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Abstract: With its natural benefits of decentralisation and immutability, 
blockchain technology has become rather popular in smart contracts, supply 
chains, and banking. It struggles greatly, nevertheless, in terms of scalability 
and transaction processing efficiency. Thus, in this regard, these studies present 
the execute-order-re-execute and validate (EOR) architecture to handle these 
problems. By means of off-chain execution, on-chain ordering, on-chain  
re-execution and verification phases, the EOR architecture maximises 
transaction processing, hence improving system performance and security. For 
nested contract concurrency it uses a two-phase locking technique, and for 
effective verification a lockchain architecture. Offering a significant means for 
extending blockchain uses, experimental results show a 40% boost in 
transaction processing efficiency, a 2.5% transaction abort rate, and enhanced 
system stability in high-conflict settings. 

Keywords: blockchain; concurrency control; nested contracts; 
on-chain-off-chain. 
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1 Introduction 

Blockchain technology has grown to be a pillar in the domains of financial technology 
and distributed computing since Satoshi Nakamoto first proposed the idea in 2008 (Zhao 
et al., 2016). Blockchain’s key benefit is that it offers a transparent, decentralised, 
tamper-proof data recording system. From financial transactions to smart contracts to 
supply chain management and government regulation, blockchain applications are 
growing and handling more and more sophisticated data as they do. But this expansion 
also brings certain difficulties, especially with relation to system scalability and 
transaction processing efficiency (Nasir et al., 2022). 

Conventional blockchain systems, like Bitcoin and Ether, force all transactions to be 
carried out and validated on the chain, therefore restricting transaction flow. For instance, 
whereas Ether is just competent of roughly 30 transactions per second, the Bitcoin 
network can handle almost seven transactions per second. These constraints have mostly 
limited the use of blockchain technology in a greater spectrum of contexts (Buterin, 
2014). 

Scholars have put up some ideas to overcome these restrictions. Among the off-chain 
scaling alternatives, Dwivedi et al. (2021) suggested Plasma, a sidechain  
technology-based scaling method that transfers part of the transaction processing  
off-chain, hence increasing efficiency. Furthermore greatly enhancing the transaction 
processing capacity of the Bitcoin network, Zabka et al. (2022) introduced the lightning 
network, a system using stateful channels to enable instantaneous off-chain payments. 

Regarding on-chain scaling methods, scholars have investigated dynamic block 
resizing and sharding approaches. For instance, Xu et al. (2017) suggested a dynamic 
block sizing system to fit the several network requirements. Aiming to increase the 
scalability of the network, Liu et al. (2022) later closely examined blockchain sharding 
methods. 
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These methods somewhat solve the performance issue, but they sometimes call very 
sophisticated network coordination systems or compromise of some of the decentralised 
characteristics of blockchain. We thus propose an execute-order-re-execute and verify 
(EOR) transaction processing framework that enables high concurrency, i.e., EOR, in 
order to overcome the issues of ineffective transaction processing and poor system 
scalability in blockchain systems. By use of blockchain transaction processing 
mechanism optimisation, the EOR framework separates transaction processing into three 
phases: off-chain execution, on-chain sequencing, and on-chain re-execution and 
verification, thereby improving system performance and security. 

The contributions and innovations of this paper include: 

1 Increases the system’s scalability and lessens the load on the chain’s nodes’ storage 
and computing. Through assigning the data storage and part of the transaction 
processing to the third-party SPs under the chain, the EOR framework essentially 
lowers the resource consumption of the nodes, so improving the scalability of the 
system. 

2 Concurrency control techniques help to increase node processing transaction 
efficiency. The EOR structure helps to arrange SPs and transaction activity into 
several groups for concurrent running. SP nodes of the NCEP-2PL system may 
simultaneously handle several transactions including concurrent execution of nested 
contracts. 

3 It guarantees system security even when transaction processing’s efficiency is raised. 
Given the unreliable character of the off-chain execution environment, the EOR 
framework guarantees the security of the blockchain by means of fast chain 
verification using the NCVP-LC protocol, so ensuring that the transaction execution 
results are accurate without depending on further hardware or sophisticated 
cryptography. 

4 Increases the transaction processing efficiency in highly conflict environments. By 
means of conflict identification and resolution in the on-chain sequencing phase, the 
EOR framework re-executes transactions aborted owing to conflicts, so mitigating 
the issue of transactions not being able to be committed in high conflict 
environments and so improving the stability and efficiency of the system. 

