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Abstract: Traditional multi-intersection traffic flow prediction and control 
methods often lack real-time and adaptability, and are difficult to cope with 
complex and changing traffic environments. To solve these two problems, this 
paper proposes a multi-intersection traffic flow prediction and control method 
based on vehicle-to-guideway collaboration (V2X) and improved LSTM. 
Firstly, real-time information interaction between vehicles and roadside devices 
is achieved through V2X technology. Secondly, an improved LSTM model 
introducing a sliding time window update mechanism is applied to the collected 
data to achieve high-precision prediction of traffic flow. Finally, a  
multi-intersection cooperative adaptive control strategy is designed based on 
the prediction results. The experimental results show that this method proposed 
in this paper reduces the average vehicle delay time by 29.0% and improves the 
road network throughput by 14.6% under high traffic conditions. Meanwhile, 
the improved LSTM model reduces the computation time from 135 ms to  
55 ms. 
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1 Introduction 

In recent years, traffic congestion has become a common challenge faced by large cities 
around the world, putting forward higher requirements for urban traffic management and 
planning. Traditional traffic management methods are limited by the lack of real-time 
data and insufficient responsiveness to complex traffic dynamics, making it difficult to 
adjust traffic signals in a timely and efficient manner to adapt to changing traffic flows 
(Arnott and Small, 1994; Barth and Boriboonsomsin, 2009). This problem is particularly 
prominent in urban road networks with multiple intersections, and there is an urgent need 
to introduce advanced technological means to improve the accuracy and real-time 
performance of traffic flow prediction and signal control. 

Traffic flow prediction control is a key aspect in intelligent transport systems  
(De-Palma and Lindsey, 2011; Chow et al., 2014). Traditional methods mainly rely on 
fixed signal timing and statistically-based prediction models. Al-Khalili (1985) proposed 
a fixed-time control (FTC) method based on the statistical characteristics of traffic flow, 
whereby fixed signal periods and phase timings are developed by analysing historical 
traffic data. Although this method can operate effectively under relatively stable traffic 
flow, it lacks flexibility and adaptability in the face of dynamic changes in traffic flow. 
Viloria et al. (2000) proposed a vehicle queue length estimation model to analyse and 
predict intersection traffic using queuing theory. The model calculates queue lengths and 
delays at intersections by estimating vehicle arrival and service rates. However, this 
method assumes that the traffic flow has steady state characteristics and is unable to 
effectively deal with stochastic and sudden changes in the traffic flow, limiting its 
usefulness. 

With the development of sensor technology and communication technology, adaptive 
traffic control methods based on real-time data have gradually emerged. Sims and 
Dobinson (1980) proposed the Sydney Coordinated Adaptive Traffic System (SCATS) 
system, which adopts a decentralised adaptive control strategy to select the best signal 
timing scheme according to the real-time changes in traffic flow. The system has been 
applied in several cities with remarkable results. However, SCATS lacks sufficient 
flexibility in dealing with abnormal traffic events due to its reliance on historical data, 
and Hunt (1982) developed the split cycle and offset optimisation technique (SCOOT) 
system, which dynamically adjusts the signal timing to achieve coordinated control of 
multiple intersections by acquiring real-time traffic data from roadside detectors. 
coordinated control of multiple intersections. Although SCOOT improves the traffic 
efficiency to a certain extent, it depends on the accuracy of the detectors and has a limited 
response speed in the face of unexpected traffic conditions. Zhao et al. (2024) introduced 
a multi-intelligence reinforcement learning method, which achieves real-time optimal 
control of a complex traffic network through the synergy of the intelligences. 
Experimental results show that this method has advantages in reducing vehicle delays and 
queue lengths. However, the model requires a large amount of computational resources in 
the training process and may have the problem of slow convergence in real large-scale 
networks. 

Deep learning models, especially the improved long-short-term memory (LSTM) 
network, show unique advantages in processing time series and capturing complex 
nonlinear relationships. Yang et al. (2019) proposed a traffic flow prediction model based 
on LSTM, which can effectively capture the temporal characteristics of traffic flow and 
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improve the prediction accuracy. However, the model mainly targets a single road section 
and does not consider the correlation between multiple intersections, which limits its 
application in complex traffic networks. Wang et al. (2022) developed a traffic gated 
graph neural network (traffic-GGNN) for multi-intersection traffic flow prediction. The 
model not only considered the time dependence, but also incorporated the spatial 
topology of the road network, which significantly improved the prediction performance. 
However, due to the high model complexity and large computational cost, it is difficult to 
be applied in real time in practical traffic control. 

