 360)

Post-process Volume Vignette intensity U(0, 0.5)

Fixed exposure TN(11, 15, 13, 0.5625)

White balance temperature U(−5, 5)

Film grain intensity U(0, 1)

Lens distortion intensity U(−0.2, 0.2)

Contrast U(−30, 30)

Saturation U(−30, 30)

Notes: U(a, b) denotes a uniform distribution between minimum a and maximum b.
TN(a, b, µ, σ2) denotes a truncated normal distribution with minimum a,
maximum b, mean µ, and variance σ2.

4.2 Evaluation metrics

In the experiments, the Deteval protocol (Wolf and Jolion, 2006) was used as the
evaluation protocol, with the F-measure as the quantitative indicator for performance
assessment. The formula for calculating the F-measure is as follows:

F -measure =
2PR

P +R
(1)

where P and R represent the precision and recall of the detection, respectively. The
formulas for calculating P and R are given by:

P =
TP

TP + FP
(2)
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R =
TP

TP + FN
(3)

During the evaluation process, the intersection over union (IOU) value between the
predicted boxes and the annotated boxes in the labels is calculated to determine whether
the detected targets are positive or negative samples. Detected targets with an IOU
greater than the threshold are considered positive samples, while those with an IOU less
than the threshold are regarded as negative samples. Here, TP denotes the number of
positive samples correctly identified as positive, FP denotes the number of negative
samples incorrectly identified as positive, and FN denotes the number of positive
samples incorrectly identified as negative.

4.3 Datasets

4.3.1 Synthetic datasets

The following synthetic datasets were selected for comparative experiments to
investigate the impact of different types of synthetic data on the performance of scene
text detectors. To ensure the fairness of the comparisons, the number of synthetic images
used for training was limited to 10,000 per experiment.

• SynthText (Gupta et al., 2016) is a large synthetic dataset containing a total of
858,750 images, generated by synthesising text on natural images. It is widely
used for pre-training various scene text detectors. In the experiments, 10,000
images were randomly sampled for training.

• VISD (Zhan et al., 2018) is a synthetic dataset containing 10,000 images, each
with a different background. The text regions exhibit diversity in font, size,
colour, and arrangement.

• SynthText3D (Liao et al., 2020a) is a scene text dataset synthesised using Unreal
and the UnrealCV plugin, containing a total of 10,000 images. In the experiments,
images without text instances or with clearly erroneous annotations were excluded.

To explore the impact of various synthetic datasets as training sets on the
performance of scene text detectors, we also randomly selected 5,000 images from the
SynthBendText3D and VISD datasets to form a complementary dataset for the following
experiments.

4.3.2 Real datasets

The training subsets of the following real datasets were selected in some experiments
to explore the impact of real data on the performance of scene text detectors, while the
test subsets will be used to evaluate the performance of the detectors.

• Total-Text (Ch’ng and Chan, 2017) is collected from real scenes and includes
1,255 training images and 300 test images. It contains various types of text,
including horizontal, multi-directional, and curved text instances.

• SCUT-CTW1500 (Yuliang et al., 2017) is also collected from real scenes,
consisting of 1,000 training images and 500 test images, with curved text
instances described using polygons with up to 14 coordinate points.
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4.4 Qualitative analysis

For scene text detection models, the quality of images in the training set and the
shape of text instances are decisive factors affecting the model’s performance on the
test set. Figure 6 presents a visual comparison between the synthesised data in this
paper and instances from other synthetic datasets. This paper utilises currently popular
methods for synthesising data based on 3D engines. Unlike SynthText and VISD, which
embed text into 2D images, SynthBendText3D can simulate more complex and diverse
environmental conditions, while also placing text instances in more reasonable locations.
Moreover, the text instances in SynthBendText3D are oriented in arbitrary directions and
described in the form of polygon coordinates, which provides greater diversity in text
shapes compared to other synthetic datasets and results in more reasonable annotation
formats.

