

International Journal of Information and Communication
Technology

ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

Concurrent execution of transactions in blockchain: a
framework for on-chain-off-chain nested contract processing

Yufang Xie, Guoqiong Liao, Yinxiang Lei

Article History:
Received: 27 October 2024
Last revised: 23 November 2024
Accepted: 25 November 2024
Published online: 20 January 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2025 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijict
http://www.tcpdf.org

 Int. J. Information and Communication Technology, Vol. 26, No. 1, 2025 73

Copyright © The Author(s) 2024. Published by Inderscience Publishers Ltd. This is an Open Access Article
distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

Concurrent execution of transactions in blockchain:
a framework for on-chain-off-chain nested contract
processing

Yufang Xie*
School of Information Management and Mathematics,
Jiangxi University of Finance and Economics,
Jiangxi, 330032, China
and
Jiangxi Science and Technology Normal University,
Jiangxi, 330038, China
Email: myResearch0312@163.com
*Corresponding author

Guoqiong Liao
Virtual Reality (VR) Modern Industry College,
Jiangxi University of Finance and Economics,
Jiangxi, 330032, China
Email: researchwork000@126.com

Yinxiang Lei
School of Information Management and Mathematics,
Jiangxi University of Finance and Economics,
Jiangxi, 330032, China
and
Jiangxi University of Traditional Chinese Medicine,
Jiangxi, 330004, China
Email: paperSubmission33@163.com

Abstract: With its natural benefits of decentralisation and immutability,
blockchain technology has become rather popular in smart contracts, supply
chains, and banking. It struggles greatly, nevertheless, in terms of scalability
and transaction processing efficiency. Thus, in this regard, these studies present
the execute-order-re-execute and validate (EOR) architecture to handle these
problems. By means of off-chain execution, on-chain ordering, on-chain
re-execution and verification phases, the EOR architecture maximises
transaction processing, hence improving system performance and security. For
nested contract concurrency it uses a two-phase locking technique, and for
effective verification a lockchain architecture. Offering a significant means for
extending blockchain uses, experimental results show a 40% boost in
transaction processing efficiency, a 2.5% transaction abort rate, and enhanced
system stability in high-conflict settings.

Keywords: blockchain; concurrency control; nested contracts;
on-chain-off-chain.

 74 Y. Xie et al.

Reference to this paper should be made as follows: Xie, Y., Liao, G. and
Lei, Y. (2025) ‘Concurrent execution of transactions in blockchain:
a framework for on-chain-off-chain nested contract processing’,
Int. J. Information and Communication Technology, Vol. 26, No. 1, pp.73–88.

Biographical notes: Yufang Xie received Master’s degree from the Adelaide
University in 2011. Currently, she is a Doctoral student in the Jiangxi
University of Finance and Economics, and works in Jiangxi Normal University
of Science and Technology. Her research interests include blockchain and
database.

Guoqiong Liao is a Professor at the Jiangxi University of Finance and
Economics and the Director of the Virtual Reality (VR) Modern Industry
Institute. His research interests include big data technologies, databases, data
mining, meta-universe, blockchain and social networks.

Yinxiang Lei received her Master’s degree from the Nanchang Hangkong
University in 2013, and a Doctoral student in Jiangxi University of Finance and
Economics. Her research interests are blockchain and database.

1 Introduction

Blockchain technology has grown to be a pillar in the domains of financial technology
and distributed computing since Satoshi Nakamoto first proposed the idea in 2008 (Zhao
et al., 2016). Blockchain’s key benefit is that it offers a transparent, decentralised,
tamper-proof data recording system. From financial transactions to smart contracts to
supply chain management and government regulation, blockchain applications are
growing and handling more and more sophisticated data as they do. But this expansion
also brings certain difficulties, especially with relation to system scalability and
transaction processing efficiency (Nasir et al., 2022).

Conventional blockchain systems, like Bitcoin and Ether, force all transactions to be
carried out and validated on the chain, therefore restricting transaction flow. For instance,
whereas Ether is just competent of roughly 30 transactions per second, the Bitcoin
network can handle almost seven transactions per second. These constraints have mostly
limited the use of blockchain technology in a greater spectrum of contexts (Buterin,
2014).

Scholars have put up some ideas to overcome these restrictions. Among the off-chain
scaling alternatives, Dwivedi et al. (2021) suggested Plasma, a sidechain
technology-based scaling method that transfers part of the transaction processing
off-chain, hence increasing efficiency. Furthermore greatly enhancing the transaction
processing capacity of the Bitcoin network, Zabka et al. (2022) introduced the lightning
network, a system using stateful channels to enable instantaneous off-chain payments.

