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Abstract: We propose a novel deep learning-based model for predicting the 
remaining life of lithium-ion batteries. Existing methods merely model the 
remaining life’s temporal changes, overlooking inherent time series periodicity 
and compromising prediction accuracy. Our model capitalises on multi-cycle 
features in time series analysis, using well-designed 2D temporal blocks to 
handle uncertainties in battery remaining useful life changes. It extracts 
complex patterns within charge and discharge cycles, achieving high-precision 
predictions of future battery states. On multiple common battery datasets, it 
surpasses existing methods in accuracy and robustness, validating its 
effectiveness. 
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1 Introduction 

With the development of technology, lithium-ion batteries play an irreplaceable role in 
various devices such as mobile communication devices (Zeng et al., 2021), electric 
vehicles (Smith et al., 2009), and smart devices (Serrao et al., 2011). They have been 
integrated into every aspect of our daily lives (Pop et al., 2007) and have profound 
impacts on our work and lifestyle (Raijmakers et al., 2019). However, despite the 
widespread application of lithium-ion batteries (Smith and Wang, 2006), accurately 
predicting their remaining life still poses significant challenges (Waag et al., 2014; Prusty 
et al., 2022c). The battery’s remaining life and its intrinsic state are crucial for the normal 
operation of devices, prevention of unexpected shutdowns, and effective management of 
device lifespan. Despite significant research efforts in this area (Deng et al., 2023; Zhang, 
2024), predicting the remaining life of lithium-ion batteries remains fraught with 
complexities due to the batteries’ inherent nonlinear degradation processes and the 
influence of various environmental factors. 

Currently, many studies (Hu et al., 2012; Sun et al., 2011; Ouyang et al., 2020; Prusty 
et al., 2024a) have focused on this issue and proposed various methods for predicting the 
remaining life of lithium-ion batteries. These methods have contributed to some extent in 
addressing the problem (Rahimi-Eichi et al., 2013; Kim and Cho, 2011; Prusty et al., 
2022a; Patil et al., 2023), but they still have limitations and challenges. The main issue is 
that most existing prediction models treat the remaining life of lithium-ion batteries as a 
time series problem and only model the variation of capacity over time (Hu et al., 2009; 
Zhang et al., 2024), disregarding the inherent periodic variations within the time series 
(Deng et al., 2023; Eddahech et al., 2012). Traditional models primarily focus on  
time-domain information (Wang, 2023; Prusty et al., 2024b), neglecting the frequency 
changes that occur during the discharge process of lithium-ion batteries. This oversight 
limits the models’ ability to capture the full spectrum of temporal dynamics, particularly 
the periodic patterns that are crucial for accurately modelling capacity degradation. This 
limitation hampers the accurate reflection of comprehensive changes in battery states in 
practical applications and subsequently affects the prediction accuracy. Furthermore, 
existing models (Ipek et al., 2021; Prusty et al., 2022b) often assume a fixed charging and 
discharging cycle for batteries, failing to account for the variations in frequency and other 
periodic characteristics that can significantly impact the battery’s performance over time. 
A more holistic approach, which incorporates both time-domain and frequency-domain 
features, is essential for enhancing the precision of remaining life predictions. Besides, 
factors such as temperature, load, and aging can impact the charging and discharging 
cycles, leading to variations in battery capacity (Farmann et al., 2015; Li et al., 2023). As 
a result, existing models fail to accurately predict the dynamic changes in battery 
remaining life (He et al., 2011b; Chen et al., 2022; Li et al., 2020). 

Our key contribution is a novel multi-cycle time series model for battery remaining 
life prediction. We integrate time- and frequency-domain features, enabling 
comprehensive analysis of periodic and complex patterns in charge-discharge cycles. 
Below, we summarise the key contributions: 

• Multi-cycle modelling framework: unlike traditional methods (e.g., LSTM, CNN) 
that predominantly rely on time-series capacity trends, our approach models the 
inherent periodic patterns in charge-discharge cycles by combining time- and 
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frequency-domain features. This holistic modelling improves the understanding of 
complex battery degradation dynamics. 

