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Abstract: Insulators are crucial components for the safety and reliability of 
power systems. However, due to their small size and complex structure, precise 
segmentation of insulators is challenging. To address this issue, this paper 
proposes a directional attention-based PointNet++ model (PDA). The core 
module of PDA is the directional attention (DA) module, which consists of 
spatial self-attention (SSA) and channel self-attention (CSA). This module is 
designed to establish long-range relationships in both spatial and channel 
directions of the feature map, enabling global modelling. Additionally, to 
reduce computational costs, multi-scale pyramid pooling is embedded in both 
the SSA and CSA modules. Notably, by integrating DA into PointNet++, the 
model enhances the correlation between point cloud features and the long-range 
dependency of positional information without significantly increasing the 
computational burden. Experimental results demonstrate that the PDA model 
significantly outperforms existing models in segmenting insulator point clouds 
from multiple power transmission corridors. 

Keywords: PointNet++; PDA; spatial self-attention; SSA; channel  
self-attention; CSA; insulators. 
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1 Introduction 

In contemporary electrical networks, guaranteeing the secure and dependable operation 
of the grid is vital for preserving the smooth functioning of society. As integral elements 
of the power network, the precise detection and efficient handling of insulators are 
critical for avoiding malfunctions and enhancing system stability. However, owing to the 
compact size and intricate design of insulator point clouds, current segmentation 
techniques encounter numerous difficulties. 

Traditional methods typically rely on manual inspections and the use of devices such 
as laser rangefinders to measure the exact position of power lines. These methods are not 
only inefficient but also pose certain safety risks. 

Insulators influence the performance of voltage drop and leakage current in 
distribution systems (Murthy et al., 2011) and ensuring the safety of power systems 
remains a core task. Traditional grid inspection methods typically rely on professionals 
manually inspecting the lines and using devices such as laser rangefinders and optical 
theodolites to measure the exact position of power lines (Yang et al., 2020; Ellis, 2013). 
However, this method poses certain safety risks during inspections, is inefficient, and 
fails to meet the requirements of modern power system management (Bayindir et al., 
2016). With advancements in technology, point cloud and drone technologies are 
increasingly playing a key role in power inspections (Mohsan et al., 2022). By equipping 
drones with sensors like LiDAR, it is possible to quickly obtain 3D point cloud data of 
power equipment, providing detailed spatial information for inspections (Guan et al., 
2021). Although 3D data is rich, it is often irregular, uneven, and unordered, making the 
accurate identification of insulators within point clouds a major challenge (Zhang et al., 
2019b). 

In the field of intelligent monitoring and management of transmission corridors, 
LiDAR remote sensing technology has garnered significant attention from researchers 
due to its high precision and broad applicability (Matikainen et al., 2016). The 3D point 
cloud data obtained through laser scanning not only allows for the precise identification 
of power transmission lines and tower structures but also enables the monitoring of 
vegetation growth height and distribution density, especially in complex terrains such as 
tropical rainforests (Matikainen et al., 2016). Vegetation grows rapidly and is subject to 
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varying climatic conditions, posing a threat to transmission lines. In response, Taylor  
et al. (2022) proposed a dynamic modelling method based on forest growth simulation to 
predict vegetation expansion trends. By integrating real-time monitoring data, this model 
provides decision support for vegetation management in transmission corridors. 
Implementing protective measures in advance can effectively prevent trees from coming 
into contact with power lines, thereby ensuring the safe operation of the transmission 
system (Zhang et al., 2019b). 

These methods can effectively identify power lines and towers based on the high 
similarity of their geometric shapes and successfully separate them from surrounding 
vegetation. The underlying principle involves utilising the local spatial topological 
relationships within the point cloud data to achieve more precise object recognition (Chen 
et al., 2018) Moreover, Li and Zhang highlighted that clustering algorithms based on 
local distribution features can improve the differentiation of various target objects in 
complex terrain, thereby enhancing the efficiency and accuracy of data processing 
(Zhang et al., 2019b). 

As data scale and complexity grow, traditional methods encounter limitations when 
processing large-scale point cloud data. To address this, Poux and Billen (2019) proposed 
a voxel-based deep learning classification algorithm. By dividing the point cloud data 
into three-dimensional voxels for analysis, the model can capture nonlinear features, 
significantly improving classification accuracy (Zhang et al., 2020). Building on this, 
Fryskowska (2019) combined the random sample consensus (RANSAC) algorithm with 
supervised learning, proposing an improved model capable of handling noisy data. This 
method not only enhanced the recognition accuracy of power lines and towers but also 
improved the ability to accurately position power lines in cases of vegetation occlusion. 

To further improve model performance, Faustino (2022) proposed a point cloud 
classification method that integrates global and local feature fusion, leveraging ensemble 
learning techniques such as JointBoost and random forest classifiers. These methods can 
not only handle multi-dimensional features but also effectively identify power lines, 
towers, and vegetation in complex forest environments (Cao et al., 2022). By employing 
this multi-feature fusion approach, the robustness of point cloud classification is 
enhanced, enabling the model to perform exceptionally well across various terrains and 
climatic conditions (Peng et al., 2019). Their research demonstrates that combining the 
macro-level perspective of global features with the detailed capture of local features 
significantly improves vegetation monitoring and safety management in transmission 
corridors. 