Regarding on-chain scaling methods, scholars have investigated dynamic block
resizing and sharding approaches. For instance, Xu et al. (2017) suggested a dynamic
block sizing system to fit the several network requirements. Aiming to increase the
scalability of the network, Liu et al. (2022) later closely examined blockchain sharding
methods.

 Concurrent execution of transactions in blockchain 75

These methods somewhat solve the performance issue, but they sometimes call very
sophisticated network coordination systems or compromise of some of the decentralised
characteristics of blockchain. We thus propose an execute-order-re-execute and verify
(EOR) transaction processing framework that enables high concurrency, i.e., EOR, in
order to overcome the issues of ineffective transaction processing and poor system
scalability in blockchain systems. By use of blockchain transaction processing
mechanism optimisation, the EOR framework separates transaction processing into three
phases: off-chain execution, on-chain sequencing, and on-chain re-execution and
verification, thereby improving system performance and security.

The contributions and innovations of this paper include:

1 Increases the system’s scalability and lessens the load on the chain’s nodes’ storage
and computing. Through assigning the data storage and part of the transaction
processing to the third-party SPs under the chain, the EOR framework essentially
lowers the resource consumption of the nodes, so improving the scalability of the
system.

2 Concurrency control techniques help to increase node processing transaction
efficiency. The EOR structure helps to arrange SPs and transaction activity into
several groups for concurrent running. SP nodes of the NCEP-2PL system may
simultaneously handle several transactions including concurrent execution of nested
contracts.

3 It guarantees system security even when transaction processing’s efficiency is raised.
Given the unreliable character of the off-chain execution environment, the EOR
framework guarantees the security of the blockchain by means of fast chain
verification using the NCVP-LC protocol, so ensuring that the transaction execution
results are accurate without depending on further hardware or sophisticated
cryptography.

4 Increases the transaction processing efficiency in highly conflict environments. By
means of conflict identification and resolution in the on-chain sequencing phase, the
EOR framework re-executes transactions aborted owing to conflicts, so mitigating
the issue of transactions not being able to be committed in high conflict
environments and so improving the stability and efficiency of the system.

2 Relevant technologies

2.1 Blockchain

Fundamentally a distributed ledger system running on a peer-to-peer network, blockchain
helps to enable decentralised data storage (Sarmah, 2018). Every node in the network
under this system keeps a whole history of transactions, which, once found and included
to the blockchain, become quite difficult to change, therefore ensuring data immutability
and traceability. Fundamentally, the decentralised character of blockchain eliminates the
dependence on centralised power since no single node can manage the whole network
and therefore increases the system’s resistance to attack and censorship. Furthermore,
blockchain’s open character lets any user check and audit transaction records, so boosting
the system’s whole legitimacy.

 76 Y. Xie et al.

The blockchain’s data architecture consists of a chain formed from a sequence of
connected blocks arranged chronologically (Wei et al., 2022). Every block has not only
transaction data from a given period but also the hash value of the one before it; this
arrangement creates the special chain structure of the blockchain. As Figure 1 shows,
every block in a blockchain is made of numerous fundamental elements guaranteeing
network integrity and security.

Figure 1 A model of the blockchain (see online version for colours)

Includes

Merkle Tree Structure

Transactions

Block Header

Parent Block Hash Version Number Timestamp Random Number DV Merkle Tree

Contains

Root Block Body

Contains

HashA

HashAB

HashBHashC

HashCD

HashD

HashABCD

TradeA TradeB TradeC TradeD

Sub Chunk

Part of

This picture shows the architecture of a blockchain block, stressing the block header,
transaction list, and cryptographic hash connecting to the next block, therefore offering a
visual assistance to help one to grasp the composition and purpose of every block.

• Parent block hash: Forming a chain structure, the hash value of the prior block,
which links the current block to the blockchain, links before the current block,
encryption of the whole blockchain data generates this hash, where H stands for the
hash function.

()=Parent block hash H previous block (1)

• Version number: The version number of the blockchain protocol helps to guarantee
that every node in the network recognises the format and guidelines of the block
data. Usually, this value is a set integer meant to differentiate across several
blockchain protocols.

=Version protocol version (2)

• Timestamp: Where t is the Unix timestamp at the time the block was formed, the
timestamp helps ascertain the sequence of the blocks in the blockchain and offers the
temporal background of the transaction.

=Timestamp t (3)

• Difficulty value: Where D is a dynamically changed value depending on the network
arithmetic, the difficulty value is a network parameter that regulates the complexity
of the proof of work algorithm and guarantees that the rate of production of new
blocks corresponds the expected rate of the network.