• 2D time block innovation: by introducing 2D time blocks, our model effectively 
captures hidden temporal and spatial correlations within charge-discharge cycles, 
adapting to uncertainties in battery states and environmental variations. 

• Enhanced robustness and accuracy: our approach outperforms state-of-the-art deep 
learning models by capturing both transient and long-term variations in battery 
behaviour, ensuring higher accuracy and robustness across diverse environmental 
and aging conditions. 

• Practical applicability: the model’s ability to adapt to varying operational conditions 
and its interpretability make it highly practical for real-world applications, setting a 
new benchmark for battery life prediction techniques. 

2 Materials and methods 

2.1 Data collection and preprocessing 

In the experiment, we utilised the CALCE dataset from the University of Maryland, USA 
(Xing et al., 2013). To enhance the diversity and reliability of our experiment, we 
selected data from CS2 batteries under two distinct constant current conditions. 
Specifically, we employed the CS2_33 and CS2_34 dataset cycled at a constant current 
condition of 0.5C, along with the CS2_35, CS2_36, CS2_37, and CS2_38 datasets cycled 
at a constant current condition of 1C. 

During the experiment, all CS2 batteries followed an identical charging protocol. The 
charging process adopted the standard constant current/constant voltage (CC/CV) 
scheme, applying a steady current until the voltage reached 4.2 V, after which the voltage 
was sustained at 4.2 V until the charging current fell below 0.05 A. Additionally, the  
cut-off voltage for discharging these CS2 batteries was set to 2.7 V, considered as the 
critical voltage indicating the end of discharge. The charging process and cut-off voltage 
were meticulously set to ensure the consistency and comparability of the experiment, 
guaranteeing that all CS2 batteries underwent the same protocol during testing. The 
strategy facilitates a more effective comparison and analysis of battery performance and 
characteristics. 

Following this experimental setup, we defined the inputs and outputs for our 
predictive model. The model input is a time series representing the historical data of 
battery capacity, denoted as X = {x1, x2, …, xt}, where xt indicates the observed capacity 
at time step t. The output of the model is the predicted remaining capacity at a future time 
step, represented as ˆ ,t ky +  where k is the prediction horizon. The overall goal is to 
minimise the difference between the predicted capacity ˆt ky +  and the true capacity yt+k 
over the prediction period. 

The prediction problem is formulated as a supervised learning task, where the model 
is trained to learn the mapping function ˆ: t kf X y +→  that best approximates the 
relationship between historical capacity data and future capacity. The loss function 
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ˆ( , ),t k t kL y y+ +  typically mean squared error (MSE), is used to quantify the prediction 
error, and the model is optimised to minimise this loss over the training dataset. 

2.2 Multi-cycle time series model design 

To address the limitations of existing prediction methods in capturing the periodic 
variations in the time series of lithium-ion battery remaining life, we propose a novel 
multi-cycle time series model. The model aims to achieve high precision prediction of 
remaining life by effectively extracting and learning complex patterns within the battery 
charging and discharging cycles. Figure 1 details the main components and design 
principles of the model. 

2.3 Normalisation and embedding 

Considering the disparate scales among different datasets, which can impede model 
training and convergence, it is essential to normalise the data. Normalisation allows for a 
more accurate representation of the battery’s remaining life at different time points and 
mitigates the influence of scale differences on the prediction outcomes. Specifically, if 
we denote the original data as X with a mean of μ and a standard deviation of σ, the data 
can be normalised using the following formula: 

( )normalisedX X μ σ= −  (1) 

Here, X represents the dataset values, which include variables such as battery capacity, 
voltage, or current at different time points. Normalising these variables standardises their 
scale, thus facilitating more effective model training. In the preliminary stage of data 
representation, we utilised two embedding approaches: token embedding and position 
embedding. These embedding techniques are instrumental in converting the data into a 
format suitable for model processing while enhancing the representation of features. To 
begin, we transformed each remaining life value x(t), for every time step t, into a  
high-dimensional vector using token embedding. 