In the field of deep learning, classification and segmentation techniques for  
three-dimensional point cloud data have developed rapidly (Zhang et al., 2019a). 
Traditional two-dimensional convolutional neural networks (CNNs) face limitations 
when processing 3D data, as they require voxelisation of point clouds, often leading to 
reduced resolution and increased memory usage. In response, researchers have developed 
various direct and indirect methods to optimise the processing of point cloud data 
(Pastucha et al., 2020). 

Su et al. (2015) introduced the multi-view convolutional neural network (MVCNN), a 
representative indirect approach. This method projects three-dimensional point cloud data 
onto multiple two-dimensional views, which are then processed by a 2D CNN. The 
resulting features from these views are subsequently merged for classification. MVCNN 
captures rich features within the point cloud by combining multi-view information (Wang 
et al., 2024b). Although this method has shown success, challenges remain in selecting 



   

 

   

   
 

   

   

 

   

   4 S. Li et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

optimal viewpoints and avoiding information loss, particularly when processing  
high-resolution data (Zhou et al., 2019). 

To directly handle three-dimensional point cloud information, Qi et al. (2017a, 
2017b) proposed the pioneering PointNet framework. PointNet was the first deep neural 
network capable of processing unvoxelised point cloud data by extracting global 
characteristics and applying symmetric operations to each point, successfully tackling the 
unordered structure of point clouds. While the model performs well on simple 
classification tasks, it struggles to capture local details in complex geometric structures. 
To address this limitation, Qi and colleagues later developed the PointNet++ model, 
which combines local feature extraction with global feature aggregation. PointNet++ 
enhances classification and segmentation in complex scenes by progressively extracting 
local geometric information through hierarchical local region grouping. However, despite 
its improvements, PointNet++ incurs substantial computational costs when processing 
high-density point clouds, and challenges remain in handling irregular and sparse regions. 

To address these constraints, Maturana and Scherer (2015) introduced voxel-based 
architectures such as VoxNet. This method converts point cloud data into uniform voxel 
grids, allowing the application of three-dimensional CNNs for analysis. Although 
VoxNet can capture spatial structural information using 3D convolutions, voxelisation 
leads to reduced resolution and high memory consumption, limiting its scalability. To 
overcome these issues, researchers have introduced more efficient convolution methods 
that directly process point cloud data. 

For example, Li et al. (2018) presented the PointCNN model, which enhances 
classification and segmentation by learning convolutional relationships between points 
and organising the point cloud in an ordered manner. Wang et al. (2019) introduced the 
dynamic graph convolutional neural network (DGCNN), which dynamically builds 
adjacency graphs within point clouds and applies convolution operations on the graph 
structure, effectively capturing local spatial dependencies among points. Compared to the 
PointNet series, DGCNN demonstrates significant improvements in capturing local 
geometric features. 

More advanced architectures, such as ShellNet, proposed by Zhang et al. (2019c), 
process point clouds in hierarchical levels to capture multi-dimensional local spatial 
configurations, thereby enhancing the accuracy of point cloud classification and 
segmentation. 

To enhance the learning of local details, Xu et al. (2021) proposed PAConv, which 
constructs convolution kernels using dynamically combined weight matrices, leading to 
improved segmentation results. To further capture fine-grained local features in point 
clouds, recent studies have incorporated local self-attention mechanisms into deep 
learning models. For example, Yan et al. (2020) proposed PointASNL, which integrates 
local self-attention with spatial non-local mechanisms, enabling adaptive adjustments of 
features for each point in the point cloud. Li et al. (2024a) utilised multi-scale feature 
extraction, established a local coordinate framework, and incorporated an offset attention 
mechanism to further boost the model’s performance. Guo et al. (2023) merged a 
partitioning head architecture with self-attention and transformers (HST-Net), efficiently 
addressing the segmentation of damaged regions such as insulator degradation and 
electrical arcing. Xuan et al. (2022) employed a SAG-Mask with spatial attention 
strategies to extract insulator mask images, enhancing the precision and stability of the 
algorithm. Zeng et al. (2022) introduced a multi-tier attention framework structured as a 
feature pyramid, boosting the semantic and intricate details of feature maps at various 
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resolutions. Su et al. (2021) proposed DLA-Net, which more precisely models  
fine-grained local features in point clouds by integrating local self-attention mechanisms. 

Despite significant advancements in existing methods, several challenges remain. For 
example, the segmentation focus of PointNet++ has primarily been on visible 
transmission lines and towers, with less attention given to insulators, which are crucial 
components of transmission lines. Additionally, during the segmentation of insulator 
point clouds, challenges such as similarity and occlusion often arise, making it difficult to 
accurately classify insulators. Variations in point cloud density across different categories 
can also complicate the separation of points at boundaries. PointNet++ records feature 
values during the downsampling process in the encoding layer but does not fully utilise 
the positional information between different point clouds. 

