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Abstract: There is a large potential for automation and optimisation of 
transports within quarrying and mining, but operational models and 
characteristics for this purpose are lacking. This paper aims to provide insight 
into cyclic transports and the parameters that affect energy consumption and 
productivity. Detailed operational data from machines has been collected and 
analysed through automatic logging of the machine’s internal communication 
network. The paper presents and discusses the characteristics of the operation 
identified, develops models for energy consumption and productivity, and 
discusses their relation for optimisation and automation purposes. A conclusion 
is that stochastic fluctuations in activity times need continuous real-time control 
for an optimisation system to be effective. The method used in the paper 
resulted in regression models for cycle energy cost and hauler fuel rate, which 
provide both correlation and significance, which is promising for future 
validation and use in energy optimisation control systems. 
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1 Introduction 

Cyclic transport operations are common in the quarry and mining domain. In surface 
mines, transports consume about 30% of the energy and are the primary source of 
greenhouse gas emissions (Siami-Irdemoosa and Dindarloo, 2015). Research has shown 
that transport operations include a large amount of lean waste, (e.g., waiting) and have a 
great potential for automation and optimisation to improve productivity and reduce 
energy consumption (Rylander and Axelsson, 2013). To optimise, control, and eventually 
effectively automate, the operation’s characteristics need to be known and their models 
need to be developed. As stated by Azar and Kamat (2017) “most of the recent research 
efforts highlight the lack of in-depth knowledge-based application of the captured data 
for modelling and controlling the cyclic operations”. Golbasi and Kina (2022) conclude 
that surprisingly little research is available concerning fuel consumption behaviour of 
haul trucks including kinematic factors. 

This paper presents the operational parameters and characteristics of the earthmoving 
transport processes in mining environments. Furthermore, it provides a method and 
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models for fuel consumption of transport operations. The models are based on detailed 
machine data and its kinematic parameters. The method utilised and the knowledge 
presented in the paper is intended to be used to innovate several phases of asset 
management in mining including strategic and tactical planning as well as operation 
improvements including automation and productivity optimisation. 

Figure 1 The transport work step cyclic activities 

 

1.1 The quarry and mining process 

The primary operation of quarries and mines consists of a set of sequential and 
potentially parallel subprocesses, (e.g., blast, transport, sort, and screen) that can be 
referred to as work steps. These work steps depend on each other since each sequential 
subprocess relies on the deliveries of the preceding subprocess. The throughput of the 
system is limited by the subprocess with the least throughput, referred to as the 
bottleneck. In a dynamic environment, a subprocess’s production rate and capacity vary 
over time, which may move the bottleneck. 

The transport work step can be described by its activities, see Figure 1. The transport 
work step’s overall capacity depends on loading and unloading capacity and its 
availability (input and output to the subprocess). Due to the continuous capacity 
variations over time, there are no static states. Instead, an effective and sustainable 
control system needs to continuously detect and manage the changes to minimise 
operational waste and improve the operation. 

Simultaneously there is a low tolerance of delays in the production. The overall 
production of the site is often depending on the uptime and deliveries of the transport 
work step. Significant downtime in the transport operation causes loss of production for 
the entire site. Such loss is a considerably higher cost than the benefits achievable by 
limiting waste in the transport process. Therefore, operative waste reductions need to be 
at a level where there still is a low risk of production loss effects from operative changes 
and variations. 
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1.2 Optimisation and control 

In any production system including sequential processes and activities, there exists at 
least one bottleneck (Goldratt, 1990). While the maximum production is achieved, the 
capacity available in non-bottlenecks can be used to minimise operative costs. When a 
fleet of vehicles, routes, and drivers is defined, the main possibility of minimising cost 
relates to energy consumption. The operation’s main target is to maintain the required 
productivity (ton/h) with the assets available. Thus, cost optimisation efforts need to 
manage risks of decreasing production, affecting the bottleneck and, consequently, the 
site’s productivity. Therefore, changes in the operation need to be identified and managed 
to prevent loss in production capacity. While turning operational wastes into, e.g., 
decreased speed and later arrivals to destinations than theoretically possible, trade-offs 
for production loss risks and energy optimisation need to be considered. 

To partly or fully automate the transport work step or at least the haulers in the 
transport work step, the design parameters to configure and execute the operation need to 
be known. To design and choose optimisation and control algorithms, the characteristics 
of the parameters need to be modelled based on reliable data. For this purpose, it needs to 
be known what parameters to consider and what boundaries, variation, and dependencies 
the parameters include. Finally, as the environment is changing, the optimisation and 
control approaches need to be dynamic and real-time. 

1.3 Purpose and research questions 

This research aims to improve productivity for both the planning and execution of cyclic 
earthmoving operations within the transport work step. Productivity can be described as 
the relation between output and input over time. To be able to improve productivity, the 
output value produced can be increased or input cost reduced. To reduce input cost 
through enhanced energy efficiency, the flow in operation and bottlenecks respectively 
need to be identified. To identify the bottleneck, waiting times, setup times, and activity 
times are crucial and need to be monitored. By identifying activity times, the bottleneck 
can be identified, and control and automation of operation can be facilitated. An 
important factor is then how the activity times vary over time. How large are the 
operative variations, and how are they distributed over the different activities in a 
transport work step? To define and understand this, both the design and execution 
parameters need to be presented and analysed. 

The main research questions addressed are: 

RQ1 What are the main operational characteristics and parameters required to schedule, 
control, and automate transport work steps for earthmoving machines in a 
quarry/mining operation? 

RQ2 What is the potential of energy optimisation of a transport work step? 