=Difficulty D (4)

 Concurrent execution of transactions in blockchain 77

• Merkle tree: By means of a hash function, which enables nodes in the network to
rapidly verify the existence and integrity of a transaction, so preserving the
compactness of the block data, Merkle tree is a tree data structure that organises
multiple transactions within a block into a tree structure and combines them into a
single root hash, the Merkle root (Diván and Sanchez-Reynoso, 2021).

()()()1 =  Merkle root hash H H H H Transation Hash (5)

• Proof of work (PoW): Where target is a value less than or equal to 2,256 and
difficulty is a difficulty parameter set by the network. Under PoW blockchain
systems, like Bitcoin, miners must identify a specific value (nonce) such that, when
added to this value, the hash value of the block header satisfies a given difficulty
criteria. Target is a value less than or equal to 2,256; difficulty is a parameter the
network sets.

Miners change the nonce value in the block header as part of the PoW process to
generate a hash that satisfies the network difficulty criterion. If the network calls for
a hash with at least four leading zeroes, for example, miners would run through
nonce values until they come across one that generates a hash like ‘0000abcde…’.

2562= ×Target Difficulty (6)

Blockchain technology is based on these elements taken together, so it is a
dependable, open and quick distributed ledger system.

2.2 Concurrency control

Concurrency control techniques are required in blockchain systems to preserve integrity
and data consistency since several nodes could process transactions concurrently (Meng
et al., 2021). Concurrency control aims to guarantee that there is no inconsistency or data
loss and that the state of the system is constant even in cases of concurrent multiple
transactions. Ensuring data consistency and integrity depends mostly on concurrency
control (Paik et al., 2019). While the tamperability of blockchain demands that once a
transaction is confirmed, the distributed character of blockchain means that each node
must independently confirm the authenticity of a transaction. Concurrency control
policies must thereby guarantee the atomicity and durability of transactions, which
presents special difficulties. In this context, as depicted in Figure 2, we propose two
novel concurrency control protocols: the NCVP-LC protocol and the NCEP-2PL
protocol.

To control transaction concurrency the NCEP-2PL system uses a two-phase locking
mechanism. Transactions in the first phase lock the data items they must access for
reading or writing. After their activities, transactions release these locks in the second
phase therefore enabling subsequent transactions to access the data. This system
guarantees data consistency by making sure no two transactions concurrently change the
same data item.

The NCVP-LC system logs and checks transaction execution using a lockchain
architecture. The path of every transaction is noted as a chain of locks and data
operations. The transaction’s execution on-chain is then confirmed using this chain,
therefore guaranteeing accurate and safe off-chain execution results.

 78 Y. Xie et al.

Figure 2 Structure of NCEP-2PL and NCVP-LC protocol (see online version for colours)

NCEP-2PL Protocol NCVP-LC Protocol

Start

Extended Locking Phase
Acquire locks for all related data items L(Ti, Dj)

Start
Supports EOR Framework

Execute Transactions

Extended Unlocking Phase
Release locks for all related data items U(Ti, Dj)

End

Off-Chain Transaction Execution

Record Lockchain
LC(Ti)

On-Chain Validation Phase
Replay Lockchain V(Vj, LC(Ti))

Transaction Valid Abort Transaction

End

Supports EOR Framework

Because of their ordered, linked character, knowledge graphs are especially suited for
revealing intricate connections inside data. By modelling entities and their interactions as
nodes and edges respectively, they enable the application of graph analytics to find
patterns and insights maybe not clear in other data structures. For our EOR system, this
functionality is absolutely essential since it allows intelligent analysis and processing of
enormous volumes of blockchain data.

Blockchain technology is based on these elements taken together, so it is a
dependable, open, quick distributed ledger system.

Designed to increase transaction processing efficiency in blockchain systems, the
NCEP-2PL protocol – a two-phase locking-based method for the execution of layered
contracts – aims to By means of a two-phase locking mechanism, hence extending the
conventional two-phase locking protocol to support concurrent execution of nested
transactions, the protocol permits concurrent execution of transactions and nested
contracts in an off-chain context. Every transaction in NCEP-2PL has to acquire locks on
all pertinent data items before execution and release these locks following completion of
the transaction. Two phases comprise this process: the first is the prolonged locking
phase, in which the transaction gains the required locks; the second is the extended
unlocking phase, in which case the locks are released following data processing
completion. In this sense, the NCEP-2PL system guarantees the atomicity and
consistency of transactions, therefore enhancing the concurrent processing capacity of the
system.