Existing multi-intersection traffic flow prediction and control methods still have 
deficiencies, although they have made some progress. Firstly, LSTM-based traffic flow 
prediction models (Yang et al., 2019) usually target a single road section, and despite the 
improvement in prediction accuracy, they lack the consideration of road network 
structure in multi-intersection scenarios, and thus are difficult to effectively capture the 
complex spatial and temporal correlations among multiple intersections. Secondly, 
traffic-GGNN (Wang et al., 2022) has made a breakthrough in capturing spatial 
topological relationships, but the high model complexity and computational cost make it 
difficult to meet the real-time requirement, which restricts its application in practical 
traffic control. 

In order to solve the above problems, this paper proposes a multi-intersection traffic 
flow prediction and control method based on vehicle-to-guideway collaboration (V2X) 
and improved LSTM. Our main innovations and contributions include: 

1 To address the lack of real-time in multi-intersection traffic flow prediction, this 
paper introduces vehicle-road collaboration (V2X) technology.V2X enables  
real-time information interaction between vehicles and road infrastructure. Using the 
high-precision traffic flow data acquired by V2X in real time improves the model’s 
ability to perceive dynamic changes in traffic flow. This improvement effectively 
enhances the model’s adaptability in multi-intersection complex traffic networks and 
achieves high-precision, real-time prediction of multi-intersection traffic flow. 

2 Aiming at the problems of high computational complexity and difficult real-time 
application of traditional LSTM model in multi-intersection traffic flow prediction, 
this paper proposes an improved LSTM model. By introducing a sliding time 
window update mechanism, the model is able to continuously learn new data and 
update the parameters in real time, avoiding an overly complex model structure and 
reducing the computational cost. At the same time, the ability to learn from historical 
traffic trends is retained to ensure the accuracy of the prediction. The method 
significantly improves the computational efficiency while ensuring the model 
prediction performance, and is more suitable for real-time applications in practical 
traffic control. 

2 Data acquisition and pre-processing 

2.1 Traffic flow detection based on LiDAR and video fusion 

In order to achieve accurate prediction and signal control of traffic flow at multiple 
intersections, it is first necessary to obtain high-precision and real-time traffic flow data. 
In this study, a traffic flow detection method based on laser radar (LiDAR) (Huang et al., 
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2014) and video fusion, combined with data fusion technology, was used to obtain  
multi-dimensional and highly reliable traffic flow information. 

LIDAR and video detection have their own advantages in traffic flow acquisition. 
LIDAR has high-precision distance measurement capability, can work stably under 
complex lighting conditions, and provides key parameters such as vehicle position and 
speed; while video detection can obtain the appearance characteristics of vehicles, which 
facilitates target identification and classification. However, LIDAR has limitations in 
target identification, while video detection is susceptible to weather and lighting. 

In order to fully utilise the advantages of both sensors, this paper adopts a fusion 
method of LiDAR and video detection. Simultaneously working LiDAR and cameras are 
deployed at key intersections to acquire synchronised point cloud data and image 
sequences (Cui et al., 2020). Effective fusion of the two-sensor data is achieved through 
temporal synchronisation and spatial calibration. 

For time synchronisation, high-precision timestamps are used to align the LiDAR and 
video data to ensure data consistency; for spatial calibration, the calibration plate method 
is used to obtain the transformation matrix between the LiDAR coordinate system and the 
camera coordinate system, and to establish the spatial correspondence. 

The point cloud data Pt acquired by LIDAR contains the 3D position information of 
the vehicle; the video detection performs target detection and tracking on the image 
sequence It through a deep learning model to extract the 2D image coordinates and 
appearance features of the vehicle. 

2.2 Application of data fusion techniques in traffic flow acquisition 

After completing the temporal and spatial synchronisation, the data fusion technique is 
used to fuse the data from LiDAR and video detection to obtain more comprehensive and 
accurate information about the vehicle status St. 

Firstly, the point cloud data from the LiDAR is processed. A density-based clustering 
algorithm is used to separate the set of point clouds of each target from Pt to extract 
preliminary vehicle location information Lt. 

Next, the video images are processed. Using the trained target detection model, the 
vehicles in It are detected, and the image coordinates Ct and category information of the 
vehicles are obtained. Through the internal and external references of the camera, Ct is 
mapped into the LiDAR coordinate system using the projection transformation to obtain 
the corresponding spatial coordinates. 

Then, the vehicle position Lt detected by LIDAR is data correlated with the mapped 
video detected position. For successfully matched targets, the information from the two 
sensors is fused to construct a comprehensive state vector of the vehicle: 
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where xi,t and yi,t denote the planar coordinate position of vehicle i at time t, vi,t is the 
velocity, θi,t is the heading angle, ci is the vehicle category label, and Nt is the total 
number of detected vehicles at time t. 