RQ3 How can an optimisation model be constructed to optimise the transport work step 
cycle and machine energy consumption? 
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To address the research questions the paper presents a model whose purpose is to assist in 
the different phases of asset management for the site and its operation. Typical target 
roles in a site would be site managers, fleet managers, or operations managers. It is 
intended to help calculate the benefits of performing construction work to, e.g., widen the 
route to allow for meetings at higher speed or to assess the need to perform route 
maintenance to increase traction or visibility. The model is also intended to be used for 
mission management for the operators to decide behaviours in a cycle as conditions for 
performing meetings or driving through intersections. Further, it is meant to be assistive 
in the lean analysis of throughput, machine configuration, and bottlenecks in the 
operation. 

The paper’s structure is as follows: first, we present the related work followed by the 
research methodology used in this study. Then we present our result, which is followed 
by a discussion and conclusions. 

2 Related work 

Within quarry and mining, several disciplines are working with Lean thinking and 
optimisation theories. The related research can be divided into two areas: 

1 site planning and configuration 

2 automation and coordination. 

Both areas are relevant since they have the potential for optimisation and automation. 

2.1 Site planning and configuration 

A large field of research tackles the site fleet planning and configuration problem (Burt 
and Caccetta, 2018). Several methodologies and approaches have been presented. Hoła 
and Schabowicz (2010) present a methodology for determining earthworks execution 
time and cost to select the optimal set of machinery. It concludes that researchers often 
find that earthworks’ actual productivity is considerably lower than the theoretical 
productivity values. Several methods have been presented for how to configure an 
operation efficiently, and it is concluded to be crucial for the cost and duration of the 
project (Smith et al., 2000). Burt and Caccetta (2018) present many variables that affect 
the configuration of a site operation and fleet used and present approaches for how to 
manage them. For optimal productivity, it is described how the total cost of ownership is 
affected by having the right size and type of machine for specific tasks (Uhlin, 2012). 
What can be concluded is that a set of machines is discrete; an optimum is not half a 
vehicle but can be theoretically defined as the size and capacity of vehicles in fleets. 
Different sizes and characteristics of a machine can be utilised. Still, the need for a site 
continuously changes as, e.g., the distance, traction, and loading and unloading capacity 
vary over time. 

Site configuration is essential, but sites may not instantly change the fleet 
configuration or acquire new machines based on a new optimum. Instead, most are forced 
to use what they have at hand. Many sites change operations daily or even several times 
per day or shift based on operative needs and physical requirements. The optimum for 
one distance and fleet configuration may not be the optimum for another. These factors 
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lead to varying capacities within the operations over time. Therefore, there is a need to 
handle fluctuations in production and manage the site assets to balance the production 
chain’s capacities and deviations. 

2.2 Automation and coordination 

In larger mining operations, there can be multiple loading and dump locations and 
numerous paths in between. Different dispatching optimisation algorithms have been 
presented where the aim is to minimise the avoidable non-productive time of loaders and 
trucks and deviation from the target feed rate of the processing plant. Sofranko et al. 
(2015) proposed a solution using a personal digital assistant (PDA) mounted for 
monitoring time and spatial use and optimisation of productive time. Additional machine 
sensors were not presented in the monitoring or optimisation approach, and instantaneous 
energy consumption was not given as a parameter. 

Moradi-Afrapoli and Askari-Nasab (2020) present algorithms considering stochastic 
behaviours during operation and focus on the key performance indicators (KPIs): plant 
feed rate (ton/hr), shovel utilisation, truck queue length, and queue time (minutes). The 
approach seems very successful for its purpose, but the work does not present KPIs of 
how energy consumption is minimised. 

There is additional research in the automation and optimisation domain focusing 
specifically on the loader, hauler, or crusher machines and related processes. The loading 
subprocess often uses excavators or wheel loaders to load earthmoving haulers. The 
wheel loader short cycle defined by Dadhich et al. (2016) is research where productivity 
and energy efficiency have been investigated. Frank et al. (2012) used 80 operators in an 
empirical study on operator behaviour to identify the potential for fuel and productivity 
improvements. The results show a large difference in operators’ productivity but do not 
present the variations over time per cycle. The paper by Guevara et al. (2020) identifies 
several variables, of which the amount of moved, loaded, and unloaded material is the 
main operational target. The paper proposes a point cloud approach to estimate the 
effective payload volume for loaders. Volume estimations are central but need to be 
correlated to the density and shape of the material. For a transport optimisation 
application, the variations in loader short cycle times (CTs) and volume/weight are 
important for arrival time estimations. For that reason, this variability data is needed, and 
current research does not present such data concerning a transport work step operation. 

Further, there is rigorous work to optimise the crusher facility where the main task is 
to keep production on a desired level and to protect the crusher from overload and fatigue 
failures (Bhadani et al., 2020). The work shows how KPIs, as defined by ISO (2014) can 
be used to identify improvement opportunities for an aggregate production plant. The 
KPIs selected include equipment utilisation, availability, and throughput rate, but 
Bhadani et al. (2020) have limited their research to four primary units in aggregate 
production: crusher, screen, bin, and conveyor. Other equipment such as material 
handling trucks and loaders are excluded in this work. 

Dadhich et al. (2016) identify the key challenges in automation and teleoperation of 
earthmoving machines and provide a survey of different areas of research. They conclude 
that fully autonomous systems for the loading procedure that can perform equally well as 
manual operations are still far-fetched based on the current state of the art. Instead, it is 
argued that manual operation with the technical assistance of loaders will continue to be 
the norm for the foreseeable future. This means that transport operation optimisation 
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should continue to consider the manually operated machines and their behaviour as its 
primary loading procedure for the years to come, even though the haulers may become 
autonomous. Autonomous loaders are expected to have lower CT variance than manually 
operated. But as it is indicated that manual loaders will be the norm in the coming years, 
these loading procedures need to be assessed for their influence on transport work step 
optimisation and automation. 