To address these limitations, we propose an improved PointNet++ model by 
embedding a directional attention module (DAM) to enhance feature correlations 
between point clouds, allowing for better extraction of local positional features. 
Similarly, Ji and Zhong (2024) proposed a bidirectional attention module that reasonably 
allocates weights among different features and focuses on the relationships between 
adjacent pixels of the same feature, thereby enhancing the segmentation capability. The 
proposed PDA model accurately segments point clouds of transmission lines, towers, 
ground, and insulators by utilising contextual information, with the DA module refining 
the semantic information of insulator point clouds. 

Building on the previous discussion, our key contributions are as follows: 

1 We introduce a PointNet++ model based on directional attention that effectively 
utilises the spatial relationships between point clouds and neighbouring areas by 
incorporating a DAM. This module suppresses irrelevant information using 
contextual cues, significantly improving the segmentation accuracy of insulator point 
clouds. 

2 The suggested model is utilised for the semantic segmentation of insulators on 
transmission line pylons, effectively isolating the insulators from the pylons, thereby 
proving the efficacy of the PDA model. 

3 We performed thorough experimental evaluations between the PDA model and other 
current models in the context of transmission line pylons, highlighting the enhanced 
performance of our model in this scenario 2. 

2 Related work 

2.1 Insulator semantic segmentation based on point cloud 

In recent years, with the growing demand for inspection and maintenance in power 
systems, the technology for extracting insulators based on images and point clouds (3D 
spatial data obtained through LiDAR) has gained significant attention as a research 
hotspot. Insulators, being essential elements of the electrical transmission network, have a 
direct influence on the security and reliability of the grid. Therefore, accurately and 
efficiently extracting insulators in complex power scenarios has become a key topic in 
electrical research. This challenge has driven the development of various solutions, 
particularly through advancements in image processing and LiDAR point cloud 
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technologies, leading to notable progress in this area (Zhang et al., 2019b). Several 
review studies have repeatedly highlighted the importance and complexity of insulator 
extraction (Miao et al., 2019). 

Extracting insulators from sources like optical overhead images and infrared imaging 
has emerged as a key research focus. Optical images provide high-resolution data, while 
thermal imaging can reveal potential defects in insulators. However, these methods often 
face challenges such as data sparsity (uneven data coverage) and occlusion in complex 
environments. To overcome these challenges, combining multiple data sources and 
processing methods, especially using LiDAR point cloud technology, has proven to be an 
effective solution (Sohn et al., 2012; Ma et al., 2021). 

Point cloud-based extraction methods for electrical components typically focus on 
large-scale objects with prominent features, such as power lines and towers. For instance, 
Arastounia and Lichti proposed a point cloud extraction method that combines prior 
knowledge of the main directional information, which was applied to insulator 
identification in substation environments (Zhang et al., 2019b). This method achieved 
high precision in insulator extraction by leveraging structured scene understanding. In 
transmission corridors. Their method improved the efficiency and accuracy of insulator 
extraction by identifying cylindrical segments (Sohn et al., 2012; Tao et al., 2018). 

Additionally, Zhang et al. (2019a) determined the position of guy insulators by 
identifying points at the ends of power lines and the centres of towers (Tao et al., 2018). 
However, many of these methods heavily rely on the accuracy of power line extraction 
and often overlook the impact of different insulator types, variations in tower shapes, and 
functions (Ma et al., 2021). This limitation reduces the applicability of existing methods 
in complex power scenarios, especially when dealing with varying voltage levels, wire 
connection methods, and jumper distributions (Jenssen and Roverso, 2018). 

These algorithmic studies also tend to neglect the differences between various 
components of transmission towers, such as shape, size, occlusion, and proximity to 
boundaries. In this research, we incorporate directional attention into the PointNet++ 
model, taking into full account the diverse shapes, sizes, types, and scenarios of different 
insulators. The introduced directional attention (PDA) not only improves the 
segmentation precision of insulator point clouds but also offers more dependable 
technical assistance for the smart management and upkeep of electrical equipment (Sun et 
al., 2019; Wu et al., 2018). Moreover, Tang et al. (2023) suggested a reliable extraction 
approach that combines multi-scale neighbourhoods and multi-feature entropy weighting 
to segment entire insulator chains. Lv et al. (2023) proposed a PointNet-MLS hybrid 
framework, which successfully performs component segmentation of insulating devices 
in challenging backgrounds. Sun et al. (2024) created the Insulator Segmentation 
Network (ISNet), which improves the segmentation efficiency of insulators. 

2.2 Application of attention mechanism in semantic segmentation of insulator 
point cloud 

The attention mechanism was initially proposed by Bahdanau (2014), when it was 
integrated into neural machine translation tasks. This enabled models to dynamically 
allocate importance to various segments of the input sequence, allowing the model to 
concentrate on the most pertinent parts of the input during translation generation. This 
approach effectively mitigated the issues of information compression and loss that were 
common in traditional encoder-decoder architectures. The introduction of this mechanism 
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led to significant improvements in sequence-to-sequence models across various natural 
language processing tasks. 