For unmatched targets, the respective sensor information is retained, ensuring that no 
vehicle data is missed. The fused data has higher accuracy and integrity. 

Finally, the vehicle state data obtained from fusion is pre-processed. The data needs 
to be normalised in order to adapt to the input requirements of the deep learning model: 

1 Missing value processing: Missing data are handled by interpolation or mean 
padding to ensure data integrity. 

2 Outlier rejection: Statistical methods are used to detect and remove anomalous data 
points to avoid adverse effects on model training. 

3 Normalisation: The numerical features are normalised to map the data to the [0, 1] 
interval, eliminating the magnitude difference and improving the stability of model 
training. 

The processed traffic flow data are organised in time series to form the input tensor Xt of 
the model, which contains multi-intersection and multi-vehicle state information. By the 
above method, a high-quality traffic flow dataset is constructed. The fusion of LiDAR 
and video detection data acquisition methods, combined with data fusion technology, 
ensures the accuracy, real-time and comprehensiveness of the traffic flow data. 

3 Improved LSTM multi-intersection traffic flow prediction model 

3.1 Limitations of traditional LSTM models 

The LSTM neural network structure is evolved based on the recurrent neural network 
(RNN) structure (Shewalkar et al., 2019), and the RNN structure is shown in Figure 1. 
The LSTM exhibits unique advantages in dealing with time-series data, and has been 
widely used in the field of traffic flow prediction due to its ability to capture both  
long-term and short-term dependencies in the data. However, in the task of predicting 
traffic flow at multiple intersections, traditional LSTM models still have obvious 
limitations. 

Figure 1 Structure of RNN (see online version for colours) 
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Firstly, the traditional LSTM model usually completes training in an offline environment 
with fixed model parameters and lacks real-time updating capability. For dynamic and 
frequently changing traffic flow data, especially in multi-intersection complex traffic 
networks, the traffic state of each intersection has strong time-varying and uncertainty. It 
is difficult for the model with fixed parameters to adapt to the sudden changes in traffic 
flow in time, which leads to the prediction results lagging behind the actual situation and 
reduces the accuracy and reliability of the prediction. 

Secondly, with the expansion of traffic network scale, the traditional LSTM model 
faces the problem of high computational complexity when dealing with multi-intersection 
traffic flow prediction. With the high dimensionality of multi-intersection traffic flow 
data, the traditional LSTM model is less efficient in processing large-scale data, and the 
computational cost increases significantly, making it difficult to meet the requirements of 
real-time prediction. This is unacceptable in real-time traffic signal control, and the 
excessive computational delay will lead to the signal control strategy not being able to be 
adjusted in time, affecting the effectiveness of traffic management. 

In addition, the traditional LSTM model lacks a fast response mechanism when 
facing sudden changes in traffic flow. Since the model relies more on the distribution of 
historical data during the training process, when there are abnormal fluctuations or 
sudden events in traffic flow, the model cannot quickly adjust the parameters to adapt to 
the new data characteristics, resulting in a sharp drop in prediction accuracy. This 
situation often occurs in real traffic scenarios, such as congestion caused by accidents and 
sudden weather changes. 

Combining the above factors, the traditional LSTM model in multi-intersection traffic 
flow prediction has limitations such as the model parameters cannot be updated in real 
time, the computational complexity is high, and the response to sudden changes is not 
timely, which limits its application effect in actual traffic signal control. In order to solve 
these problems, it is necessary to improve the traditional LSTM model to enhance its 
adaptability to dynamic changes in traffic flow and real-time processing performance, so 
as to more effectively serve the multi-intersection traffic signal control. 

3.2 Introducing a real-time update mechanism with a sliding time window 

To address the limitations of the traditional LSTM model in multi-intersection traffic 
flow prediction, an improved LSTM model based on sliding time window is proposed. 
The model achieves real-time updating of parameters by dynamically adjusting the time 
range of input data, while reducing the computational complexity and improving the 
response speed to sudden changes in traffic flow. 

The improved LSTM model introduces a sliding time window Wt, where t denotes the 
current moment. The window size is w and contains traffic flow data from the most 
recent w time steps. The input tensor Xt of the model consists of the data within Wt and is 
denoted as: 

{ }1 2, , ,− + − +=X S S St t w t w t  (2) 

where Si is the traffic state vector at the moment i, which contains the vehicle position, 
speed and other information. 

The sliding window mechanism enables the model to continuously receive the latest 
traffic flow data and update the parameters at each time step. Defining the set of 
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parameters of the model at moment t as Θt, the parameter updating process can be 
expressed as: 

( )1Θ Θ , ,−= X Yt t t tf  (3) 

where f is the parameter update function and Yt is the actual observation. This approach 
ensures that the model can adapt to the dynamic changes of traffic flow and improve the 
prediction accuracy. 