Recent research regarding transport operations has shown that quarry operations can 
have operative waste due to uneven overcapacity in production. 20%–30% waiting time 
at loading and unloading has been observed during time studies at real-world quarries, 
identifying an occasional overcapacity in the transport operation (Rylander and Axelsson, 
2013). According to interviews made with quarry site managers, the observed effects are 
not uncommon and may vary during a workday depending on driver skills, environmental 
influences, and operational variations. How this can be quantified is however not 
presented. 

On energy consumption explicitly, Siami-Irdemoosa and Dindarloo (2015) conclude 
that few studies have been published on fuel prediction in mining operations. The paper 
presents a cycle energy prediction using payload and activity times as variables. They 
conclude that mining truck idling time has a significant effect on energy consumption but 
do not explain why they idle or what effect driving style and fleet coordination would 
have on the consumption. Furthermore Golbasi and Kina (2022) conclude that most 
studies offer macroscale or regression-based models without including vehicle-related 
kinematic factors. In addition, they present models and simulations of fuel consumption 
as a function of several factors including payload, distance, speed, and road 
characteristics. The study does not include the effects of driver performance, vehicle 
deterioration, or traffic influence on speed, accelerations, overall throughput behaviour, 
diversity, and resultant fuel consumption. 

Controlling the speed of a production process includes lowering the speed of 
machines and haulers toward the site’s throughput and bottlenecks. By reducing mobile 
machines’ speed, several values are obtained, such as increased safety, decreased 
maintenance, decreased wear on tires and machine mechanical components such as 
engines, and decreased fuel consumption. It has been shown that lowering the speed and 
simultaneously reducing unnecessary stops in a cyclic work cycle can decrease fuel 
consumption by up to 42% (Rylander et al., 2014). Such a decrease in fuel consumption 
assumes a poorly coordinated site operation where haulers stop two times every lap due 
to e.g., meetings at narrow road segments or intersections, and otherwise drive fast and 
near full capacity and speed. The amount of productivity gains that can be obtained is not 
trivial and depends on several factors. White et al. (2018) present indicative productivity 
gains from vendors of around 40% and potential cost savings of about 25% to 40% using 
automated machine guidance (AMG) technologies. Contractors have a more conservative 
view of the gains that can be obtained using AMG. When a human interface has been 
used to provide speed-optimised advisory feedback to a manual operator of haulers, 
energy savings have also been identified (Albrektsson and Åslund, 2017). 

Reducing waste by controlling speed to avoid unnecessary movements from a value 
flow perspective can decrease costs such as energy without necessarily decreasing the 
operation’s production rate and outcome. While production can be obtained with less 
cost, the result will be increased productivity, measured as ton produced per cost item 
(e.g., ton/$). As has been presented in Rylander et al. (2016), the actual savings by a 
speed optimisation system through an operator assist function applied to a cyclic 
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transport operation can vary between the machines in operation. Rylander et al. (2016) 
also conclude that the operator’s skills and capacity to follow advice vary. These are 
relevant aspects and can be summarised as that optimisation and automation of the 
transport work step include a considerable improvement potential. However, the 
parameters need to be presented and understood to design and develop optimisation and 
automation systems efficiently. 

3 Method 

To address the research questions and collect data on the transport work step operations, 
quantitative empirical methods have mainly been used. Data has been collected through a 
case study from real-world earth-moving activities in quarry and mining operations to 
understand the characteristics and their parameters. 

3.1 Case description 

The majority of the quantitative data presented was collected from a real-world site 
operation in England. The main reason for this choice of site was the availability of new 
machines equipped with, e.g., a weighing system enabling data accessibility, which 
seemed representative of many sites and their willingness to be part of the study. The 
site’s main flow was to load mass from the face transport it to designated unloading 
positions and dump it onto stockpiles for further transport and processing. The pit’s 
transport can vary from some 100 m to 2 km depending on the current flow. 

The operation was conducted with several parallel processes. Machines could be 
moved between the processes to balance the capacity. The operation characteristics of 
loading, unloading, route, and distance could change daily, sometimes several times per 
day. The data collection was performed by logging data from six haulers simultaneously 
for two weeks. Since the operation changed often, and logging failures occurred; all data 
could not be used. For the work cycle analysis, the dataset with the longest continuous 
cyclic operation was selected. The selected operation includes 20 work cycles of one 
machine. Figure 2 show the cyclic route used with elevation marked as colour code 
between the two destinations, load and unload. The transport route distance used in the 
analysis according to the odometer in the haulers was ~1,270 m. Excavators performed 
the loading procedure at the site. 

3.2 Data collection 

Professionals performed all machine operations. The data collection was carried out by 
equipping a set of machines with a data logger connected to the machine’s internal data 
network. Data parameters were selected based on the availability and need for basic 
potential and kinetic energy of motion principles, including mass, altitude change, 
velocity, and acceleration. Additional sensors such as tipping body movements were 
added to be able to identify unloading activity. Time was used for synchronisation, and 
the geographical position was needed for referencing as well as for defining the activity 
and machine states. The following data items were collected at 5 Hz, which we assumed 
to be sufficient for the purpose: 
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• timestamp (UTC) 

• speed (km/h) 

• fuel (l/s) 

• odometer (m) 

• load (kg) 

• tipping body angle (%) 

• lat, long, altitude (WGS84 GPS, using local dedicated RTK for the data collection 
purpose). 