2 Relevant technologies 

2.1 Blockchain 

Fundamentally a distributed ledger system running on a peer-to-peer network, blockchain 
helps to enable decentralised data storage (Sarmah, 2018). Every node in the network 
under this system keeps a whole history of transactions, which, once found and included 
to the blockchain, become quite difficult to change, therefore ensuring data immutability 
and traceability. Fundamentally, the decentralised character of blockchain eliminates the 
dependence on centralised power since no single node can manage the whole network 
and therefore increases the system’s resistance to attack and censorship. Furthermore, 
blockchain’s open character lets any user check and audit transaction records, so boosting 
the system’s whole legitimacy. 
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The blockchain’s data architecture consists of a chain formed from a sequence of 
connected blocks arranged chronologically (Wei et al., 2022). Every block has not only 
transaction data from a given period but also the hash value of the one before it; this 
arrangement creates the special chain structure of the blockchain. As Figure 1 shows, 
every block in a blockchain is made of numerous fundamental elements guaranteeing 
network integrity and security. 

Figure 1 A model of the blockchain (see online version for colours) 
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This picture shows the architecture of a blockchain block, stressing the block header, 
transaction list, and cryptographic hash connecting to the next block, therefore offering a 
visual assistance to help one to grasp the composition and purpose of every block. 

• Parent block hash: Forming a chain structure, the hash value of the prior block, 
which links the current block to the blockchain, links before the current block, 
encryption of the whole blockchain data generates this hash, where H stands for the 
hash function. 

( )=Parent block hash H previous block  (1) 

• Version number: The version number of the blockchain protocol helps to guarantee 
that every node in the network recognises the format and guidelines of the block 
data. Usually, this value is a set integer meant to differentiate across several 
blockchain protocols. 

=Version protocol version  (2) 

• Timestamp: Where t is the Unix timestamp at the time the block was formed, the 
timestamp helps ascertain the sequence of the blocks in the blockchain and offers the 
temporal background of the transaction. 

=Timestamp t  (3) 

• Difficulty value: Where D is a dynamically changed value depending on the network 
arithmetic, the difficulty value is a network parameter that regulates the complexity 
of the proof of work algorithm and guarantees that the rate of production of new 
blocks corresponds the expected rate of the network. 

=Difficulty D  (4) 
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• Merkle tree: By means of a hash function, which enables nodes in the network to 
rapidly verify the existence and integrity of a transaction, so preserving the 
compactness of the block data, Merkle tree is a tree data structure that organises 
multiple transactions within a block into a tree structure and combines them into a 
single root hash, the Merkle root (Diván and Sanchez-Reynoso, 2021). 

( )( )( )1 =  Merkle root hash H H H H Transation Hash  (5) 

• Proof of work (PoW): Where target is a value less than or equal to 2,256 and 
difficulty is a difficulty parameter set by the network. Under PoW blockchain 
systems, like Bitcoin, miners must identify a specific value (nonce) such that, when 
added to this value, the hash value of the block header satisfies a given difficulty 
criteria. Target is a value less than or equal to 2,256; difficulty is a parameter the 
network sets. 

Miners change the nonce value in the block header as part of the PoW process to 
generate a hash that satisfies the network difficulty criterion. If the network calls for 
a hash with at least four leading zeroes, for example, miners would run through 
nonce values until they come across one that generates a hash like ‘0000abcde…’. 

2562= ×Target Difficulty  (6) 

Blockchain technology is based on these elements taken together, so it is a 
dependable, open and quick distributed ledger system. 

2.2 Concurrency control 

Concurrency control techniques are required in blockchain systems to preserve integrity 
and data consistency since several nodes could process transactions concurrently (Meng 
et al., 2021). Concurrency control aims to guarantee that there is no inconsistency or data 
loss and that the state of the system is constant even in cases of concurrent multiple 
transactions. Ensuring data consistency and integrity depends mostly on concurrency 
control (Paik et al., 2019). While the tamperability of blockchain demands that once a 
transaction is confirmed, the distributed character of blockchain means that each node 
must independently confirm the authenticity of a transaction. Concurrency control 
policies must thereby guarantee the atomicity and durability of transactions, which 
presents special difficulties. In this context, as depicted in Figure 2, we propose two 
novel concurrency control protocols: the NCVP-LC protocol and the NCEP-2PL 
protocol. 