Figure 6 Examples of images from different synthetic scene text data and their annotation
styles (see online version for colours)

array([413.37543, 523.0051 , 522.609  , 

412.9793 ], dtype=float32)
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Lines:
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Notes: Vertices represented by yellow coordinate points, text areas by blue lines.
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4.5 Experiments results and evaluation

4.5.1 Training with synthetic data

In this section, experiments were conducted using the synthetic data from
SynthBendText3D and three other types of synthetic data as training sets, while using
the test subsets of Total-Text and SCUT-CTW1500 to evaluate performance. The test
results on real data are shown in Table 2. When using Total-Text as the test set,
the model trained with our method’s synthetic data achieved F-measure values that
were 6.82%, 0.61%, and 15.02% higher than those trained with SynthText, VISD, and
SynthText3D, respectively. Mixing our method’s synthetic data with an equal amount
of VISD data for pre-training resulted in the best F-measure value for the scene text
detector, demonstrating that the combination of different types of data can expand the
training domain, thereby enhancing the robustness of the trained scene text detector.
When using SCUT-CTW1500 as the test set, the model trained with our method’s
synthetic data achieved F-measure values that were 5.8%, 1.19%, and 8.28% higher than
those trained with SynthText, VISD, and SynthText3D, respectively, with the mixed
dataset yielding the best F-measure value.

Table 2 Results of training the scene text detector using different synthetic data

Training data Total-Text SCUT-CTW1500

P R F P R F

SynthText 10K 72.36 50.70 59.62 66.97 46.49 55.86
VISD 10K 75.85 58.15 65.83 72.21 52.02 60.47
SynthText3D 10K 82.77 37.29 51.42 77.30 40.77 53.38
SynthBendText3D 10K 73.11 60.89 66.44 71.51 54.19 61.66
SynthBendText3D 5K + VISD 5K 80.18 59.01 67.98 75.85 53.30 62.61

Notes: In the table, ‘P’, ‘R’, and ‘F’ represent precision, recall, and F-measure, respectively.
‘5K’ and ‘10K’ indicate the number of data points in the dataset.

Visual results of the models trained with different datasets on the test set are shown in
Figure 7. Other synthetic datasets do not include irregular text instances, which makes
it difficult for the models to achieve good detection results on irregular text in the test
set. In contrast, the model trained on SynthBendText3D performs well in detecting such
text.

4.5.2 Fine-tuning in real data

Based on the training models obtained in the previous section, we continued to
fine-tune the models using transfer learning, with the training subsets of Total-Text and
SCUT-CTW1500 as the training sets. The test results on the test subsets of Total-Text
and SCUT-CTW1500 are shown in Table 3. The F-measure of the models significantly
improved, with the model pre-trained using our method’s synthetic data mixed equally
with VISD achieving the highest F-measure value.
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Figure 7 Visualisation of detection results on the test set using models trained with different
datasets, with detected text areas indicated by green boxes (see online version
for colours)

(a) SynthText (b) VISD (c) SynthText3D (d) SynthBendText3D

Table 3 Results of fine-tuning the scene text detector using real data under the training model
obtained in the previous section

Training data Total-Text SCUT-CTW1500

P R F P R F

SynthText 10K 83.90 82.62 83.26 82.92 81.87 82.39
VISD 10K 85.23 85.03 83.60 81.48 85.33 83.36
SynthText3D 10K 80.29 83.20 81.72 85.42 80.51 82.89
SynthBendText3D 10K 83.47 84.68 84.07 82.63 85.96 84.26
SynthBendText3D 5K + VISD 5K 85.14 83.57 84.35 86.62 84.04 85.31

4.5.3 Combining synthetic and real data for training

In this section, we mixed different types of synthetic data with the training subsets
of Total-Text and SCUT-CTW1500 to train the scene text detector. To evaluate the
effectiveness of incorporating synthetic data, we also included a baseline experiment
without synthetic data. The evaluation results of the models on the test subsets of
Total-Text and SCUT-CTW1500 are shown in Table 4. The experiments demonstrate
that the inclusion of various synthetic datasets can enhance the F-measure of the scene
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text detector, validating the effectiveness of synthetic data. When using Total-Text as the
test set, the F-measure values of models trained with our method’s synthetic data were
higher than those trained with SynthText, VISD, and SynthText3D by 1.36%, 0.83%,
and 0.10%, respectively. Similarly, when using SCUT-CTW1500 as the test dataset,
the F-measure values were higher than those of SynthText, VISD, and SynthText3D by
0.94%, 0.08%, and 1.14%, respectively. The model trained on the dataset obtained by
mixing our method’s synthetic data with VISD achieved the highest F-measure value.