The conversion was accomplished by applying one-dimensional convolution, as 
depicted by the following formula: 

( ) ( ( ) )T t f W x t b= ∗ +  (2) 

where W represents the weights of the convolutional kernel, b denotes the bias term, ∗ 
denotes the convolution operation, and f refers to an activation function (such as ReLU). 
The objective of token embedding is to capture and represent the semantic information of 
each token. In this context, tokens refer to the battery’s state at specific time steps. 
Through one-dimensional convolution, the model can capture the local information of 
each token and identify the relationships among these local features. 

Subsequently, we introduce position embedding to incorporate the positional 
information of elements within the sequence. Position embedding employs the position 
encoding method derived from the transformer model. By adding position encoding 
vectors to the token embedding vectors, we represent the positional characteristics of the 
elements. For each position i, the position encoding vector PE is calculated using the 
following formula: 
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( )2
( ,2 ) sin 10,000 modeli d

pos iPE pos=  (3) 

( )2
( ,2 1) cos 10,000 modeli d

pos iPE pos+ =  (4) 

where i represents the dimension of the position encoding vector. pos denotes the position 
of the element in the sequence. Note that we utilise a hyperparameter dmodel to control the 
dimensionality of the position encoding vector. Subsequently, we add the position 
encoding vector to the token embedding vector, resulting in the final position embedding 
Eposition with the following formula: 

position token posE T PE= +  (5) 

By employing token embedding and position embedding, we transform the original data 
into vector representations that possess meaningful characteristics. The representation 
effectively retains the local features and temporal relationships within the data, thereby 
facilitating subsequent model training and prediction tasks. 

Figure 1 The overall flow of our architecture, (a) data preprocessing module, where raw battery 
data is cleaned and filtered to remove noise and outliers, ensuring the quality of the 
input data, (b) data normalisation and embedding module, in which the preprocessed 
data is normalised to a consistent scale and then embedded into a suitable feature space 
for model input, (c) time series feature encoding module, where the temporal 
characteristics of the data are captured and encoded, allowing the model to learn 
complex patterns over time, (d) the specific training process of the model, detailing how 
the model extracts 2D temporal features from 1D time series data (see online version 
for colours) 

 

2.4 Denoising and periodic patterns 

The data representing the remaining life of lithium-ion batteries often contains noise, 
which may stem from measurement errors, variations in usage patterns, or the influence 
of environmental factors, among others. The noise can affect the clarity of the data and 
subsequently impact the accuracy of battery performance analysis and prediction on the 
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other hand, battery usage patterns may exhibit certain periodic patterns. For instance, 
users may charge their batteries at specific times of the day, or certain devices may 
undergo regular charging and discharging operations at fixed intervals. These periodic 
patterns are valuable for understanding battery usage patterns and predicting remaining 
life. 

The introduction of 2D temporal blocks enables the representation of temporal 
correlations and periodic patterns in a two-dimensional grid, similar to how convolutional 
layers in CNNs capture spatial features in images (Bai et al., 2018). Studies such as 
(Durairaj and Mohan, 2022) have demonstrated the benefits of converting time-series 
data into 2D representations to enhance pattern recognition, particularly in applications 
involving periodicity or multiscale dependencies. 

Fast Fourier transform (FFT) (Pfister, 2017) has been widely used to extract 
frequency-domain features from time-series data, providing insights into hidden periodic 
patterns that are often overlooked by purely time-domain models. Previous works, such 
as those by He et al. (2011a) and Zhao and Liu (2025), have validated the effectiveness of 
combining frequency-domain analysis with deep learning to improve prediction accuracy 
in systems with nonlinear and periodic behaviours. Additionally, working in the 
frequency domain facilitates noise reduction techniques. For instance, smoothing the data 
by eliminating high frequency components (typically associated with noise) using filters 
can effectively minimise the impact of noise. 