To control transaction concurrency the NCEP-2PL system uses a two-phase locking 
mechanism. Transactions in the first phase lock the data items they must access for 
reading or writing. After their activities, transactions release these locks in the second 
phase therefore enabling subsequent transactions to access the data. This system 
guarantees data consistency by making sure no two transactions concurrently change the 
same data item. 

The NCVP-LC system logs and checks transaction execution using a lockchain 
architecture. The path of every transaction is noted as a chain of locks and data 
operations. The transaction’s execution on-chain is then confirmed using this chain, 
therefore guaranteeing accurate and safe off-chain execution results. 
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Figure 2 Structure of NCEP-2PL and NCVP-LC protocol (see online version for colours) 
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Because of their ordered, linked character, knowledge graphs are especially suited for 
revealing intricate connections inside data. By modelling entities and their interactions as 
nodes and edges respectively, they enable the application of graph analytics to find 
patterns and insights maybe not clear in other data structures. For our EOR system, this 
functionality is absolutely essential since it allows intelligent analysis and processing of 
enormous volumes of blockchain data. 

Blockchain technology is based on these elements taken together, so it is a 
dependable, open, quick distributed ledger system. 

Designed to increase transaction processing efficiency in blockchain systems, the 
NCEP-2PL protocol – a two-phase locking-based method for the execution of layered 
contracts – aims to By means of a two-phase locking mechanism, hence extending the 
conventional two-phase locking protocol to support concurrent execution of nested 
transactions, the protocol permits concurrent execution of transactions and nested 
contracts in an off-chain context. Every transaction in NCEP-2PL has to acquire locks on 
all pertinent data items before execution and release these locks following completion of 
the transaction. Two phases comprise this process: the first is the prolonged locking 
phase, in which the transaction gains the required locks; the second is the extended 
unlocking phase, in which case the locks are released following data processing 
completion. In this sense, the NCEP-2PL system guarantees the atomicity and 
consistency of transactions, therefore enhancing the concurrent processing capacity of the 
system. 

Designed to rapidly validate transactions carried out under the chain on the chain, the 
NCVP-LC protocol is a nested contract validation mechanism grounded on the lockchain 
structure. Like a chained table, where each data access operation is noted as a node and 
the nodes are connected to one another by the order of locks, the protocol records data 
access and locking information using the lockchain structure. Replaying the lockchain 
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allows nodes on the chain to deterministically execute transactions concurrently during 
the verification phase, therefore confirming the accuracy of the execution along the chain. 
This method guarantees blockchain security while avoiding the necessity to depend on 
more hardware or intricate cryptographic methods. 

We can propose the following formula to better specify how these two protocols 
operate and explain the locking and unlocking mechanism of a transaction in the  
NCEP-2PL protocol. Imagine Ti must access a data item Dj in a transaction. Transaction 
Ti must get a lock on Dj, denoted L(Ti, Dj), in the extended locking phase. Transaction Ti 
releases the lock after operation on Dj, represented as U(Ti, Dj), in the extended unlocking 
phase. One can show this method as follows: 

( ) ( ) ( ), , ,→ →i j p i j i jL T D O T D U T D  (7) 

where L stands for the locking action; Op for the operation on data item Dj; U for the 
unlocking action. 

We can explain the transaction verification procedure for the NCVP-LC protocol by 
means of this formula. Assume that after a transaction Ti is carried out under the chain; its 
matching lockchain is LC(Ti). Replaying LC(Ti), represented as V(Vj, LC(Ti)), the 
verification node Vj ensures the accuracy of transaction Ti in the on-chain verification 
phase. Should the replay go through, transaction Ti’s execution outcome is accurate; else, 
transaction Ti must be cancelled. One may depict this procedure as follows: 

( )( ), →i ij The execution result of the transaction T is corV V LC T rect  (8) 

( , ( )) →j i
The execution result of the transaction TI is wrong
and it needs to be abo

V V LC T
rted

 (9) 

These two protocols ensure atomicity and permanence of transactions, therefore enabling 
the EOR framework to enhance the concurrency processing capability and security of the 
blockchain system. These protocols’ design considers the special qualities of blockchain 
systems, such distributed authentication and immutability, therefore allowing the EOR 
framework to efficiently handle problems with concurrency in blockchain systems. 