Figure 2 Map over route including colour marked work step activities for eight cycles (see online 
version for colours) 

 

Figure 3 presents a complete work step cycle highlighting the main sensor data collected. 
The plot starts from one vehicle load activity, as highlighted at the bottom of the graph. 
Each bucket load from the excavator is registered as the load indicator on the machine is 
instantaneous. In the example presented in Figure 3, four loader short cycles were 
performed to fill the hauler. Vehicle speed is 0 during load and unloads as expected and 
fluctuates during operation. The odometer presenting the distance travelled shows 
roughly similar values during the haul and on the return haul. The tipping body is used 
during unloading and the load measure goes down to roughly 0, seen 2,200 seconds into 
the test. Figure 3 presents the CT, distance travelled (odometer), and fuel consumed 
accumulated per activity and reset to 0 for every activity and state change. 
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Figure 3 Data plot from an example log of a complete transport work step cycle (see online 
version for colours) 

 

3.3 Analysis 

To create the results, data was filtered. We had to remove cycles that was not complete, 
and we had deviating patterns due to breaks, start or end of work shift. Cycles that did not 
consist of all work steps or had substantial disruptions have been excluded from the 
analysis. The logging equipment also had disturbances where sensor data was not 
available; these have also been excluded from the analysis. 

After the filtering was completed, a statistical analysis was performed to provide an 
overview of the dataset and to describe the characteristics of the operation. The statistical 
analysis was followed with regression model development, where both simple linear and 
multiple linear regression methods were used. We used all different combinations 
possible with the data set at hand to develop the final regression models. 

4 Results 

The results presented in this paper aim to be useful both for planning and maintenance 
and in the execution phases of the transport work step. In the planning phase, the main 
tasks are to design and configure the operation work step and its targets as origin, 
destination, route, mass amount over time, and assign fleet machines (e.g., type and 
quantity) and operators. Decisions to improve the route could, for instance, be to perform 
construction or maintenance activities. Construction work decisions could widen the 
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route to allow for random meetings without speed adjustments or maintenance to improve 
traction, visibility, or road surface quality. In the operation execution phase, the main 
purpose is to control and optimise the fleet and assets’ utilisation to ensure productivity at 
a minimum cost. 

The contribution and structure of the results are the presentations of: 

• Transport work step characteristics of real-world quarry site operations. 

• Insight in cost and productivity benefits of removing route bottlenecks. 

• A model to calculate fuel consumption for a quarry transport work step cycle. 

• A model for instantaneous fuel rate to be used for haulage machine fleet optimisation 
and automation. 

4.1 Transport work step characteristics 

The characteristics of the site transport work step can be described by its activities and 
their activity times. The main activities presented in Figure 1 can be described as states 
that a hauler can be in during a cycle, and they are sequential. The activity characteristics 
are: 

• Load manoeuvring: in the loading zone, situation dependent manoeuvring (e.g., 
reversing) may be required before loading is initiated. As such, manoeuvring may be 
dependent on operator skills and machine external factors such as loader availability, 
queue, etc. Load manoeuvring activity may also include waiting and queuing: 
waiting and queuing may be required due to that the loading position and/or loader 
being occupied. This activity time is separated from the actual loading as this is a 
relevant indicator of capacity differences between the work steps. 

• Receive load: receive load activity time mainly depending on the loader performance 
including the amount of loader cycles, loader capacity, and operator skills. 

• Haul: the activity time depends not only on the speed and distance but also on route 
characteristics. In some cases, unplanned stops or major retardations may be required 
at intersections or narrow road segments for meetings, etc. affecting the load time. 

• Unload manoeuvring: in an unloading zone, specific manoeuvring usually takes 
place to reverse into the unloading position. For the same reason as load zone 
manoeuvring, it is beneficial to sort out this part of the work step from the unloading, 
haul, and return haul activities as the time variation between cycles is affected by 
different parameters. While in the unloading zone, waiting may be required before 
the unloading activity starts. The reason can be that the unloading position is 
occupied, or the unloading area is full. 

• Unload: the unload activity time varies depending on machine capacity, amount of 
mass, and operator skills. 

• Return haul: this is required to move the empty hauler back to the loading position. 
Similar to haul activity, operator skills affect the time and fuel consumption. 
Additionally, external factors such as route bottlenecks also play a role. 
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By monitoring identified activity types over time, the statistical characteristics can be 
described, which indicates their distribution and if there are potential bottlenecks. Table 1 
presents the characteristics of the studied site operations, from which several conclusions 
can be drawn. 

As unloading has only a few factors that affect it and the tipping is done by a machine 
in a single movement, it can be assumed to have a comparatively small standard 
deviation (SD). This is also the case as presented in the table. The slight difference in the 
mean and median value of the activities indicates the homogeneous conformity of the 
values with few or no extreme values. 
Table 1 Characteristics of the site operation studied 

 

Complete cycle using excavator for loading 
Load 

manoeuvre 
time (sec) 

Receive 
load time 

(sec) 

Haul 
time 
(sec) 

Unload 
manoeuvre 
time (sec) 

Unload 
time 
(sec) 

Return 
haul time 

(sec) 
Mean value 82.3 123 233.1 59.3 14.9 246.9 
Standard deviation 42.6 30.4 15 16.7 2.2 29.6 
Median value 63.3 114 229.0 60.8 15 240 
Relative SD 51.8% 24.7% 6.4% 28.2% 14.5% 12% 
Skewness 1.25 2.18 1.06 –0.17 –0.26 0.38 

When comparing the different activities, we find that manoeuvring time at loading is 
where the largest SD and the largest SD part of the mean value are found. This is also 
expected as the loading was considered the bottleneck in the operation used for data 
collection. The load manoeuvring time includes both the actual manoeuvring and the 
waiting time. But as operators may observe queuing before arrival, they may adapt speed 
during transport. For this reason, the waiting time in the load zone is not a complete 
measure of overcapacity and is not presented separately in the table. 