More specifically, let represent the preprocessed time series data as E(t), where  
t = 1, 2, …, N, and N denotes the total number of data points in the sequence. The time 
series E(t) consist of measurements such as the battery’s voltage, current, or capacity 
over time. To capture the frequency components of this time series data, which reflect 
periodic patterns within the battery’s performance, we employ the fast Fourier transform 
(FFT). The FFT is used to convert the time-domain data into the frequency domain, as 
shown in the following formula: 

2
1

1( ) ( )
N i πkt N
t

F k E t e
N

−
=

=   (6) 

where F(f) represents the data in the frequency domain, with k = 0, 1, …, N – 1. The 
exponential term e–i2πkt/N serves as the basis function for each frequency component. The 
transformation to the frequency domain allows us to decompose the time series into its 
constituent frequency components, each characterised by an amplitude A(k) and phase 
φ(k) calculated as: 

( ) ( )A k F k=  (7) 

( ) arg( ( ))k F k=φ  (8) 

In the context of battery capacity prediction, not all frequencies are equally important. 
High-frequency components may represent noise rather than meaningful periodic 
behaviour. Therefore, we focus on the most significant frequencies, which correspond to 
the largest amplitudes. Let these significant frequencies be denoted as f1, f2, …, fk. The 
corresponding period lengths T1, T2, …, Tk are derived from these frequencies, where  
Ti = 1/fi. Each period Ti represents a distinct cycle within the battery’s operation, such as 
charging, discharging, or resting phases. By identifying these cycles, we can reshape the 
one-dimensional time series E(t) into multiple two-dimensional tensors. Each tensor 
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reflects the variations in the time series under a specific period, allowing the model to 
analyse the data in a way that aligns with the natural cycles of the battery’s operation. 

( )( ), 12 Reshape Padding , {1, , }i i
i

T f DD i k= ∈E E   (9) 

where ,Reshape i iT f  denotes the dimensional transformation of the original time series 
data based on the period length and frequency, and Padding represents padding the time 
series data. 

The approach enhances the model’s ability to predict the battery’s remaining life by 
leveraging both time-domain and frequency-domain information. It captures complex 
patterns and periodicities that are critical for accurately forecasting future battery 
performance. 

2.5 Inception module and adaptive aggregation 

In our task of predicting the remaining battery life, we have adapted the design of the 
inception module to process multiple two-dimensional tensors derived from the FFT 
(Szegedy et al., 2015). The FFT converts the time-series data of battery parameters, such 
as voltage, current, and capacity, into the frequency domain, enabling us to capture 
essential periodicities in the battery’s operational patterns. The inception module is 
particularly suited for this task as it allows us to capture data characteristics across 
different scales by utilising multiple convolutional kernels of varying sizes in parallel. 
The multi-scale processing is crucial for effectively analysing the complex and varied 
frequency components inherent in the battery data. 

In our approach, we input each two-dimensional tensor, derived from the FFT, into an 
independent inception module. The inception module is composed of multiple 
convolutional layers designed to extract features at various scales. Specifically, we utilise 
2D convolution modules with different sized convolution kernels to capture information 
at differing scales. The outputs from these modules are then aggregated, resulting in a 
new feature representation. 

( ), ,
2 2Inception , {1, , }l i l i

D D i k= ∈E E   (10) 

( ),
2 2

ˆ ˆ , {1, , }l iall
D DConcat l n= ∈E E   (11) 

where l denotes the number of layers in the inception module, while i refers to the ith 
frequency component. Thus, for each layer of the inception module, we obtain a 
corresponding feature representation ,

2
ˆ .l i

DE  The represents the output of the ith  
two-dimensional tensor under the lth inception block, post-inception module processing. 
Subsequently, we aggregate the feature representations ,

2
ˆ l i

DE  across all periods, forming a 

comprehensive new feature representation 2
ˆ .all

DE  The aggregation process ensures that 
features extracted from all relevant scales are integrated, enhancing the model’s ability to 
capture multi-scale temporal variations in the battery’s remaining charge. 