In 2017, Vaswani et al. revolutionised this concept by proposing the Transformer 
architecture, which is based entirely on self-attention mechanisms. Unlike RNNs, which 
process sequences sequentially, the Transformer eliminated the need for sequential 
dependency, processing the entire input sequence simultaneously (Vaswani et al., 2017). 
This not only enhanced computational efficiency but also improved the model’s ability to 
capture global context, quickly making it a dominant technology across multiple fields. In 
image processing, Wang et al. (2018) introduced non-local neural networks, which 
leveraged a non-local self-attention mechanism to establish connections between distant 
pixels, significantly benefiting large-scale image tasks. 

In the realm of point cloud segmentation, Qi et al. (2017a) made early advancements 
with the introduction of PointNet in 2017. PointNet could directly process irregular point 
cloud data by extracting features from individual points and performing global feature 
fusion for classification and segmentation. However, the model lacked the ability to 
capture local geometric structures and dependencies between points. To address this 
limitation, Qi et al. (2017b) subsequently proposed PointNet++, which improved 
segmentation accuracy by introducing sampling and multi-scale feature extraction, 
allowing the model to capture finer details in local regions. 

Building on this progress, Wang et al. introduced DGCNN (dynamic graph CNN) in 
2019 (Wang et al., 2019). This approach constructed dynamic adjacency graphs for point 
clouds, enabling the network to learn the evolving relationships between points and better 
reflect changes in local structures. DGCNN demonstrated exceptional performance in 
multiple 3D segmentation tasks and proved particularly adaptable to handling complex 
geometric scenes. 

In the specific context of insulator segmentation, Arastounia and Lichti (2013) 
proposed a method based on 3D point cloud data that extracted insulators’ geometric 
features in 3D space to address the challenges of insulator segmentation in complex 
environments. Wang et al. (2023) integrated the coordinate attention (CA) module with 
PointNet++ to form CA-PointNet++, which captures contextual features and achieves 
more accurate segmentation. Wang et al. (2024a) combined convolutional networks 
(ConvNet), Vision Transformers (ViT), and attention modules to enable the perception of 
insulators and defect regions. Li and Cai (2022) designed a Point Transformer layer that 
uses a self-attention mechanism to extract features from point clouds, thereby improving 
the model’s performance. Later, Liu and Huang (2024) enhanced this approach by 
incorporating self-attention mechanisms and designing a multi-level feature fusion 
scheme. This enabled the model to allocate attention weights adaptively at both local and 
global scales, leading to improved segmentation precision (Li et al., 2024b). Building on 
this, Liu and Huang (2024) introduced a cross-modal point cloud segmentation method 
that integrated point cloud features from different perceptual dimensions, effectively 
enhancing insulator segmentation in complex scenarios. 

3 Method 

We first briefly introduce the architecture of the PDA model, and then introduce the DA 
module and the specific structure of embedding DA into PointNet++ in detail. 
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3.1 Overall Architecture of PDA 

Deep learning technology is pivotal in 3D point cloud segmentation tasks, particularly 
when addressing complex spatial relationships and computational costs. The primary goal 
of 3D point cloud semantic segmentation is to classify each point within the point cloud 
data and assign it a corresponding semantic label. This process typically involves 
extracting high-dimensional features and understanding intricate spatial structures. 
Consequently, the design of the network architecture is essential for enhancing 
segmentation accuracy. 

As illustrated in Figure 1, the proposed directional attention (PDA) model is an 
improved network architecture based on PointNet++. It integrates a directional attention 
(DA) module to more effectively capture the spatial structures and features of the point 
cloud. This architecture leverages the set abstraction and feature propagation modules of 
PointNet++ for downsampling and upsampling the point cloud data, respectively, 
allowing for the efficient extraction and transfer of spatial information throughout the 
encoder and decoder processes. The encoder of the PDA model comprises a set 
abstraction module with an embedded DA, while the decoder consists of a feature 
propagation module that also incorporates DA. 

Figure 1 Overall architecture of the proposed PDA (see online version for colours) 

sampling & grouping layer pointnet directional attention

interpolationlayer

unit point net

insulator tower transmission lineinsulator

Radar 
scanning

  

3.2 Directional attention 

The squeeze-and-excitation (SE) attention module (Hu et al., 2018) effectively enhances 
the evaluation of channel importance; however, its design overlooks spatial information, 
which limits its performance in complex scenes. This shortcoming makes it challenging 
for the SE module to optimally capture fine-grained local features or long-range 
dependencies. Similarly, the convolutional block attention module (CBAM) (Woo et al., 
2018) achieves a balance between channel and spatial attention but tends to focus more 
on local features, lacking effective integration of global context information. As a result, 
this limitation may prevent the model from fully leveraging global features when 
processing large-scale or complex images, adversely affecting overall performance. 