The distribution should not be considered as a normal distribution. The skewness for 
load manoeuvre time is 1.65 while considering 40 cycles with different loading positions 
and 1.25 when we analyse 20 cycles with the same loading position. When considering 
different positions, it can be expected to get a higher SD and skewness as the physical 
limitations and possible fastest way to perform the activity likely are different. Anyhow 
the overall pattern is the same. Activity times within a defined space have a minimum 
possible duration, constrained by physical limitations. However, this duration can vary 
based on geographical location, performance, and specific situations. 

As shown in Figure 4, which presents the manoeuvre time for 40 cycles, the operation 
often nears this minimum time but frequently deviates due to waiting periods and 
performance variations. In practice, the loader occasionally had to handle larger shot 
stones that were not meant for loading onto the haulers, moving them aside instead. 
Additionally, the loader needed to reposition for optimal loading and reach, and there 
were instances where other haulers were queued up. Additionally, operator performance 
varied over time, contributing to the variation in manoeuvring time. These factors 
collectively result in a longer manoeuvring time than the shortest possible. 
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Figure 4 Histogram distribution of load manoeuvre time based on data from 40 cycles (see online 
version for colours) 

 

The waiting time is rather stochastic and fluctuates over time. To fully understand the 
reasons, a more in-depth flow analysis must consider the entire fleet and map out the 
relations and consequences the individual behaviours have for the flow. 

The loader capacity depends not only on the machine CT to load. A loader may also 
be required to move and clean the ground surface from overburdens that have fallen off 
the haulers, or it merely must physically move to be able to fill the bucket to load the 
hauler. Such activities take time and instantly affect the capacity and consequently the 
loading time. Such extra occasional activities may immediately move the bottleneck to 
the delayed activity from other production activities. 
Table 2 Activity energy consumption comparisons 

 Receive load Haul Unload Return haul Full cycle 
% of total fuel consumption 7% 38% 10% 45% 100% 
Max fuel consumption 
compared to mean (normalised) 

35% 8% 27% 3% 5% 

Min fuel consumption 
compared to mean (normalised) 

–39% –10% –52% –3% –5% 

Max fuel consumption 
compared to min (normalised) 

123% 19% 164% 6% 10% 

On an overall level, the difference in fuel consumption per cycle is significant.  
Table 2 presents the measured energy characteristics, showing the dispersion in energy 
consumption for various activities and indicating potential savings. The table includes the 
fuel consumption for each activity within a complete cycle, comparing the highest (max) 
recorded fuel consumption per activity with the lowest (min) and the average (mean). The 
conclusion is that the return haul activity has the highest fuel consumption, while the load 
and unload activities exhibit the largest statistical variation. 

4.2 Route bottlenecks 

When comparing cycles, the characteristic that differentiates the cycles is the occasional 
decrease in speed during the route. It is caused by route bottlenecks such as meetings in 
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narrow route segments. They are instantaneous and cause a penalty in time, leading to a 
decrease in mean speed for the route segment and an increase in fuel consumption. 

Based on earlier research, it has been shown that lowering speed provides lower fuel 
consumption while higher speed ranges (Rylander et al., 2014). It has also been presented 
that additional stops for meetings on the route cause additional accelerations, increasing 
overall fuel consumption. These parameters are instantaneous and applicable for the part 
of the route where these are applied. While analysing an entire cycle or an activity, both 
the lowering of speed and extra stop has the same effect on the average speed over a 
cycle. However these features have the opposite impact on fuel consumption. Therefore, 
average speed and travel times over a cycle are insufficient to analyse fuel consumption 
in a real-world drive cycle. The outcome is highly dependent on the details of the driving 
characteristics. 

What is common to both the lowering of speed for meetings and the aggressive 
driving with a higher max speed is that it deviates from the mean value over a specific 
route segment and hence increases SD. High fluctuations cause a high SD during 
operation, and a low SD indicates calmer driving with fewer changes. 

Looking at the fuel consumption in the same process, the four cycles with the least 
fuel consumed had on average 7% lower consumption than the four cycles with the most 
consumed fuel. When comparing the SD average for speed over the same cycles, it was 
22.1% lower. This strongly indicates that having a calmer drive style has a measurable 
positive effect on fuel consumption. 

Figure 5 Two laps of return haulage including two route segments that fulfil the energy, position 
and speed drop criteria used for segment comparison analysis 

 

To accurately quantify the cost of route bottlenecks and the resulting speed adaptations, 
we need comparable data points. The energy cost difference between cycles is best 
calculated using data points with the same potential and kinetic energy. These points are 
identified when the same vehicle has an equivalent mass and velocity at the same 
geographical position. This allows for direct comparison of data without adjusting for 
potential and kinetic energy differences before and after the segment. For reliable results, 
six different example segments were used. Bottlenecks were identified by speed drops of 
more than 50% compared to the segment mean or an absolute speed difference of 15 
km/h. These cycles were then compared to cycles without speed drops where comparable 
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data points were found, see Figure 5. Based on these comparisons, the average distance 
measured between measure points was 254 m, and the average fuel difference was 19%. 