To further refine the feature representation, we apply an adaptive aggregation 
strategy. The significance of each feature representation across different periods is 
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evaluated by calculating the amplitude Ai for each feature representation 1
ˆ i

DE  under each 
period: 

1
ˆ , {1, , }i

i DA i k= ∈E   (12) 

Next, we carry out softmax normalisation on the amplitude values, resulting in 
aggregation weights represented by w: 

( )1softmax , ,i kw A A=   (13) 

Finally, by multiplying each feature representation 1
ˆ i

DE  by its corresponding aggregation 
weight w, and summing them up, we integrate these feature representations to form the 
ultimate aggregated result 1 .l

DE  

,
1 21

k l il
iD Di

w
=

= ×E E  (14) 

The adaptive aggregation process allows the model to prioritise the most significant 
frequency components, which are most indicative of the battery’s remaining life, thereby 
creating a robust global feature representation. By integrating the inception module with 
adaptive aggregation, our approach effectively captures and processes multi-scale 
temporal variations in the battery data, leading to improved prediction accuracy. Our 
method leverages both the time-domain and frequency-domain characteristics of the 
battery’s operational data, making it a powerful tool for modelling and predicting the 
remaining life of lithium-ion batteries. 

3 Experiments 

3.1 Baselines 

Our method uniquely aims at predicting future capacity changes based on historical 
capacity data, which is a novel perspective not extensively explored in prior work. To 
evaluate the effectiveness of our novel approach, we conducted a comparative analysis 
with three widely recognised models: long short-term memory (LSTM) (Graves and 
Graves, 2012), gated recurrent unit (GRU) (Cho et al., 2014), and convolutional neural 
network (CNN) (Kim and Kim, 2017). These models serve as baselines in our study, 
providing a benchmark against which the performance of our method can be assessed. 
The comparative analysis aims to empirically validate the superiority of our approach in 
modelling and predicting the remaining battery capacity. Detailed discussion and analysis 
of these comparisons are presented in the subsequent sections, further substantiating the 
advantages of our methodology. 

3.2 Evaluation metrics 

We employ three key metrics to evaluate the performance of our proposed model: the 
relative error (RE), mean absolute error (MAE), root mean square error (RMSE) and R2 
score. The RE is defined as the ratio of the difference between the actual and predicted 
cycle counts when the battery capacity degrades to the failure threshold to the actual 
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value. The MAE and RMSE refer to the average absolute error and root mean square 
error, respectively, between the predicted and actual capacity values. The coefficient of 
determination (R2) measures the proportion of the variance in the dependent variable that 
is predictable from the independent variables. An R2 score closer to 1 indicates that the 
model explains most of the variance in the remaining battery capacity, providing an 
overall measure of the model’s goodness-of-fit. The formulas for their calculation are as 
follows: 

ˆC CRE
C
−=  (15) 

1

1 ˆ
n

i ii
MAE y y

n =
= −  (16) 

( )2

1

1 ˆ
n

i ii
RMSE y y

n =
= −  (17) 

( )

( )

2

12
2

1

ˆ
1

n
i ii

n
ii

y y
R

y y
=

=

−
= −

−




 (18) 

where n represents the total number of cycles, yi and ˆiy  denote the actual and predicted 

remaining battery capacity at the ith cycle, respectively. Additionally, C and Ĉ  
correspond to the actual and predicted number of cycles when the capacity degrades to 
the failure threshold. These three metrics together allow for a well-rounded evaluation of 
our model’s accuracy, robustness, and reliability in predicting the remaining battery 
charge. 

3.3 Experiment setup 

In this study, we employed a combination of time-domain and frequency-domain features 
in our model to predict the remaining capacity of lithium-ion batteries. The model was 
configured using standard hyperparameters commonly used in deep learning tasks. The 
training process was optimised using the Adam optimiser with a learning rate of 0.001. 
The model was trained over 200 epochs with a batch size of 32, with early stopping to 
prevent overfitting when the validation loss plateaued. 

To evaluate the generalisation of the model, we applied 5-fold cross-validation, 
ensuring the model was trained on multiple data splits and tested on each to provide a 
robust estimate of its performance. The method allows for a more accurate assessment by 
reducing the bias of a single training-test split. 

To ensure the optimal performance of our model, we employed a grid search to 
systematically explore various combinations of key hyperparameters, including learning 
rate, batch size, number of hidden units, and dropout rate. Specifically, we tested learning 
rates in the range of 0.0001, 0.001, and 0.01, batch sizes of 16, 32, and 64, and hidden 
unit configurations of 64, 128, and 256 units. Additionally, we evaluated dropout rates of 
0.2, 0.3, and 0.5 to mitigate overfitting. The optimal hyperparameters were selected based 
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on the lowest validation loss, using 5-fold cross-validation and mean squared error 
(MSE) as the performance metric. 