While the self-attention mechanism (Vaswani et al., 2017) is theoretically capable of 
capturing global features, its computational complexity increases quadratically with input 
size, resulting in significant computational and memory overhead when dealing with 
high-resolution images. This limitation restricts its applicability in resource-constrained 
environments. Although the non-local attention module (Wang et al., 2018) can capture 
long-range dependencies, its high computational demands—especially in high-resolution 
images—may lead to inefficiencies in real-time applications, impacting practicality. 
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As illustrated in Figure 2, our DAM comprises spatial self-attention (SSA) and 
channel self-attention (CSA). In contrast to previous attention modules, the DAM 
effectively balances accuracy and parameter efficiency. 

Figure 2 Overall architecture of the proposed DA (see online version for colours) 

Spatial Self-attention Channel Self-attention Concat

SSA

CSA

CSASSA

Split

 

Given a feature map F ∈ ℝH×W×C, we separate it into two feature maps of equal size, 

specifically 
CH W
2

1F
× ×

∈  and 
CH W
2

2F .
× ×

∈  We then compute SSA and CSA for the two 
features separately. Finally, we reshape and stack the output feature maps to obtain a 
robust feature map H W C

12F .× ×∈  
Next, we explore the advantages of separately computing SSA and CSA. First, the 

refinement of feature representation is achieved by focusing on the specific properties of 
different feature maps. SSA emphasises the spatial distribution of features, enabling the 
capture of subtle variations in local features, which is crucial for recognising important 
details in images (Vaswani et al., 2017). In contrast, CSA focuses on the relationships 
between different channels, helping to uncover the complementarity among channel 
features, thus enhancing the overall feature discrimination capability (Hu et al., 2018; Niu 
et al., 2021). 

Secondly, performing self-attention calculations on smaller feature maps can 
significantly reduce computational complexity. The computational complexity of 
traditional self-attention mechanisms is proportional to the square of the input size, which 
results in substantial resource consumption when processing high-resolution images 
(Shen et al., 2021). By processing feature maps separately, the model can handle local 
features with linear complexity, thereby improving computational efficiency, which is 
particularly important in large-scale datasets (Touvron et al., 2021). 

Finally, this separate processing strategy can enhance information interaction among 
features. The combination of SSA and CSA allows the model to leverage both local and 
global information simultaneously, establishing long-range dependencies. This  
multi-scale information fusion enhances the model’s expressive capability, enabling it to 



   

 

   

   
 

   

   

 

   

   10 S. Li et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

capture more complex feature patterns and thereby improving task performance (Guo  
et al., 2022). 

3.2.1 Spatial self-attention 
This paper proposes a spatial attention module, as shown in Figure 3. To reduce the 
computational cost of matrix multiplication, we compress the channels of the input 
feature map by a factor of r2. Next, the pixels in the spatial direction are rearranged along 
the channel direction of the feature map, which reduces the spatial resolution while 
retaining spatial information. This operation allows the same number of pixels to 
participate in the self-attention computation while decreasing the computational burden, 
enhancing the integration capability of spatial information and enriching the contextual 
information of local regions. Specifically, the channels that were compressed are restored 

to the input feature map size of .
2
CH W× ×  

Figure 3 Overall architecture of the proposed SSA (see online version for colours) 

R

R&TC

C

P

P R R

C 1×1Convolution R1×1Convolution Reashpe P Permutation

R&T

1×1Convolution

Reshape&Transpose Matrix Multiplication

 

Given the input point cloud feature map F ∈ ℝH×W×C, we first separate the feature map 
height, width, and number of channels of the feature map, respectively. 

We perform a flattening operation on the Q feature map, while applying channel 
compression on K and V: 

1 1 1 1reshape( ), Conv ( ), Conv ( )Q K VX Q X K X V× ×= = =  (1) 

where 
CH W
2

QX ,
× ×

∈  and 2
CH W

2r
K VX , X .

× ×
∈  After that, by rearranging the operation, 

we align the spatial pixels of the feature map along the channel direction. This operation 
enables each pixel to participate in the attention computation while reducing the 
computational burden. 

We utilise the SSA mechanism to establish long-range dependencies between pixels. 
The spatial attention calculation formula is as follows: 
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( )SSA , ,
T

Q V
Q K V V

X X
X X X B X

D

 
 = + ⋅
 

 (2) 

where B represents the relative position encoding, and 
2rD
2

=  is used for normalisation. 

Through this operation, although the spatial resolution of our feature map is reduced, the 
number of pixels participating in the computation remains unchanged. This strengthens 
the network’s ability to extract spatial and local information. Next, we reshape the feature 
map to match the size of the input feature map for subsequent processing. We denote the 
output feature map of equation (2) as A ∈ ℝH×W×C, with the reshaping process described 
in equation (3): 

reshape( )SSAV A=  (3) 

where VSSA represents the feature map generated by the SSA module, and 
CH W
2

SSAV .
× ×

∈  

3.2.2 Channel self-attention 
In Figure 4, we compressed the number of channels in the feature map and rearranged the 
spatial pixels into the channel direction of the feature map, achieving participation of 
each pixel in the computation while reducing the computational load. This operation 
preserves spatial information and enhances the extraction of local information. To further 
strengthen the long-range relationships between pixels, as shown in Figure 4, we 
designed the channel attention module to extract information from the feature map in the 
channel direction. 