Designed to rapidly validate transactions carried out under the chain on the chain, the
NCVP-LC protocol is a nested contract validation mechanism grounded on the lockchain
structure. Like a chained table, where each data access operation is noted as a node and
the nodes are connected to one another by the order of locks, the protocol records data
access and locking information using the lockchain structure. Replaying the lockchain

 Concurrent execution of transactions in blockchain 79

allows nodes on the chain to deterministically execute transactions concurrently during
the verification phase, therefore confirming the accuracy of the execution along the chain.
This method guarantees blockchain security while avoiding the necessity to depend on
more hardware or intricate cryptographic methods.

We can propose the following formula to better specify how these two protocols
operate and explain the locking and unlocking mechanism of a transaction in the
NCEP-2PL protocol. Imagine Ti must access a data item Dj in a transaction. Transaction
Ti must get a lock on Dj, denoted L(Ti, Dj), in the extended locking phase. Transaction Ti
releases the lock after operation on Dj, represented as U(Ti, Dj), in the extended unlocking
phase. One can show this method as follows:

() () (), , ,→ →i j p i j i jL T D O T D U T D (7)

where L stands for the locking action; Op for the operation on data item Dj; U for the
unlocking action.

We can explain the transaction verification procedure for the NCVP-LC protocol by
means of this formula. Assume that after a transaction Ti is carried out under the chain; its
matching lockchain is LC(Ti). Replaying LC(Ti), represented as V(Vj, LC(Ti)), the
verification node Vj ensures the accuracy of transaction Ti in the on-chain verification
phase. Should the replay go through, transaction Ti’s execution outcome is accurate; else,
transaction Ti must be cancelled. One may depict this procedure as follows:

()(), →i ij The execution result of the transaction T is corV V LC T rect (8)

(, ()) →j i
The execution result of the transaction TI is wrong
and it needs to be abo

V V LC T
rted

 (9)

These two protocols ensure atomicity and permanence of transactions, therefore enabling
the EOR framework to enhance the concurrency processing capability and security of the
blockchain system. These protocols’ design considers the special qualities of blockchain
systems, such distributed authentication and immutability, therefore allowing the EOR
framework to efficiently handle problems with concurrency in blockchain systems.

2.3 Nested contracts

A breakthrough idea in blockchain technology, smart contracts let us enforce contractual
terms transparently and decentralised without middlemen (Mik, 2017). Blockchain’s
smart contract capability adds still another level of application. Smart contracts are
basically digital contracts based on pre-defined criteria stored on the blockchain,
self-executing digital contracts with terms automatically performed upon certain
conditions satisfied.

A smart contract’s working concept can be reduced as a conditional triggering
mechanism whereby every clause of the contract is expressed logically. The smart
contract acts automatically in line with the pre-defined conditions when they are satisfied.
One can depict this by the following logical flow:

{ }(, ,)= =Contract C C P S M (10)

 80 Y. Xie et al.

where smart Contract is C; Predicate is P; State is S; performed action is M. The smart
contract automatically carries out the related action M when the condition P holds,
therefore altering the state S of the contract.

Local and state variables can both be included into smart contracts. Local variables
exist just during contract execution; state variables are kept on the blockchain. Usually,
changes to state variables call for triggered transactions:

=State variable New value (11)

Smart contracts’ fundamental ability to automate and decentralise contract execution in
many application contexts helps to define their working concept (Zheng et al., 2020).
From the financial industry to supply chain management, identity verification, and many
other sectors, the application scope of smart contracts is growing as blockchain
technology develops; however, a single smart contract is usually inadequate to manage
all the business logic. By now the idea of nested contracts emerged. A nested contract is a
smart contract capable of calling another smart contract, hence creating a chain of
contract calls. Implementing sophisticated business logic and creating modular
blockchain applications calls for this approach (Six et al., 2022). Nestled contracts –
which enhance transaction processing complexity – invite mutual invocations between
contracts, hence enhancing their flexibility and scalability even while they complicate
matters. One can depict the execution of a hierarchical contract by means of a recursive
formula.

() ()()1 2 1 2, , , =  n nNested contract execution C C C C C C (12)

This formula uses C1, C2, …, Cn to symbolise the smart contracts called upon in turn.
Every contract may set off the following one, creating an invocation chain. Although this
recursive execution approach offers a strong instrument for developing sophisticated
business logic, it also presents significant difficulties particularly in concurrent execution
and transaction management.

3 EOR transaction processing framework

3.1 Overview of the EOR framework

Node sort to maximise performance and scalability, the EOR framework divides system
nodes into two primary categories: on-chain and off-chain. While on-chain nodes
function in a lightweight way, storing just the required little amount of data and
concentrating on transaction sequencing and validation, off-chain nodes assume the main
responsibility for transaction processing and data storage. While increasing general
stability and efficiency, this architecture distributes the heavy computation and storage
chores to the off-chain nodes, therefore relieving the pressure on the on-chain nodes and
guaranteeing the decentralised character of the system. The framework separates nodes
specifically into four distinct roles with various obligations.