3.4 Performance of the proposed methods 

Our experiment adopted a unique data partition strategy that aligns more accurately with 
real-world battery usage. Specifically, we employed the first 50% of the data for training 
and the latter 50% for testing. This data splitting methodology is based on the rationale 
that in real-world scenarios, battery usage does not occur randomly; instead, the early 
usage data (train set) is used to predict the subsequent usage (test set). By applying this 
sequential data split, our model’s learning process better mimics the progressive nature of 
battery degradation. It enables the model to be trained on the initial degradation patterns 
and then to validate its predictive capabilities on the later degradation behaviours. 
Table 1 Predicted results of constant current discharge at 0.5C 

Battery Metric LSTM GRU CNN Ours 
CS2_33 RE 0.241 0.241 0.158 0.021 

MAE 0.082 0.081 0.063 0.013 
RMSE 0.096 0.094 0.088 0.020 

R² 0.812 0.810 0.914 0.998 
CS2_34 RE 0.241 0.253 0.102 0.020 

MAE 0.052 0.054 0.023 0.011 
RMSE 0.059 0.061 0.032 0.019 

R² 0.876 0.871 0.956 0.998 

Figure 2 Predicted results of constant current discharge at 0.5C (see online version for colours) 

 

The experimental results, as shown in Tables 1 and 2, provide compelling evidence of the 
superior performance of our proposed method compared to the conventional models 
(LSTM, GRU, CNN) under both 0.5C and 1C constant current discharge conditions. 
Under 0.5C discharge condition, our model consistently outperforms the other models. 
For instance, considering battery CS2_33, our model achieves the relative error (RE) of 
0.021, mean absolute error (MAE) of 0.013, and root mean square error (RMSE) of 
0.020. These are significantly lower than the corresponding values for LSTM (RE: 0.241, 
MAE: 0.082, RMSE: 0.096), GRU (RE: 0.241, MAE: 0.081, RMSE: 0.094), and CNN 
(RE: 0.158, MAE: 0.063, RMSE: 0.088). Similar trends can be seen with battery CS2_34. 
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Table 2 Predicted results of constant current discharge at 1C 

Battery Metric LSTM GRU CNN Ours 
CS2_35 RE 0.267 0.273 0.207 0.035 

MAE 0.058 0.058 0.046 0.015 
RMSE 0.071 0.071 0.064 0.025 

R2 0.805 0.800 0.890 0.990 
CS2_36 RE 0.392 0.409 0.170 0.034 

MAE 0.063 0.061 0.050 0.014 
RMSE 0.072 0.069 0.064 0.019 

R2 0.755 0.745 0.916 0.996 
CS2_37 RE 0.301 0.305 0.174 0.004 

MAE 0.055 0.054 0.039 0.010 
RMSE 0.065 0.064 0.054 0.014 

R2 0.803 0.795 0.906 0.999 
CS2_38 RE 0.139 0.140 0.108 0.023 

MAE 0.051 0.051 0.037 0.012 
RMSE 0.062 0.061 0.050 0.019 

R2 0.888 0.880 0.936 0.997 

Figure 3 Predicted results of constant current discharge at 1C (see online version for colours) 

 

Table 2 reveals the same superior performance of our proposed method when the 
discharge current was increased to 1C. For all tested batteries (CS2_35, CS2_36, 
CS2_37, and CS2_38), our model consistently produced lower RE, MAE, and RMSE 
than the baselines. It is notable that our model achieved an exceptionally low RE of 0.004 
for the battery CS2_37, which far outstrips the performance of the other methods. 
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Figure 4 Predicted capacity of constant current discharge at 0.5C, (a) CS2_33 dataset (b) CS2_34 
dataset (see online version for colours) 

 

The remarkable results from our proposed method under both discharge conditions 
signify that our model exhibits superior prediction accuracy, robustness, and reliability in 
predicting the remaining battery charge. The advantage of our model becomes 
particularly pronounced when we consider the critical role of battery lifespan prediction 
in practical scenarios such as electric vehicles and portable electronics, where accurate 
and reliable predictions can lead to improved energy management, efficiency, and 
longevity of these devices. 