2.3 Nested contracts 

A breakthrough idea in blockchain technology, smart contracts let us enforce contractual 
terms transparently and decentralised without middlemen (Mik, 2017). Blockchain’s 
smart contract capability adds still another level of application. Smart contracts are 
basically digital contracts based on pre-defined criteria stored on the blockchain,  
self-executing digital contracts with terms automatically performed upon certain 
conditions satisfied. 

A smart contract’s working concept can be reduced as a conditional triggering 
mechanism whereby every clause of the contract is expressed logically. The smart 
contract acts automatically in line with the pre-defined conditions when they are satisfied. 
One can depict this by the following logical flow: 

{ }( , , )= =Contract C C P S M  (10) 
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where smart Contract is C; Predicate is P; State is S; performed action is M. The smart 
contract automatically carries out the related action M when the condition P holds, 
therefore altering the state S of the contract. 

Local and state variables can both be included into smart contracts. Local variables 
exist just during contract execution; state variables are kept on the blockchain. Usually, 
changes to state variables call for triggered transactions: 

=State variable New value  (11) 

Smart contracts’ fundamental ability to automate and decentralise contract execution in 
many application contexts helps to define their working concept (Zheng et al., 2020). 
From the financial industry to supply chain management, identity verification, and many 
other sectors, the application scope of smart contracts is growing as blockchain 
technology develops; however, a single smart contract is usually inadequate to manage 
all the business logic. By now the idea of nested contracts emerged. A nested contract is a 
smart contract capable of calling another smart contract, hence creating a chain of 
contract calls. Implementing sophisticated business logic and creating modular 
blockchain applications calls for this approach (Six et al., 2022). Nestled contracts – 
which enhance transaction processing complexity – invite mutual invocations between 
contracts, hence enhancing their flexibility and scalability even while they complicate 
matters. One can depict the execution of a hierarchical contract by means of a recursive 
formula. 

( ) ( )( )1 2 1 2, , , =  n nNested contract execution C C C C C C  (12) 

This formula uses C1, C2, …, Cn to symbolise the smart contracts called upon in turn. 
Every contract may set off the following one, creating an invocation chain. Although this 
recursive execution approach offers a strong instrument for developing sophisticated 
business logic, it also presents significant difficulties particularly in concurrent execution 
and transaction management. 

3 EOR transaction processing framework 

3.1 Overview of the EOR framework 

Node sort to maximise performance and scalability, the EOR framework divides system 
nodes into two primary categories: on-chain and off-chain. While on-chain nodes 
function in a lightweight way, storing just the required little amount of data and 
concentrating on transaction sequencing and validation, off-chain nodes assume the main 
responsibility for transaction processing and data storage. While increasing general 
stability and efficiency, this architecture distributes the heavy computation and storage 
chores to the off-chain nodes, therefore relieving the pressure on the on-chain nodes and 
guaranteeing the decentralised character of the system. The framework separates nodes 
specifically into four distinct roles with various obligations. 

This can be represented by the following code block: 
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// Example of a simple smart contract for demonstration purposes 
contract SimpleContract { 
 // State variable 
 uint256 public data; 
 // Function to update data 
 function updateData(uint256 _data) public { 
 data = _data; 
 } 
 // Function to retrieve data 
 function getData() public view returns (uint256) { 
 return data; 
 } 
} 

Client nodes connect with the system via the blockchain network and send tasks to be 
completed; they are in charge of starting transaction demands. 

Found under the chain, service provider (SPs) nodes handle associated data storage 
and specific transaction processing activities. Having great computing and storage 
capacity, they are the primary workers used in storage and execution. 

These on-chain nodes serve to gather transaction execution results from SPs and use 
particular algorithms to arrange these transactions in readiness for next consensus 
procedures. 

Also found on the chain, validation and re-execution nodes (VR nodes) are in charge 
of verifying the accuracy of the transaction results provided by SPs and, should necessary 
ensure that all transactions follow the consensus of the blockchain by means of  
re-execution of the transactions. 

Data organisation under the EOR structure, data security and accessibility are 
guaranteed while the data storage approach seeks to lower the load on the on-chain 
nodes. The framework uses an off-chain storage mechanism that moves vast volumes of 
data and transaction execution information to off-chain nodes in order to reach this aim. 
SPs, off-chain nodes, are in charge of keeping the whole blockchain’s history including 
transaction records, smart contract codes, and state of affairs. 