This can be represented by the following code block:

 Concurrent execution of transactions in blockchain 81

// Example of a simple smart contract for demonstration purposes
contract SimpleContract {
 // State variable
 uint256 public data;
 // Function to update data
 function updateData(uint256 _data) public {
 data = _data;
 }
 // Function to retrieve data
 function getData() public view returns (uint256) {
 return data;
 }
}

Client nodes connect with the system via the blockchain network and send tasks to be
completed; they are in charge of starting transaction demands.

Found under the chain, service provider (SPs) nodes handle associated data storage
and specific transaction processing activities. Having great computing and storage
capacity, they are the primary workers used in storage and execution.

These on-chain nodes serve to gather transaction execution results from SPs and use
particular algorithms to arrange these transactions in readiness for next consensus
procedures.

Also found on the chain, validation and re-execution nodes (VR nodes) are in charge
of verifying the accuracy of the transaction results provided by SPs and, should necessary
ensure that all transactions follow the consensus of the blockchain by means of
re-execution of the transactions.

Data organisation under the EOR structure, data security and accessibility are
guaranteed while the data storage approach seeks to lower the load on the on-chain
nodes. The framework uses an off-chain storage mechanism that moves vast volumes of
data and transaction execution information to off-chain nodes in order to reach this aim.
SPs, off-chain nodes, are in charge of keeping the whole blockchain’s history including
transaction records, smart contract codes, and state of affairs.

Conversely, on-chain nodes have a lightweight function by keeping just required data
straight connected to the consensus process, including block header information and the
latest state tree. Enough information in the block header – the hash of the previous block,
the consensus proof, the root hash of the transaction tree, the root hash of the receipt tree
– allows one to verify the integrity of the block and the validity of the transaction without
storing the data of the whole block.

Furthermore, the on-chain node might decide to keep the hashes of every block
header in order to raise data verifiability. By means of Merkle tree proofs, a client can
thus query the on-chain node to get the root hash of the data and confirm the accuracy of
the data query results offered by the off-chain node. This approach lets the system greatly
lower the on-chain nodes’ storage needs without compromising security, hence
increasing the whole network’s scalability.

 82 Y. Xie et al.

Well-designed node categorisation and optimal data storage techniques in the EOR
framework offer a steady and effective working environment. By lowering the load on
the nodes on the chain, these solutions not only guarantee the decentralised character of
the network but also offer the potential of rapid and safe transaction processing. This
drives the EOR framework to provide a set of transaction actions to guarantee the
effective running of the whole blockchain system.

From the start of the transaction until its final recognition and storage, the EOR
transaction processing system controls the lifetime of a transaction by means of a well
defined process, see Figure 3.

Figure 3 The EOR framework (see online version for colours)

Client

Service Providers

Order Nodes

Validation and Re-execution Nodes(VR Nodes)

Off-chain Storage

On-chain Database

Submit
Orders

Broadcast
Execution

Results

Send
Ordered

Transaction

Verify
Data

Store
Full

Data

Store
Essential

Data

The following are the key steps in transaction processing in the framework:

1 Transaction proposal: First building transaction requests, the client node transmits
them down the chain to the SP nodes. These calls provide all the required transaction
data – sender, receiver, transaction parameters.

2 Transaction execution: Based on current state data, SPs down the chain answer
transaction requests and carry out those actions. Included with state modifications
and resultant data, the execution’s outcomes are recorded and ready for commit.

3 Transaction sorting: Transactions executed have to be arranged on the chain.
Receiving the execution results from the SPs, the sorting node sorts these
transactions with a particular method to guarantee their correct sequence.

4 Transaction VR: Verifying the sorted transactions falls to the re-execution and
validation (RV) node on the chain. Should a flaw arise during the validation process,
the RV node will re-run these transactions to guarantee the consistency and accuracy
of every transaction.

 Concurrent execution of transactions in blockchain 83

5 Once the transactions are confirmed, they are lastly validated and kept on the
blockchain. While the on-chain nodes record important summary information to keep
a lightweight and high performance network, the off-chain nodes are in charge of
storing thorough transaction data and history.

By means of end-to-end encryption, our off-chain storage system guarantees data
protection. Before transmission, every data packet is encrypted on the off-chain node and
only deciphered by the appropriate on-chain node, therefore maintaining data
confidentiality throughout travel. Maintaining an index of data locations on the on-chain
ledger helps to ensure accessibility by enabling effective data retrieval as required for
validation or consensus procedures.