( )CSA , ,
T
Q K

Q K V V
X X

X X X X
D

= ⋅  (4) 

Here, set the feature map output by Formula (4) to B, and then change the shape of B to a 
feature map with the same size as the input feature map. 

reshape( )CSAV B=  (5) 

The pixel suggestions for remote dependencies along the channel direction of the feature 
map can aggregate information from different subspaces, demonstrating good 
performance in processing spatial and channel information. By calculating channel 
dependencies, it is possible to aggregate the receptive fields of channel information, 
establishing long-range interdependencies between each channel and the others. Without 
the effect of channel attention, the information of each channel does not establish 
connections with the information from other channels, which is detrimental to point cloud 
segmentation. On the other hand, CSA enables information interaction between channels 
and establishes long-range interdependencies between pixels. 
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Figure 4 Overall architecture of the proposed CSA (see online version for colours) 
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3.3 The workflow of PDA network architecture 

PointNet++ builds upon PointNet by constructing a hierarchical point grouping, 
aggregating larger local regions within the hierarchical point cloud structure. The 
aggregation abstraction layer of PointNet+ + consists of a sampling layer, a grouping 
layer, and a PointNet layer. The PDA receiver is an N × (d + C) matrix of point  
cloud input, representing N points with d dimensional geometric information and  
C-dimensional features. 

In the sampling layer, one point from the point cloud serves as a centroid, scanning 
surrounding points within a radius r to construct a local region. The grouping layer then 
collects and groups the points, where the input size is N × (d + C) and the centroid 
coordinates are of size N′ × d. For each centroid, K points are sampled within a radius r. 
Consequently, the dimensionality of the input point cloud data transforms from  
N × (d + C) to N′ × K × (d + C), where each group represents a local region. Here, K 
denotes the number of points in the neighbourhood of the centroid. 

Subsequently, the PointNet layer receives point cloud data of size N′ × K × (d + C), 
where N′ represents the number of points in the local region. The output point cloud data 
from the PointNet layer is generated by aggregating the centroids and the encoded local 
features of the centroid neighbourhoods, resulting in point cloud data of size N′ × (d + 
C′). The point cloud features and spatial information are combined and grouped into a 
larger point cloud set, serving as input for the next DA module, generating higher-level 
point cloud features until all point sets are aggregated to form the complete point cloud 
features. The DA module establishes global long-range dependencies within the point 
cloud through a stacked CSA module and a SSA module. 

Similarly, the decoder of the PDA consists of three feature propagation modules. It 
first receives high-level features from PointNet++, which are extracted through a  
multi-level point feature abstraction (set abstraction, SA) and feature propagation (feature 
propagation, FP) process, capable of representing different hierarchical information of the 
point cloud. During the feature propagation phase, the decoder utilises connections from 
low level features to high-level features, propagating features to all original points 
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through interpolation and skip connections. This process ensures that detailed features are 
not lost during abstraction. 

The transfer of features during the propagation process can be described by the 
formula N1 × (d + c). Here, N1 represents the number of input points, d is the dimension 
of each point feature, and c is the dimension of the additional contextual features. In this 
process, shallow features are computed based on the deep features of each point in the 
current network, transferring the N1 × (d + c) point features to Nl–1 points, where Nl–1 and 
N1 represent the number of points before and after downsampling in the SA module, 
respectively. This mechanism ensures that each target point can obtain rich information 
from the original point set, thereby enhancing the quality of feature representation. 

The decoder typically employs interpolation methods such as inverse distance 
weighting (IDW) to transfer abstract features back to the original points. This approach 
ensures that features closer to the target points exert a greater influence on the 
interpolation results, effectively capturing local contextual information. Through skip 
connections, the decoder fuses features from different layers, combining the abstract 
capabilities of high-level features with the detailed information of low-level features. 
This fusion significantly enhances the model’s performance in complex scenes. 

To further improve feature extraction capabilities, we embed the Directional 
Attention (DA) module into the PointNet layer. The DA module comprises both a SSA 
module and a CSA module. The CSA module dynamically adjusts the weights of feature 
channels, enabling the decoder to automatically identify and prioritise specific features 
while suppressing less important ones. This mechanism enhances the accuracy and 
effectiveness of the outputs generated by the decoder. 

The SSA module improves the understanding of both local and global context by 
capturing the spatial relationships between points. This allows the decoder to fully 
consider the dependencies among different points in the point cloud, leading to the 
generation of detail-rich outputs and improving the model’s adaptability to complex 
scenes. The integration of these two modules enables the decoder to more effectively 
synthesise information, resulting in more accurate and detailed classification results or 
segmentation masks. 