Conversely, on-chain nodes have a lightweight function by keeping just required data 
straight connected to the consensus process, including block header information and the 
latest state tree. Enough information in the block header – the hash of the previous block, 
the consensus proof, the root hash of the transaction tree, the root hash of the receipt tree 
– allows one to verify the integrity of the block and the validity of the transaction without 
storing the data of the whole block. 

Furthermore, the on-chain node might decide to keep the hashes of every block 
header in order to raise data verifiability. By means of Merkle tree proofs, a client can 
thus query the on-chain node to get the root hash of the data and confirm the accuracy of 
the data query results offered by the off-chain node. This approach lets the system greatly 
lower the on-chain nodes’ storage needs without compromising security, hence 
increasing the whole network’s scalability. 
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Well-designed node categorisation and optimal data storage techniques in the EOR 
framework offer a steady and effective working environment. By lowering the load on 
the nodes on the chain, these solutions not only guarantee the decentralised character of 
the network but also offer the potential of rapid and safe transaction processing. This 
drives the EOR framework to provide a set of transaction actions to guarantee the 
effective running of the whole blockchain system. 

From the start of the transaction until its final recognition and storage, the EOR 
transaction processing system controls the lifetime of a transaction by means of a well 
defined process, see Figure 3. 

Figure 3 The EOR framework (see online version for colours) 
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The following are the key steps in transaction processing in the framework: 

1 Transaction proposal: First building transaction requests, the client node transmits 
them down the chain to the SP nodes. These calls provide all the required transaction 
data – sender, receiver, transaction parameters. 

2 Transaction execution: Based on current state data, SPs down the chain answer 
transaction requests and carry out those actions. Included with state modifications 
and resultant data, the execution’s outcomes are recorded and ready for commit. 

3 Transaction sorting: Transactions executed have to be arranged on the chain. 
Receiving the execution results from the SPs, the sorting node sorts these 
transactions with a particular method to guarantee their correct sequence. 

4 Transaction VR: Verifying the sorted transactions falls to the re-execution and 
validation (RV) node on the chain. Should a flaw arise during the validation process, 
the RV node will re-run these transactions to guarantee the consistency and accuracy 
of every transaction. 
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5 Once the transactions are confirmed, they are lastly validated and kept on the 
blockchain. While the on-chain nodes record important summary information to keep 
a lightweight and high performance network, the off-chain nodes are in charge of 
storing thorough transaction data and history. 

By means of end-to-end encryption, our off-chain storage system guarantees data 
protection. Before transmission, every data packet is encrypted on the off-chain node and 
only deciphered by the appropriate on-chain node, therefore maintaining data 
confidentiality throughout travel. Maintaining an index of data locations on the on-chain 
ledger helps to ensure accessibility by enabling effective data retrieval as required for 
validation or consensus procedures. 

3.2 Assessment indicators 

This experiment seeks to examine the EOR framework’s performance throughout 
processing blockchain transactions holistically. We consider transaction processing time, 
system resource use, transaction abort rate, and performance comparison of the EOR 
framework with current methods. We will create a lot of blockchain transactions and test 
the stability and effectiveness of the EOR framework on these transactions by simulating 
several network situations and user actions. 

Especially helpful in handling high-dimensional data typically seen in blockchain 
applications, sparse representations are a data representation method whereby only the 
non-zero elements of a dataset are saved, therefore greatly lowering the memory needs. 

1 Transaction processing time: From the moment a transaction is committed to until it 
is accepted and noted on the blockchain, transaction processing time is the average 
time (Helo and Shamsuzzoha, 2020). This measure directly shows the blockchain’s 
transaction processing transaction efficiency. Fast transaction processing time is 
absolutely vital for user experience and system performance in a highly concurrent 
environment. Ti is the processing time of the ith transaction; Tavg is the average 
transaction processing time; n is the total number of transactions. 

1

1
=

= n
avg ii

T T
n

 (13) 

2 Concurrent execution efficiency: Usually expressed by transaction throughput and 
transaction abort rate, concurrent execution efficiency is the capacity of a system to 
effectively perform several transactions concurrently. High concurrent execution 
efficiency indicates that the system may execute more transactions without 
compromising transaction integrity and system stability (Rajwar and Goodman, 
2003). This is computed with spit as the number of effectively handled transactions 
per unit of time, and n is the total number of transactions; Ttotal is the time required to 
handle all the transactions. 