The absolute cost for fuel per measurement was 1.33% of the total fuel consumed for 
a work cycle. As the occurrence of meetings on average was 1.6 times per work cycle, 
the total cost for each speed drop was 1.7% of the total fuel consumption for the cycle 
operations in the analysis. 

4.3 Cycle fuel consumption model for site optimisation 

Different measures can be taken to improve the site operations planning and 
configuration. Measures such as the removal of route bottlenecks and improved road 
layout and road surface conditions are included, but the gain of performing a measure 
needs to be quantified. Several route condition factors can negatively impact speed, CT, 
and productivity. CT is relatively easy to measure and monitor. Aside from the loss in 
speed and throughput, the main cost is energy consumption. Increasing speed in  
non-bottleneck subprocesses offers no particular benefit, as it may lead to unnecessary 
waiting and higher costs without improving throughput. For these subprocesses, energy 
consumption can be minimised as long as the bottleneck’s throughput is maintained. 
Energy consumption is influenced by several parameters and predicting and measuring 
each parameter’s effect in every condition of a work cycle is highly complex. Therefore, 
a model of fuel (energy) consumption based on relevant cycle parameters is needed. 
From a cycle perspective, the following parameters have been identified as possible 
independent variables affecting the dependent fuel variable and are assessed in this study: 

• CT is a relevant variable to include as the route and distance are constant in a cyclic 
operation. 

• Load (L) is a factor to include while loaded. In the 19 cycles used for the cycle cost 
model analysis, the load mean was 39,900 kg with a SD of 1,900 kg. While operating 
unloaded in return trip activity, the load is not a parameter in the function as it should 
continuously be 0. 

• SD of speed is a relevant variable as continuous acceleration and retardation cause 
energy-consuming variations of speed in operation. A measure of the variation is the 
SD. 

• The number of stops (NS), the amount of significant fluctuating retardations and 
accelerations compared to the route’s mean is an indication of route bottlenecks. As 
identified during operation, the machines performed speed adaptations while 
unloaded to adapt for meetings with loaded machines. For this reason, the amount of 
stops and decelerations during operation is only a parameter in the function for return 
transport activities for the operation analysed. 

As distance in the cycle is static, it is not included in the model. Otherwise, distance, e.g., 
the elevation would be relevant additional variables to consider. 

The highest level of correlation for the hauling activity was found using CT, L, and 
SD of speed in the regression analysis. But as the significance provided by SD of speed 
was low, and the effect of including it only improved R2 with 0,001, we excluded it from 
the final function presented. With more data, this variable could provide added value to 
the function. 
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The function is then modelled as a multiple regression model (Myers et al., 2010) 
using the least square method for the cycle where fuel consumption (ẏ) is a function of 
CT and load (L). 

The model for fuel consumption (ẏ) in haul activity, (i.e., while loaded) shows both 
correlation R2 = 0.479 and significance (Pearson correlation) p = 0.006 with low 
correlations between all independent variables where the highest calculated variance 
inflation factor (VIF) was 1.18. 

The function for haul activity developed is ẏ = 0.3973 + 0.0037*CT + 0.0252*L. 
The highest level of correlation for return haul was found using CT, NS, and SD of 

speed as independent variables. Still, as NS and SD of speed had a significant correlation, 
we chose to exclude SD of speed in the final model. The final model developed for fuel 
consumption (ẏ) of a cycle while unloaded in return haul activity shows both correlation 
R2 = 0.694 and significance p = 0.0001 with low multi correlations where the highest 
calculated VIF was 1.12. 

The function developed for return haul is ẏ = 2.4852 + 0.0009*CT + 0.0218*NS. 

4.4 Hauler fuel rate model for machine fleet optimisation 

As described in the work step operation characteristics, there are stochastic variations in 
the operation that require instant control and operational adaptations for continuous 
improvement and optimised utilisation. When the input (loading) or output (unloading) 
activity throughput changes, the transport activity’s required throughput also changes. 
For this reason, instantaneous control of speed is needed to minimise energy and fuel 
consumption. While a fleet of machines is utilised in a cyclic transport operation, the 
speed and travel time can be distributed unevenly to different machines to minimise 
overall energy consumption and manage the risk of arriving too late to destinations. To 
be able to perform energy predictions and optimisation of fleet behaviour, a model for 
energy consumption and fuel rate of a machine is required. 

For this reason, we have used the data collected during operation and developed a 
multiple regression model. In the analysis to create a model for fuel rate ẏ, acceleration 
(A), slope (S), load (L), and speed (V) were included. The best model was achieved while 
having different functions while loaded during haul activity and unloaded in the return 
haul activity. The best correlations were found, including L in the hauling activity, but as 
it only improved the model R2 with 0.01, we excluded the variable from the final 
function. 

The function for return haul is then modelled for the cycle where the fuel rate (ẏ) of a 
cycle while unloaded shows both correlation R2 = 0.578 and significance p = 0.001 with 
low multi correlations where the highest calculated VIF was 1.01. 

The fuel rate function developed for return haul is ẏ = 0.0003 + 0.0022*A + 0.0418*S 
+ 0.0005*V. 

The model for haul fuel rate (ẏ) of a cycle while loaded also shows both correlation 
R2 = 0.563 and significance p = 0.001 with low multi correlations where the highest 
calculated VIF was 1.4. 

The fuel rate function developed for haul with load is ẏ = 0.0195 + 0.0008*A + 
0.0377*S – 0.0005*V. 
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5 Discussion and validity 

We performed quantitative measures on a cyclic transport work step in a mine operation 
with the aim of describing the characteristics and models for optimisation and control. 
While analysing the data several conclusions can be made. One of the main results is that 
the cycle with the highest energy consumption was 10% higher than the lowest, 
performing the same work. This is significant and indicates a large saving potential for 
the entire operation. The largest percentage difference was in the loading area even 
though the largest absolute difference was in the return haul activity. This overall 
characteristic shows that it is not only during the mass transport activity that fuel can be 
saved. 