4 Experiment and result analysis 

This study employs LiDAR laser scanning to obtain point cloud data related to power 
transmission lines and towers across provinces such as Jiangsu, Sichuan, and Jiangxi. 
Laser scanning is a precise measurement technology particularly well-suited for capturing 
data from complex structures. We utilised high-precision ground laser scanners, including 
models from Leica and Faro. Selecting appropriate scanning positions is crucial to cover 
all key areas; therefore, multiple scans from different angles and heights are 
recommended to enhance data completeness and accuracy. For post-processing, 
professional software such as Cyclone or Cloud Compare was used for data stitching, 
denoising, and generating 3D models, resulting in clear point cloud data that facilitates 
subsequent analysis. 

In addition, drone aerial photography provides an efficient method for covering large 
areas. Drones equipped with high-resolution cameras or LiDAR sensors, such as those 
from the DJI Matrice series, were employed. Before conducting aerial photography, a 
detailed flight plan was developed to ensure complete coverage of all important areas. 
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Appropriate flying heights and image overlap were set according to specific requirements 
to obtain high-quality images or point clouds. After the flight, software like Pix4D or 
Drone Deploy was utilised to convert the images into point cloud data for detailed 3D 
modeling and analysis. 

Once the point cloud data is obtained, processing software such as MeshLab or PDAL 
is employed for cleaning, filtering, and feature extraction, ensuring the accuracy and 
reliability of the data. These processing steps aid in identifying key features, such as the 
height of power lines and the condition of insulators, thereby providing valuable support 
for subsequent analysis and decision-making. 

4.1 Experiment implementation 

In this research, we conducted experiments on an Ubuntu 16.04 server system equipped 
with an NVIDIA GeForce RTX 4090 graphics card and an Intel Core i5 10400F 
processor. This configuration provided ample computational power to handle the 
demanding tasks involved in training and evaluating our point cloud semantic 
segmentation model. We utilised Python 3.10.12 and PyTorch 2.0.1, which are widely 
used tools in the deep learning community, for implementing our experiments. 

During the training phase, we meticulously tuned our hyperparameters to ensure 
optimal performance. The model underwent 200 epochs of training, allowing it to learn 
iteratively from the dataset. The learning rate was set to 0.01, and the Adam optimiser 
(Kingma, 2014) was used, a widely adopted method for optimising deep neural networks. 
These settings were chosen to balance model convergence and computational efficiency, 
enabling effective training. 

By leveraging this experimental setup, we thoroughly evaluated the performance of 
our point cloud semantic segmentation model. The combination of powerful hardware 
and robust software frameworks provided the necessary tools to conduct comprehensive 
experiments and draw meaningful conclusions from our research. 

4.2 Loss function 

The point cloud data of insulators exhibits significant class imbalance. To address this 
issue, we introduced focal loss (FL) (Quach et al., 2020) into the training process of the 
insulator point cloud semantic segmentation model. FL is a loss function specifically 
designed to tackle class imbalance problems. It effectively enhances the model’s focus on 
rare classes, accelerates the convergence speed of the model, and improves the 
recognition accuracy of small classes. The computation process of the FL loss function is 
illustrated as shown in Formula (6), 

( )( )FL ( ) log 1 y
y y yL y α p p= − −  (6) 

In the above formula, α represents the class weights, similar to the class weights in 
weighted cross-entropy. The coefficient γ is used to adjust the model’s focus on  
hard-to-classify samples. By reducing the weight of easy-to-classify samples, γ enables 
the model to focus more on difficult-to-classify samples during training. 
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4.3 Evaluation indicators 

This study utilises evaluation metrics derived from the confusion matrix to 
comprehensively assess the model’s performance in point cloud semantic classification 
tasks. The confusion matrix is shown in Table 1. TP refers to instances where the model 
correctly identifies positive samples as positive, FN denotes cases where the model 
incorrectly classifies positive samples as negative (false negatives or omissions), FP 
indicates situations where the model wrongly labels negative samples as positive (false 
positives), and TN represents instances where the model correctly categorises negative 
samples as negative. 
Table 1 Confusion matrix 

  Predicted 
  Positive Negative 
Actual Positive TP FN 

Negative FP TN 

To provide a comprehensive evaluation of the experimental results, accuracy (pre), recall 
(rec), intersection over union (IoU) and mean intersection over union (mIoU). 

The calculation process of precision is shown in Formula (7), 

I pre
TP

TP FP
=

+
 (7) 

The calculation process of recall rate is shown in Formula (8), 

Irec
TP

TP FN
=

+
 (8) 

The calculation process of IoU is shown in Formula (9), 

TPIoU
TP FP FN

=
+ +

 (9) 

The calculation process of mIoU is shown in Formula (10), 

0

1
1

k

i

TPmIoU
k TP FP FN=

=
+ + +  (10) 

4.4 Ablation study 

As shown in Table 2, we conducted a series of experiments that sequentially removed or 
replaced these components, demonstrating a decline in overall performance when each 
component was absent. The introduction of the CSA component resulted in an increase of 
1.02 in Ipre and an increase of 1.07 in Irec compared to the baseline model PointNet+ +. 
The component achieves feature correction by eliminating irrelevant and redundant 
features. Additionally, with the sequential addition of CSA and SS, the PDA model, 
compared to PointNet++, showed increases of 2.44 and 2.4 in Ipre and Irec, respectively. 
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Table 2 Perform ablation experiments on different components of the model 

Module Ipre% Irec% 
PointNet++ 92.12 93.14 
CSA 93.14 94.21 
SSA 93.89 94.68 
DA 94.12 95.23 
PDA 94.56 95.54 

Figure 5 Ablation experiment for visual comparison using PDANet (see online version  
for colours) 

（a） （b） （c） （d）

（e） （f） （g） （h）  

Note: The first row (a-d) respectively represents the real labels of four different shapes, 
and the second row (e-h) respectively represents the predicted segmentation result 
map corresponding to the first row (a-d). 