Table 4 Results of training the scene text detector on a combination of synthetic and real data

Training data Total-Text SCUT-CTW1500
P R F P R F

Real 84.18 81.90 83.02 79.64 80.89 80.26
SynthText 10K + Real 86.07 81.17 83.55 83.32 81.55 82.43
VISD 10K + Real 85.98 82.26 84.08 85.64 81.06 83.29
SynthText3D 10K + Real 87.78 82.03 84.81 84.07 80.46 82.23
SynthBendText3D 10K + Real 86.59 83.30 84.91 84.56 82.21 83.37
SynthBendText3D 5K + VISD 5K + Real 87.97 82.94 85.38 85.88 84.02 84.94

5 Conclusions and future work

In this paper, we proposed SynthBendText3D, a framework for synthesising scene
text data in arbitrary orientations based on a 3D graphics engine. This framework
synthesises a large number of text 3D models and places them at specific positions in
a 3D scene, utilising domain randomisation techniques to randomise various parameters
in the 3D scene, resulting in diverse synthetic data. Additionally, an algorithm for
polygon reconstruction is integrated into the framework, converting segmentation
annotations of arbitrary orientation text instances into polygon coordinate annotations.
The effectiveness of the synthesised data was validated through comparative experiments
with other synthetic datasets and comprehensive experiments involving real data. In the
future, we will expand the application scope of our framework, such as synthesising
multilingual text data, introducing more text styles, and applying the synthesised data
from the framework in the field of scene text detection.

References

Abou Akar, C., Tekli, J., Khalil, J., Yaghi, A., Haddad, Y., Makhoul, A. and Kamradt, M. (2024)
‘Sordi.AI: large-scale synthetic object recognition dataset generation for industries’, Multimedia
Tools and Applications, pp.1–42.

Borkman, S., Crespi, A., Dhakad, S., Ganguly, S., Hogins, J., Jhang, Y-C., Kamalzadeh, M., Li, B.,
Leal, S., Parisi, P. et al. (2021) Unity Perception: Generate Synthetic Data for Computer Vision,
arXiv preprint arXiv:2107.04259.

Burkardt, J. (2014) The Truncated Normal Distribution, Vol. 1, No. 35, p.58, Department of Scientific
Computing Website, Florida State University.

Ch’ng, C.K. and Chan, C.S. (2017) ‘Total-Text: a comprehensive dataset for scene text detection and
recognition’, in 2017 14th IAPR International Conference on Document Analysis and Recognition
(ICDAR), IEEE, Vol. 1, pp.935–942.



SynthBendText3D 53

Denninger, M., Sundermeyer, M., Winkelbauer, D., Zidan, Y., Olefir, D., Elbadrawy, M., Lodhi, A.
and Katam, H. (2019) Blenderproc, arXiv preprint arXiv:1911.01911.

Ebadi, S.E., Jhang, Y-C., Zook, A., Dhakad, S., Crespi, A., Parisi, P., Borkman, S., Hogins, J. and
Ganguly, S. (2021) PeopleSansPeople: A Synthetic Data Generator for Human-Centric Computer
Vision, arXiv preprint arXiv:2112.09290.

Gupta, A., Vedaldi, A. and Zisserman, A. (2016) ‘Synthetic data for text localisation in natural
images’, iIn Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp.2315–2324.

Heindl, C., Brunner, L., Zambal, S. and Scharinger, J. (2021) ‘Blendtorch: a real-time, adaptive
domain randomization library’, in Pattern Recognition, ICPR International Workshops and
Challenges: Virtual Event, Proceedings, Part IV, Springer, 10–15 January, pp.538–551.
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