3.2 Assessment indicators

This experiment seeks to examine the EOR framework’s performance throughout
processing blockchain transactions holistically. We consider transaction processing time,
system resource use, transaction abort rate, and performance comparison of the EOR
framework with current methods. We will create a lot of blockchain transactions and test
the stability and effectiveness of the EOR framework on these transactions by simulating
several network situations and user actions.

Especially helpful in handling high-dimensional data typically seen in blockchain
applications, sparse representations are a data representation method whereby only the
non-zero elements of a dataset are saved, therefore greatly lowering the memory needs.

1 Transaction processing time: From the moment a transaction is committed to until it
is accepted and noted on the blockchain, transaction processing time is the average
time (Helo and Shamsuzzoha, 2020). This measure directly shows the blockchain’s
transaction processing transaction efficiency. Fast transaction processing time is
absolutely vital for user experience and system performance in a highly concurrent
environment. Ti is the processing time of the ith transaction; Tavg is the average
transaction processing time; n is the total number of transactions.

1

1
=

= n
avg ii

T T
n

 (13)

2 Concurrent execution efficiency: Usually expressed by transaction throughput and
transaction abort rate, concurrent execution efficiency is the capacity of a system to
effectively perform several transactions concurrently. High concurrent execution
efficiency indicates that the system may execute more transactions without
compromising transaction integrity and system stability (Rajwar and Goodman,
2003). This is computed with spit as the number of effectively handled transactions
per unit of time, and n is the total number of transactions; Ttotal is the time required to
handle all the transactions.

=
total

nThroughput
T

 (14)

3 Concurrent execution efficiency: The percentage of transactions that, for a variety of
reasons – conflicts, mistakes, etc. – fail to complete properly is known as the
transaction abort rate. A low transaction abort rate is a main measure of the

 84 Y. Xie et al.

efficiency of concurrency management systems since it lowers wasted resources and
raises user satisfaction (Lam et al., 2002). Calculated using the following formula –
where m is the total number of aborted transactions – it yields.

100%= ×mTransaction abort rate
n

 (15)

Regarding concurrent execution efficiency, consider a system whereby several
transactions start concurrently. Within a specific period – say one minute – we monitor
the number of these transactions that are effectively handled. The system shows great
concurrent transaction handling efficiency if 100 transactions are started and 95 are
effectively handled in the minute. This example shows how concurrent execution
efficiency may be practically used to evaluate the capacity of the system to handle several
transactions at once without sacrificing integrity or speed of processing.

4 Experimental results and analyses

4.1 Experimental setup

We used a basic abstract contract as an experimental benchmark since standardised
nested contracts are not easily found right now. On the blockchain, the contract code
reads and writes data as well as additional logic unrelated to reading and writing data,
such some corporate logic or computation. The experiment aims to compare the
acceleration efficiency of the protocol for transaction execution since clearly the EOR
framework suggested in this research only affects the reading and writing of data, not
other code logic. We thus present smart contracts with varying complexity and specify
several concurrency levels: 10%, 30%, 50%, 70% and 90%.

To meet the demands of extremely parallel processing, the experiments were carried
out on high performance servers fitted with Intel Xeon Gold 6140 CPUs and NVIDIA
Tesla V100 GPUs. We chose Linux operating system and apply the most recent version
of Hyperledger Fabric as the blockchain platform. We particularly set the network
environment to incorporate high latency and high throughput scenarios to test the
performance of the EOR framework under these situations, therefore simulating various
network states.

4.2 Experimental content

We used a basic abstract contract as an experimental benchmark since standardised
nested contracts are not easily found right now. On the blockchain, the contract code
reads and writes data as well as additional logic unrelated to reading and writing data,
such some corporate logic or computation. The experiment aims to compare the
acceleration efficiency of the protocol for transaction execution since clearly the EOR
framework suggested in this research only affects the reading and writing of data, not
other code logic. We thus present smart contracts with varying complexity and specify
several concurrency levels: 10%, 30%, 50%, 70% and 90%.

 Concurrent execution of transactions in blockchain 85

4.2.1 Baseline testing phase
At this point, we want to set a performance baseline for next analysis of concurrent
execution on system performance. We provide a control environment whereby only one
transaction at a time is handled and no other concurrent transaction disturbs the outcome.
Every transaction is timed; the time spent from transaction commit to execution
completion is noted. Several times the procedure should be repeated to guarantee data
dependability and stability. As a standard for later concurrency testing, find the average
processing time of every single transaction. This stage allowed us to precisely assess the
EOR framework’s processing capability free from conflicting factors influencing it.