To further illustrate the role of the modules, we visualised the segmentation results for 
different shapes. As shown in Figure 5, predictive segmentation results of the PDA model 
under four different shapes. We randomly selected four different types of transmission 
towers and visualised them. In the visualisation, green represents insulators, and e, f, g, h 
represents the backbone, embedded SSA, embedded CSA, and DA, respectively. From 
image f, it can be seen that, except for the slight imperfections in image f, all other 
images align with the label prediction results. This indicates that combining CSA and 
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SSA can establish long-range relationships from a global perspective, thereby improving 
the performance of predictions. 

4.5 Comparative experiments with advanced methods 

Based on the experimental results shown in Table 3, the PDA model shows considerable 
enhancements over PointNet and PointNet++ in several categories, such as lion, tower, 
and insulator. Notably, in the tower category, the IoU for PDA reached 83.1, highlighting 
its clear advantage in overall performance and achieving a mean IoU (mIoU) of 69, 
which far exceeds that of other models. 

The effectiveness of the PDA model can be credited to its integrated channel attention 
and spatial attention components, which allow the model to concentrate more efficiently 
on key features, thus improving classification precision. In contrast, PointNet has a 
relatively low IoU of 33.2 for transmission lines, while both PointNet and PointNet++ 
have IoUs below 50 for insulators, indicating their struggles to effectively segment small 
point cloud objects. In contrast, our model exhibits strong performance across the lion, 
tower, and insulator categories. 
Table 3 Comparative experiments with advanced methods 

Model 
IoU 

mIoU 
Lion Tower Insulator 

PointNet 33.2 55.2 34.2 40.9 
PointNet++ 47.2 52.9 48.1 49.4 
PDA 61.3 83.1 62.6 69 

To further confirm the benefits of our approach over alternative methods, we performed a 
comparative evaluation of the enhanced models, such as PointNet and PointNet++, as 
shown in Figure 6. We selected four different labeled shapes for this comparison. In the 
first and fourth rows of the second column, the segmentation results for insulators are 
clearly inconsistent with the ground truth labels. The primary reasons for this discrepancy 
are changes in lighting and the proximity relationship between pixels, which hinder the 
differentiation of insulators and lead to segmentation errors. PointNet++ addresses this 
issue by considering local region features, resulting in improved segmentation metrics for 
lines and insulators. As demonstrated in the third column, the segmentation results from 
PointNet++ show significant improvement over those of PointNet. 

However, it is important to note that the transmission line in the third row of the third 
column was not clearly segmented by PointNet++, as it was misclassified as insulator 
strings. A similar issue occurs in the first row of the third column, where the same 
phenomenon is observed. This challenge primarily arises from the lack of differentiation 
between classes and insufficient contextual information. To address this issue, we 
embedded SSA and CSA into PointNet++ to capture pixel dependencies in both channel 
and spatial dimensions, while distinguishing the differences among classes. Notably, in 
the implementation of CSA and SSA, we employed compression and rearrangement of 
pixels. This approach allows for achieving strong segmentation performance without 
increasing computational overhead. 
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Figure 6 Visualised experimental results compared to state-of-the-art methods (see online 
version for colours) 

Real label PointNet PointNet++ Ours  

Note: From left to right are the Real labels, segmentation results of PointNet, PointNet++ 
and PDA models. 

5 Conclusions 

Segmenting insulators is essential for ensuring the reliable transmission of electricity. 
This paper utilises data obtained from LiDAR scanning for precise segmentation, serving 
as an effective tool for risk management. We propose a PointNet++ model based on 
directional attention, referred to as PDA, which provides a robust method for segmenting 
point cloud transmission corridors. PDA adopts the end-to-end structure of PointNet++ 
and incorporates CSA and SSA into both the encoding and decoding sections. CSA 
handles pixel interactions across channels in the feature maps, differentiating between 
pixels of the same class and those from different classes, while SSA creates spatial 
dependencies between pixels to capture detailed contextual information. By leveraging 
CSA and SSA, we obtain global pixel dependencies and effectively capture the positional 
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and spatial relationships of various features, leading to significant improvements in point 
cloud segmentation. In future research, we will place greater emphasis on the refined 
segmentation of insulators within transmission corridors. Additionally, while prioritising 
accuracy, we will also consider real-time requirements to enhance the practical 
applicability of our model. 
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