3.5 Representation analysis 

In this section, we interpret the performance of our model from the standpoint of 
representation learning. As suggested by Figures 4 and 5, our model exhibits an excellent 
fit to the actual data in both training and testing stages, underscoring its potent learning 
and generalisation capabilities in this complex task. 

Firstly, for the training phase, the high concordance between the model’s predictions 
and the actual data unveils the model’s deep understanding of the intrinsic patterns in the 
data and the physical processes of battery discharging behaviour. This is vital for 
designing efficient battery management systems (BMS), as a model that comprehends the 
dynamic behaviours of the battery can predict the remaining battery life more accurately. 
Secondly, in the testing phase, despite being exposed to unseen data, the model still 
yields accurate predictions of the remaining battery life, indicating its robust 
generalisation capabilities. This suggests that our model not only learns and comprehends 
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the behavioural patterns of the battery from the training data but also retains its predictive 
precision in unseen data, demonstrating its strong robustness. 

For all batteries, the prediction results under different discharge currents demonstrate 
that our model excels in all evaluation metrics (including RE, MAE, and RMSE), 
outperforming LSTM, GRU, and CNN, whether under a discharge current of 0.5C or 1C. 
This further substantiates the superiority and comprehensiveness of our model in 
handling the task of predicting the remaining battery life. In summary, these results 
strongly suggest that our model exhibits outstanding performance, robust generalisation 
capabilities, and robustness in the task of predicting the remaining battery life of 
batteries. 

3.6 Long-term predictive performance analysis 

In this experiment, we have designed a new prediction approach. Similarly to the 
previous setting, we constructed data with a length of 32 time points as the model’s 
observations. 

However, our prediction length is not 1, but a longer time dimension, which has never 
been seen in current papers on lithium-ion battery remaining life prediction. The 
experimental results are shown in Table 3. Despite the sharp increase in prediction 
difficulty, our model is able to maintain high performance for predicting battery charge 
values with two different charging rates. Compared to the MAE and RMSE of the 
prediction length of 1, the model does not show any performance degradation, indicating 
that our model has good robustness. In contrast, traditional deep learning models 
experience a significant decline in performance when facing long-term prediction due to 
the increase in task difficulty. The specific explanation is as follows: 

1 by using token encoding and position encoding, our model can preserve more 
effective information when converting the original charge data to the latent space 

2 by using FFT to convert time domain signals to the frequency domain, we can better 
analyse the frequency spectrum characteristics of the signals and perform signal 
filtering, which is important for removing noise and extracting key signal features 
from lithium-ion battery data 

3 through efficient inception modules and adaptive aggregation, our model can not 
only capture 1D information but also capture potential pattern information ignored 
by existing methods at higher dimensions. 

This is why our model can maintain good performance even when facing long-term 
prediction. 

To visually reveal the prediction process of the model, we conducted a visual analysis 
using a single task from the test set of each dataset. The results are presented in Figures 6. 
Through observation of these charts, it can be seen that: 

1 The model we proposed is able to closely surround the label value during the 
prediction process, demonstrating high prediction accuracy. This indicates that our 
proposed model has good generalisation performance when dealing with different 
datasets and tasks. 
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2 In contrast, the prediction results of traditional deep learning models have a large 
error range around the label value, suggesting that the performance of traditional 
models in similar tasks may be influenced by factors such as dataset distribution and 
model architecture. 

3 By comparing and analysing the results, we can see that the model we proposed 
performs more consistently and reliably with higher prediction accuracy. 