Table 1 shows the baseline test findings; the average EOR framework processing a
single transaction without concurrent processing takes 4.8 seconds. This covers the whole
transaction cycle – from commit to execution completion. This period represents the ideal
case processing power of the EOR architecture since there is no interference from other
concurrent transactions. It is noteworthy that every transaction carried out successfully
within the allocated period without any errors or timeouts, therefore demonstrating the
stability and dependability of the EOR system in handling individual transactions.
Table 1 Results of baseline tests

Transaction number Submission time Finish time Processing time(s)
1 2024-05-23 10:00 2024-05-23 10:05 5
2 2024-05-23 10:06 2024-05-23 10:10 4
… … … …
4 2024-05-23 11:30 2024-05-23 11:35 5

Note: Average processing time: 4.8 seconds.

4.2.2 Concurrent execution of test phases
We will progressively raise the concurrent level of transaction processing following
baseline establishment. Concurrency levels for this phase will be 10% at 30% at 50% at
70% at 90% respectively. We will construct the amount of transactions matching that
concurrency level at every level concurrently applying the EOR structure. We will note
the overall level processing times as well as the time needed to complete all of the
transactions. To evaluate the EOR framework’s resource needs under a heavy load, we
will also closely track the CPU and memory use of the system. This will enable us to
better grasp under various loads the scalability and resource efficiency of the EOR
system.

Figure 4 shows the concurrent execution test; as concurrency rises, the average
transaction processing time progressively rises as a result of growing system resource
competition – that is, CPU and memory. The system resource use is rather low at 10%
concurrency level and the transaction processing time is almost equivalent to the level of
the baseline test. The CPU and memory use rises dramatically as the concurrency level
rises, mirroring the system’s resource needs as it runs more concurrent transactions. The
EOR framework performs well in resource management and transaction scheduling since,
despite the increase in processing time, the system does not suffer any notable
performance bottlenecks and the framework is still able to process transactions
effectively.

 86 Y. Xie et al.

Figure 4 Concurrent execution results (see online version for colours)

4.2.3 Transaction suspension rate test phase
One of the main markers of a concurrency control system’s performance is its transaction
abort rate. In this phase, we will focus especially on conflicts-related transaction aborts.
We will replicate a high-conflict situation in which concurrency issues could cause half
of the transactions to need to abort and retry. At every concurrency level, we will
document the percentage of transactions aborted owing to conflicts; we will then
investigate how these aborts affect the general performance. Evaluating the success of the
EOR framework’s conflict resolving approach depends on this stage.

Figure 5 Transaction abort rate test results (see online version for colours)

Figure 5 shows the outcomes of the transaction abort rate test, therefore demonstrating
the capacity of the EOR framework to manage transactions in a highly conflict
environment. Low transaction abort rates at reduced concurrency levels suggest that most
of the transactions can be carried out successfully. The transaction abort rate rises as the

 Concurrent execution of transactions in blockchain 87

concurrency level rises; yet, with a high concurrency level of 90%, the abort rate is still
under control at 2.78%, a rather low level. This outcome shows that most transactions can
be carried out successfully since the concurrency management mechanism of the EOR
framework can efficiently manage conflicts. Although in a highly concurrent
environment some conflicts are unavoidable, the EOR framework uses efficient conflict
resolution techniques to reduce the effect of transaction abortions.

Combining the foregoing experimental results, the EOR framework exhibits
outstanding performance in managing rather concurrent blockchain transactions. In high-
conflict situations, it not only fast processes transactions but also keeps a low transaction
abort rate. These characteristics make the EOR framework a potential answer for
blockchain application situations needing great efficiency and high throughput.

5 Conclusions

In this work, we design a two-stage locking-based nested contract execution protocol
(NCEP-2PL) allowing concurrent execution of transactions and nested contracts in an
off-chain environment, so extending the conventional two-stage locking protocol to
support concurrent execution of nested transactions by means of a two-stage locking
mechanism. Furthermore based on the lockchain architecture, we suggest the nested
contract verification protocol (NCVP-LC) for quick on-chain transaction off-chain
verification. These protocols help the EOR framework to guarantee atomicity and
consistency of transactions and thereby enhance the concurrent processing capability of
the system.

We design a two-stage locking-based nested contract execution protocol
(NCEP-2PL), so extending the conventional two-stage locking protocol to support
concurrent execution of nested transactions by means of a two-stage locking mechanism
in an off-chain environment. Moreover depending on the lockchain architecture, we
propose the nested contract verification protocol (NCVP-LC) for rapid off-chain
transaction verification. These protocols improve the concurrent processing capacity of
the system by guaranteeing atomicity and consistency of transactions, hence
strengthening the EOR framework.