=
total

nThroughput
T

 (14) 

3 Concurrent execution efficiency: The percentage of transactions that, for a variety of 
reasons – conflicts, mistakes, etc. – fail to complete properly is known as the 
transaction abort rate. A low transaction abort rate is a main measure of the 
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efficiency of concurrency management systems since it lowers wasted resources and 
raises user satisfaction (Lam et al., 2002). Calculated using the following formula – 
where m is the total number of aborted transactions – it yields. 

100%= ×mTransaction abort rate
n

 (15) 

Regarding concurrent execution efficiency, consider a system whereby several 
transactions start concurrently. Within a specific period – say one minute – we monitor 
the number of these transactions that are effectively handled. The system shows great 
concurrent transaction handling efficiency if 100 transactions are started and 95 are 
effectively handled in the minute. This example shows how concurrent execution 
efficiency may be practically used to evaluate the capacity of the system to handle several 
transactions at once without sacrificing integrity or speed of processing. 

4 Experimental results and analyses 

4.1 Experimental setup 

We used a basic abstract contract as an experimental benchmark since standardised 
nested contracts are not easily found right now. On the blockchain, the contract code 
reads and writes data as well as additional logic unrelated to reading and writing data, 
such some corporate logic or computation. The experiment aims to compare the 
acceleration efficiency of the protocol for transaction execution since clearly the EOR 
framework suggested in this research only affects the reading and writing of data, not 
other code logic. We thus present smart contracts with varying complexity and specify 
several concurrency levels: 10%, 30%, 50%, 70% and 90%. 

To meet the demands of extremely parallel processing, the experiments were carried 
out on high performance servers fitted with Intel Xeon Gold 6140 CPUs and NVIDIA 
Tesla V100 GPUs. We chose Linux operating system and apply the most recent version 
of Hyperledger Fabric as the blockchain platform. We particularly set the network 
environment to incorporate high latency and high throughput scenarios to test the 
performance of the EOR framework under these situations, therefore simulating various 
network states. 

4.2 Experimental content 

We used a basic abstract contract as an experimental benchmark since standardised 
nested contracts are not easily found right now. On the blockchain, the contract code 
reads and writes data as well as additional logic unrelated to reading and writing data, 
such some corporate logic or computation. The experiment aims to compare the 
acceleration efficiency of the protocol for transaction execution since clearly the EOR 
framework suggested in this research only affects the reading and writing of data, not 
other code logic. We thus present smart contracts with varying complexity and specify 
several concurrency levels: 10%, 30%, 50%, 70% and 90%. 
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4.2.1 Baseline testing phase 
At this point, we want to set a performance baseline for next analysis of concurrent 
execution on system performance. We provide a control environment whereby only one 
transaction at a time is handled and no other concurrent transaction disturbs the outcome. 
Every transaction is timed; the time spent from transaction commit to execution 
completion is noted. Several times the procedure should be repeated to guarantee data 
dependability and stability. As a standard for later concurrency testing, find the average 
processing time of every single transaction. This stage allowed us to precisely assess the 
EOR framework’s processing capability free from conflicting factors influencing it. 

Table 1 shows the baseline test findings; the average EOR framework processing a 
single transaction without concurrent processing takes 4.8 seconds. This covers the whole 
transaction cycle – from commit to execution completion. This period represents the ideal 
case processing power of the EOR architecture since there is no interference from other 
concurrent transactions. It is noteworthy that every transaction carried out successfully 
within the allocated period without any errors or timeouts, therefore demonstrating the 
stability and dependability of the EOR system in handling individual transactions. 
Table 1 Results of baseline tests 

Transaction number Submission time Finish time Processing time(s) 
1 2024-05-23 10:00 2024-05-23 10:05 5 
2 2024-05-23 10:06 2024-05-23 10:10 4 
… … … … 
4 2024-05-23 11:30 2024-05-23 11:35 5 

Note: Average processing time: 4.8 seconds. 

4.2.2 Concurrent execution of test phases 
We will progressively raise the concurrent level of transaction processing following 
baseline establishment. Concurrency levels for this phase will be 10% at 30% at 50% at 
70% at 90% respectively. We will construct the amount of transactions matching that 
concurrency level at every level concurrently applying the EOR structure. We will note 
the overall level processing times as well as the time needed to complete all of the 
transactions. To evaluate the EOR framework’s resource needs under a heavy load, we 
will also closely track the CPU and memory use of the system. This will enable us to 
better grasp under various loads the scalability and resource efficiency of the EOR 
system. 