It provides valuable reference for solving related problems. To achieve better prediction 
results, future research can further explore optimisation strategies for the model, such as 
improving network architecture and optimising learning algorithms. In addition, the 
model can be transferred and adjusted to adapt to different application scenarios in 
different fields. Through in-depth research and practice, we believe that the model we 
proposed will play a more important role in related fields and provide more accurate and 
reliable prediction support for solving practical problems. 
Table 3 Long-term predictive result for two distinct constant current discharge rates 

Battery  CS2_33  CS2_34  CS2_35 
Metric  MAE RMSE  MAE RMSE  MAE RMSE 
LSTM  0.128 0.154  0.104 0.123  0.108 0.131 
GRU  0.122 0.149  0.088 0.101  0.100 0.121 
CNN  0.075 0.109  0.044 0.061  0.056 0.080 
Ours  0.015 0.022  0.014 0.014  0.015 0.025 
Battery  CS2_36  CS2_37  CS2_38 
Metric  MAE RMSE  MAE RMSE  MAE RMSE 
LSTM  0.114 0.138  0.107 0.128  0.104 0.125 
GRU  0.106 0.129  0.098 0.118  0.097 0.116 
CNN  0.065 0.093  0.049 0.071  0.050 0.074 
Ours  0.017 0.022  0.014 0.020  0.015 0.022 

Figure 5 Predicted capacity of constant current discharge at 1C, (a) CS2_35 dataset (b) CS2_36 
dataset (c) CS2_37 dataset (d) CS2_38 dataset (see online version for colours) 

 
Note: In each subfigure, the left chart shows the trend of remaining life over cycles, while 

the right chart represents the relationship between the predicted remaining life and 
the actual capacity. 
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Figure 6 Long-term predictions are conducted under constant current discharges of 0.5C and 1C, 
for 0.5C, (a) CS2_33 (b) CS2_34; for 1C, (c) CS2_35 (d) CS2_36 (e) CS2_37  
(f) CS2_38 (see online version for colours) 

 

Note: In each dataset, the left figure illustrates the prediction results of different models, 
while the right figure presents the errors of the prediction results. The test data 
represents the actual capacity changes of the lithium-ion battery, while the label 
still refers to the remaining life measured through experiments. The term ‘label’ is 
used here to differentiate it from the portion used for training. 

4 Discussion 

4.1 Limitations of using a single dataset 

The current model is trained and validated on a dataset derived from a specific  
type of lithium-ion battery under controlled conditions. This focus may limit its 
applicability to other battery chemistries, such as lithium iron phosphate (LiFePO4) or 
nickel-manganese-cobalt (NMC) batteries, which exhibit different degradation 
characteristics and charging/discharging behaviours. 

A single dataset often captures battery behaviour under specific environmental 
factors, such as temperature and load, which may not represent the full range of  
real-world operating conditions. This could reduce the model’s robustness when applied 
to batteries operating in diverse or extreme conditions. 

The dataset may have inherent biases, such as covering only a limited portion of the 
battery’s lifecycle, which can result in suboptimal performance for predicting end-of-life 
behaviours or anomalies. 

4.2 Proposed extensions to other battery types 

Expanding the model’s validation to datasets from different battery chemistries and 
manufacturers would allow for a comprehensive evaluation of its generalisability. 
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Publicly available datasets, such as the CALCE dataset or those from NASA’s 
Prognostics Center of Excellence, could be leveraged for this purpose. 

For better adaptability, features specific to different battery chemistries (e.g., 
impedance characteristics, state of health parameters) could be integrated into the model. 
Using datasets that combine laboratory measurements with real-world operational data 
can help improve robustness and applicability to diverse scenarios. 

5 Conclusions 

In this paper, we addressed the limitations of traditional lithium-ion battery remaining life 
prediction methods by introducing a novel deep learning model. By leveraging  
multi-cycle features of time series and utilising 2D temporal blocks, our model efficiently 
adapts to changes in battery states and provides high precision predictions. On testing 
with several common battery datasets, our model showed significant improvements over 
existing prediction methods, validating its effectiveness in terms of both accuracy and 
robustness. Notably, the model demonstrated its ability to maintain high predictive 
performance when environmental conditions changed or batteries underwent different 
degrees of aging. 

In conclusion, the introduction of our model signifies a crucial advancement in 
lithium-ion battery technology. It offers a more accurate way of predicting the remaining 
battery charge, thereby enhancing the overall performance and lifespan of these batteries. 
For future work, we plan to continue refining our model by incorporating more complex 
real-world factors and applying it to a broader range of lithium-ion batteries. 
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