Another important result is the understanding of the stochastic behaviour in the 
operation and the energy consumption it causes. An unbalanced workflow results in 
occasional waiting, which causes a stop-and-go behaviour. This is also observed during 
manoeuvring within the load and unloads activity areas. These behaviours cost energy to 
perform, and as a percentage of the whole activity, extra manoeuvring or stop-and-go 
cause significant extra fuel consumption. The analysis results show that significant 
retardation during transport on average costs an additional 1.3% of total cycle fuel 
consumption per occasion. The cost per occasion part of the total cost can be higher while 
in shorter transport distances. The cost of a meeting is expected to be depending on the 
amount of speed adaptation required. The speed adaptation is a floating scale, and 
somehow a classification and criteria are required. We used rather prominent threshold 
criteria to get the data that can be used as indicative reasoning for the cost and benefits 
they include. Real-world operations as analysed include a wide range of different 
behaviours, and different thresholds for the criteria result in different conclusions. Even 
smaller deviations below our threshold include a cost that is not included in the analysis. 
We see from the analysis that driving uphill and downhill is very different, and different 
variables are applicable. While the load is a burden uphill, it is a forced asset of energy 
downhill. When breaks driving downhill are released, there is no need to increase fuel 
consumption to accelerate. Other categories to narrow down the models may be needed 
depending on the characteristics of the route, and it could be of benefit to further break 
down the route and apply different models depending on the topography of the route 
segment. 

5.1 Automated machine guidance 

To automate the operation, either through operator-assistive functions or fully 
autonomous, several factors need to be considered. Regarding operator assistive 
functions, it would not be possible to effectively assist the operators while only 
considering one hauler in a fleet of haulers. It can also be concluded that in operations 
where multiple destinations exist and a sorting, mechanism is performed by the loader; 
the loader also needs to be connected to such an assistive function as it has a significant 
role in defining the throughput of the entire process. Based on the variance and SDs 
presented, which is a consequence of the operation’s fluctuations, continuous activity 
measurements and feedback loops are required. It may be possible to automate part of the 
operation, but it would need to connect the machines that are not automated in that case. 

The data that we have collected is based on deep insight into the machine sensors and 
behaviour, which is usually exclusive to the machine manufacturer. Mixed brand fleets 
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are, for this reason, a challenge where standards need to evolve for this purpose. Fully 
automated machines are expected to lower the variance since a robotic operator does 
things consistently. Several parameters are independent of the operator’s skills and input 
as human operators have physical limitations and cannot see and adapt to what happens 
while obstructed. These need to be considered, and from the flow perspective, the entire 
fleet operation still needs to be connected to avoid production loss and low productivity 
and efficiency. 

A challenge of automation besides the actuator controls and safety is the lack of 
accurate and reliable digital representation of the work step. Route and topography are 
constantly changing, the locations of loading and unloading change over time as mass is 
removed. To digitalise and automate the site representation and its processes is not trivial. 
Even in the data collection process such aspects were challenging to identify. Haulers 
perform more than the actual cycle work as the operators need to take breaks and start 
and stop the shifts. Additionally, machines need maintenance and repairs. Such events 
and behaviours needed specific manual work for the analysis to be accurate. In a  
real-world scenario where such aspects need continuous updates and available and 
reliable data. It requires additional resources, skills, and associated costs compared to 
current operations. The benefit of the improvements then needs to be greater than the 
overall costs for the solution. 

Finally, as observed, operator skills and incentives play a crucial role in the 
performance of the operation. Even in cyclic operations where similar activities and 
routes are used, operators behave differently between cycles. As shown by Rylander et al. 
(2016) operators perform very differently when not provided with a guiding system. 
Additionally, the paper (Rylander and Axelsson, 2021) presents data from hauler 
operators based on an anonymous questionnaire. Not all operators agree that a 
coordination system would be useful, indicating that there may be incentives and 
willingness to be part of and use a central coordination and automation system. Such 
factors would be relevant for further research. 

5.2 Asset management 

Asset management involves optimally and sustainably managing assets and asset systems 
throughout their life cycle. Effective asset management ensures a clear connection 
between the organisation’s desired outcomes, purpose, strategies, plans, and daily 
activities (The Institute of Asset Management, 2024). 

Continuous access to the data and models presented in this paper can be beneficial for 
asset management across various phases, from strategic planning of the overall mine 
design to dispatching vehicles for specific processes and missions, as well as in 
operational performance. Komljenovic et al. (2015) present a global model of strategic 
planning and asset management in the mining industry, which relies on several  
sub-models where the models presented in this paper, can be useful. 

The level of data, extracted from the machine internal network, and used in this paper 
is typically not available for commercial use. Additionally, it requires specific data 
extraction techniques and site connectivity for real-time control and optimisation. Instead, 
more heuristic approaches are commonly used. Further development of tools supporting 
asset management based on continuous data, providing predictive, accurate, and reliable 
models, is an important area for future research. 
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5.3 Model validity 

The haulage cycle model presented can be derived from the physical laws that apply. The 
energy cost is a function of mass and force. As we include the potential energy as well as 
the kinetic energy in the model, it should be sufficiently accurate. Known factors that we 
lack in the model are road friction, air drag, and heat costs. That fuel is also used to heat 
the engine is known but can be assumed to be included in the model as a constant factor. 
Friction could be a relevant factor if the route includes different friction factors over time. 
In the data used to provide the model, the weather and route conditions were fairly 
constant, and the machine was the same, so these conditions in the analysis, should be a 
small variable to consider. But for other weather and route conditions, friction could be a 
relevant factor to include and something to consider for a future improvement of the 
model. An interesting result is that the dependent variable fuel rate is higher with higher 
speed in the haul activity model. The assumed explanation for this is that the hauling 
activity was operating downhill. While operating at higher speeds downhill, assumed 
with less utilisation of the retarder, less energy is required to climb. In the return haul 
activity, the opposite applies, and lower speed is beneficial. 