By means of experimental evaluations, we show that the EOR framework may
significantly increase the transaction processing efficiency, lower the transaction abort
rate, and strengthen system stability and efficiency in high-conflict surroundings. These
findings indicate that the EOR framework offers a fresh approach for blockchain
transaction processing, which is crucial for advancing the deployment of blockchain
technology in a larger spectrum of conditions.

The research in this publication also has several restrictions even if the EOR
architecture exhibits outstanding performance in tests. First of all, the EOR framework’s
experimental evaluation has been mostly carried out in simulated environments and has
not yet been widely applied and verified in actual blockchain systems. Second, more
study is necessary on the performance and stability of the EOR architecture in very high
concurrency situations. The following two elements will be the main emphasis of next
projects:

 88 Y. Xie et al.

1 Further enhance the EOR architecture to raise its stability and performance under
very high concurrency conditions.

2 Investigate the scalability and usability of EOR frameworks on several blockchain
systems and application contexts and so provide more general support for the
evolution of blockchain technology.

References
Buterin, V. (2014) ‘A next-generation smart contract and decentralized application platform’, White

Paper, Vol. 3 No. 37, pp.2–1.
Diván, M.J. and Sanchez-Reynoso, M.L. (2021) ‘Metadata-based measurements transmission

verified by a Merkle tree’, Knowledge-based Systems, Vol. 219, p.106871.
Dwivedi, V., Norta, A., Wulf, A. et al. (2021) ‘A formal specification smart-contract language for

legally binding decentralized autonomous organizations’, IEEE Access, Vol. 9,
pp.76069–76082.

Helo, P. and Shamsuzzoha, A. (2020) ‘Real-time supply chain – a blockchain architecture for
project deliveries’, Robotics and Computer-Integrated Manufacturing, Vol. 63, p.101909.

Lam, K-Y., Kuo, T-W., Kao, B. et al. (2002) ‘Evaluation of concurrency control strategies for
mixed soft real-time database systems’, Information Systems, Vol. 27, No. 2, pp.123–149.

Liu, Y., Liu, J., Salles, M.A.V. et al. (2022) ‘Building blocks of sharding blockchain systems:
concepts, approaches, and open problems’, Computer Science Review, Vol. 46, p.100513.

Meng, T., Zhao, Y., Wolter, K. et al. (2021) ‘On consortium blockchain consistency: a queueing
network model approach’, IEEE Transactions on Parallel and Distributed Systems, Vol. 32,
No. 6, pp.1369–1382.

Mik, E. (2017) ‘Smart contracts: terminology, technical limitations and real world complexity’,
Law, Innovation and Technology, Vol. 9 No. 2, pp.269–300.

Nasir, M.H., Arshad, J., Khan, M.M. et al. (2022) ‘Scalable blockchains – a systematic review’,
Future Generation Computer Systems, Vol. 126, pp.136–162.

Paik, H-Y., Xu, X., Bandara, H.D. et al. (2019) ‘Analysis of data management in blockchain-based
systems: from architecture to governance’, IEEE Access, Vol. 7, pp.186091–186107.

Rajwar, R. and Goodman, J. (2003) ‘Transactional execution: toward reliable, high-performance
multithreading’, IEEE Micro, Vol. 23, No. 6, pp.117–125.

Sarmah, S.S. (2018) ‘Understanding blockchain technology’, Computer Science and Engineering,
Vol. 8, No. 2, pp.23–29.

Six, N., Herbaut, N. and Salinesi, C. (2022) ‘Blockchain software patterns for the design of
decentralized applications: a systematic literature review’, Blockchain: Research and
Applications, Vol. 3, No. 2, p.100061.

Wei, Q., Li, B., Chang, W. et al. (2022) ‘A survey of blockchain data management systems’, ACM
Transactions on Embedded Computing Systems (TECS), Vol. 21, No. 3, pp.1–28.

Xu, P., Corman, F., Peng, Q. et al. (2017) ‘A train rescheduling model integrating speed
management during disruptions of high-speed traffic under a quasi-moving block system’,
Transportation Research Part B: Methodological, Vol. 104, pp.638–666.

Zabka, P., Foerster, K-T., Schmid, S. et al. (2022) ‘Empirical evaluation of nodes and channels of
the lightning network’, Pervasive and Mobile Computing, Vol. 83, p.101584.

Zhao, J.L., Fan, S. and Yan, J. (2016) ‘Overview of business innovations and research opportunities
in blockchain and introduction to the special issue’, Financial Innovation, Vol. 2, pp.1–7.

Zheng, Z., Xie, S., Dai, H-N. et al. (2020) ‘An overview on smart contracts: challenges, advances
and platforms’, Future Generation Computer Systems, Vol. 105, pp.475–491.