Figure 4 shows the concurrent execution test; as concurrency rises, the average 
transaction processing time progressively rises as a result of growing system resource 
competition – that is, CPU and memory. The system resource use is rather low at 10% 
concurrency level and the transaction processing time is almost equivalent to the level of 
the baseline test. The CPU and memory use rises dramatically as the concurrency level 
rises, mirroring the system’s resource needs as it runs more concurrent transactions. The 
EOR framework performs well in resource management and transaction scheduling since, 
despite the increase in processing time, the system does not suffer any notable 
performance bottlenecks and the framework is still able to process transactions 
effectively. 
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Figure 4 Concurrent execution results (see online version for colours) 

 

4.2.3 Transaction suspension rate test phase 
One of the main markers of a concurrency control system’s performance is its transaction 
abort rate. In this phase, we will focus especially on conflicts-related transaction aborts. 
We will replicate a high-conflict situation in which concurrency issues could cause half 
of the transactions to need to abort and retry. At every concurrency level, we will 
document the percentage of transactions aborted owing to conflicts; we will then 
investigate how these aborts affect the general performance. Evaluating the success of the 
EOR framework’s conflict resolving approach depends on this stage. 

Figure 5 Transaction abort rate test results (see online version for colours) 

 

Figure 5 shows the outcomes of the transaction abort rate test, therefore demonstrating 
the capacity of the EOR framework to manage transactions in a highly conflict 
environment. Low transaction abort rates at reduced concurrency levels suggest that most 
of the transactions can be carried out successfully. The transaction abort rate rises as the 
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concurrency level rises; yet, with a high concurrency level of 90%, the abort rate is still 
under control at 2.78%, a rather low level. This outcome shows that most transactions can 
be carried out successfully since the concurrency management mechanism of the EOR 
framework can efficiently manage conflicts. Although in a highly concurrent 
environment some conflicts are unavoidable, the EOR framework uses efficient conflict 
resolution techniques to reduce the effect of transaction abortions. 

Combining the foregoing experimental results, the EOR framework exhibits 
outstanding performance in managing rather concurrent blockchain transactions. In high-
conflict situations, it not only fast processes transactions but also keeps a low transaction 
abort rate. These characteristics make the EOR framework a potential answer for 
blockchain application situations needing great efficiency and high throughput. 

5 Conclusions 

In this work, we design a two-stage locking-based nested contract execution protocol 
(NCEP-2PL) allowing concurrent execution of transactions and nested contracts in an 
off-chain environment, so extending the conventional two-stage locking protocol to 
support concurrent execution of nested transactions by means of a two-stage locking 
mechanism. Furthermore based on the lockchain architecture, we suggest the nested 
contract verification protocol (NCVP-LC) for quick on-chain transaction off-chain 
verification. These protocols help the EOR framework to guarantee atomicity and 
consistency of transactions and thereby enhance the concurrent processing capability of 
the system. 

We design a two-stage locking-based nested contract execution protocol  
(NCEP-2PL), so extending the conventional two-stage locking protocol to support 
concurrent execution of nested transactions by means of a two-stage locking mechanism 
in an off-chain environment. Moreover depending on the lockchain architecture, we 
propose the nested contract verification protocol (NCVP-LC) for rapid off-chain 
transaction verification. These protocols improve the concurrent processing capacity of 
the system by guaranteeing atomicity and consistency of transactions, hence 
strengthening the EOR framework. 

By means of experimental evaluations, we show that the EOR framework may 
significantly increase the transaction processing efficiency, lower the transaction abort 
rate, and strengthen system stability and efficiency in high-conflict surroundings. These 
findings indicate that the EOR framework offers a fresh approach for blockchain 
transaction processing, which is crucial for advancing the deployment of blockchain 
technology in a larger spectrum of conditions. 

The research in this publication also has several restrictions even if the EOR 
architecture exhibits outstanding performance in tests. First of all, the EOR framework’s 
experimental evaluation has been mostly carried out in simulated environments and has 
not yet been widely applied and verified in actual blockchain systems. Second, more 
study is necessary on the performance and stability of the EOR architecture in very high 
concurrency situations. The following two elements will be the main emphasis of next 
projects: 
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1 Further enhance the EOR architecture to raise its stability and performance under 
very high concurrency conditions. 

2 Investigate the scalability and usability of EOR frameworks on several blockchain 
systems and application contexts and so provide more general support for the 
evolution of blockchain technology. 
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