The hauler fuel-rate model is intended to be used for the optimisation of a fleet in 
operation. While an overall model calculates the throughput and available time to arrive 
just in time to destinations, a model is needed to distribute the time over a path and route. 
The model provided is a candidate for such calculations. Further trade-offs as discussed 
can be made to decide that one vehicle should adapt to another, e.g., meetings. Individual 
haulage costs for such trade-offs can be calculated with the model provided. 

In current manual operations, speed adaptations are performed by a human. The 
model presented can be utilised both to calculate advice and present it to the human 
operator or directly control the drivetrain as for automated driverless operations. One 
could argue that for driverless operations, the need for the model is more significant as a 
human often can assess and control the hauler concerning the environment. In contrast, a 
driverless machine does not have this capability. 

The numerical factors in the model presented are based on the characteristics of the 
site and operation as it was operated while data was recorded. The model itself is 
probably not very useful in other conditions; instead, the method presented should be 
used for continuous use to recalibrate the model. The analysis of how the model is 
developed is intended as a machine learning algorithm, where new data for the condition 
of the operation is changed continuously for it to be accurate. 

The R-square values provided with the method show correlation of up to 0.713, 
which we believe is very promising for optimisation purposes. A factor that influences 
the theoretical maximum of R-squared is the human factor. Since it is a human operating 
the machines in the analysis, it can be assumed that there are errors and noise in the 
models developed. But in the end, how well the model needs to reflect reality comes 
down to how and in what context the models are used and implemented. 

The models are all significant. The correlation matrices and VIF calculations show 
low multicollinearity in between the variables. This provides confidence in the model’s 
usability for the site operation analysed. 

The known limitations of the models are that the characteristics of the operation 
analysed in this paper reflect one specific type of operation where the main bottleneck is 
in the loading procedure. This may not always be the case, and several factors influence 
the overall characteristics. In some transport work cycles, the loading procedure may be 
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performed using silos. Silos may provide less variance in activity time and give a less 
stochastic behaviour. In theory, the bottleneck can be elsewhere in the work cycle, 
changing the operation’s conditions. Such other factors would be relevant to validate the 
method. Further, while the machines use different drivelines, especially electric 
drivetrains, the method usability would be of interest to assess. 

6 Conclusions and future work 

In this paper, we address the main operational characteristics and parameters required to 
schedule, control, and automate a hauling work step in a quarry/mining operation (RQ1). 

The operational characteristics are described using the sequential activities performed 
by haulers in earthmoving operations. The attributes in terms of activity times and 
variation by SD are presented. Real-world operation includes waiting and speed 
adjustments due to meetings and capacity changes causing throughput variations. These 
data are represented in the overall characteristics by the variation in activity times but 
also presented by the measured occurrence of major speed adjustments or stops during 
operation. The activities measured and presented include large stochastic variations. 
Several significant parameters affecting energy cost and throughput are identified. The 
variations in fuel and energy costs between cycles show considerable potential for 
improvements through coordination and optimisation. The loading manoeuvring 
procedure, including the loading’s waiting times, had a SD of up to 52% of the mean, 
which is a large variance and instantaneous overcapacity. 

The paper contributes to productivity improvement potentials and energy 
consumption data and analytics for how specific operational characteristics such as 
retardations caused by meetings affect energy cost (RQ2). 

In between the work step cycles, the transport activity had a fuel consumption 
difference of up to 19%. The mean for the fuel consumption per work step cycle was 5% 
higher than the best work cycle. This indicates how the same work can be done with 
different costs and highlights the optimisation’s benefit potential. The work cycle’s total 
fuel consumption increases by 1.33% for every occasion of meeting in the return 
transport activity. 

Finally, the paper contributes to models that can be used to plan and design real-time 
optimisation and automation (RQ3). The models provide functions for how to calculate 
fuel consumption for a cycle and instantaneous fuel consumption for earthmoving 
machines. The linear least square multi-regression models that we developed do provide 
statistical correlation and significance for the operation studied, which is promising for a 
larger-scale adoption and use of the methodology. The models can preferably be utilised 
in continuous machine learning applications as they are tailored specifically towards the 
same cycle that is performed in the studied case. 

The specific results show that removing route bottlenecks, improving road conditions, 
and further coordinating and controlling the operation would significantly impact energy 
costs, still with sustained throughput of the operation that was analysed. From the 
characteristics that we present, we conclude that the earthmoving operation includes 
sequential activities with stochastic behaviours, including loading time, waiting times, 
and transport times. These behaviours need to be measured in real-time to predict and 
optimise the operation reliably. 
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Future work includes the assessment, scaling, and usability validation of the approach 
and characteristics of: 

• hybrid or electric drive trains in the earthmoving machines 

• autonomous vehicles (removing the human operator parameter) 

• optimisation and control functionality validation in real-world operation 

• system of systems architectures for how to create an interoperable solution 
considering the multi-brand and vehicle type and capacity variations (different sizes 
of machines). 
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