To further improve the computational efficiency, this study adopts an incremental 
learning strategy. An incremental update threshold δ is defined, which triggers a local 
update of the model parameters when the difference between the new data and the 
historical data exceeds δ. This approach reduces unnecessary computational overheads 
while maintaining the sensitivity of the model to unexpected events. 

The improved LSTM cell structure contains an input gate it, an oblivion gate ft, an 
output gate ot and a cell state ct. The formulae for each gate are as follows: 

[ ]( )1,−= ⋅ +t i t t ii σ W h x b  (4) 

[ ]( )1,−= ⋅ +t f t t ff σ W h x b  (5) 

[ ]( )1,−= ⋅ +t o t t oo σ W h x b  (6) 

[ ]( )1tanh ,−= ⋅ +t c t t cc W h x b  (7) 

1−= +  t t t t tc f c i c  (8) 

( )tanh= t t th o c  (9) 

where σ is the sigmoid activation function; tanh is the hyperbolic tangent function;  
denotes elementwise multiplication; Wi, Wf, Wo, and Wc are the weight matrices; bi, bf, bo, 
and bc are the bias vectors. 

To capture the spatial correlation among multiple intersections, this model introduces 
the attention mechanism. Define the attention weight αij, which indicates the degree of 
influence of intersection i on intersection j: 

( )

( )
1

exp

exp
=

=


ij

ij N

ik
k

e

e
α  (10) 

where eij is the correlation score between intersections i and j, and N is the total number 
of intersections. Through the attention mechanism, the model can adaptively adjust the 
importance of different intersection information to improve the accuracy of prediction. 

The improved LSTM model proposed in this section achieves real-time updating of 
parameters through a sliding time window, an incremental learning strategy reduces 
computational complexity, and an attention mechanism captures spatial correlation 
among multiple intersections. These innovations effectively address the limitations of 
traditional LSTM in multi-intersection traffic flow prediction and provide a reliable 
prediction basis for subsequent traffic signal control. The structure of the advanced 
LSTM is shown in Figure 2. 
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Figure 2 Improved LSTM structure (see online version for colours) 

tanh

tanh σσσσg

-

× ×

tanh

Δt Xt

LSTM cell
ht

Ct-1

ht-1 ht-

Ct
× × ++

 

4 V2X-based multi-intersection traffic signal control strategy 

4.1 Application of V2X technology in traffic signal control 

This section explores the innovative application of vehicle-to-circuit (V2C) V2X 
technology in multi-intersection traffic signal control (Garcia et al., 2021).V2X, as the 
core of the new generation of intelligent transport systems, provides a strong 
technological support to achieve accurate and real-time traffic flow prediction and 
control.V2X systems achieve information interaction between vehicles and infrastructure 
through wireless communication networks. In this study, we construct a V2X-based 
multi-intersection traffic information collection and processing framework. The set of 
intersections is defined as I = {i1, i2, …, iN}, where N denotes the total number of 
intersections. Each intersection ik is equipped with road side unit (RSU) for 
communication with on-board unit (OBU) (Abboud et al., 2016). 

The RSU continuously broadcasts the beacon message Bk(t) containing the junction 
ID, location and current timestamp: 

( ){ }( ) , , ,=k k k kB t ID x y t  (11) 

where (xk, yk) are the coordinates of the intersection ik. 
The OBU receives the beacon and generates the vehicle status message Vj(t): 

( ){ }( ) , ( ), ( ) , ( ), ( ),=j j j j j jV t ID x t y t v t θ t t  (12) 

where IDj is the vehicle identification, (xj(t), yj(t)) is the vehicle position, vj(t) is the 
velocity, and θj(t) is the heading angle. 

The RSU aggregates all vehicle state information to form the intersection traffic state 
matrix Mk(t): 

[ ]1 2( ) ( ), ( ), , ( )=  T
k mM t V t V t V t  (13) 
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where m is the number of vehicles within the current intersection range. 
To improve the efficiency of data transmission, this study adopts an adaptive 

communication strategy. The vehicle state change threshold   is defined, and the data 
upload is triggered only when the magnitude of vehicle state change exceeds :  

Δ ( ) ( ) ( Δ )= − − >j j jV t V t V t t   (14) 

where Δt is the sampling interval and ||.|| denotes the Euclidean distance. 
The V2X system also implements a vehicle trajectory prediction function. The 

Kalman filter algorithm is used to predict the state of the vehicle in the future Qk(t + τ) 
moments based on the historical trajectory data: 

ˆ ( ) ( ) ( )+ = ⋅ +j jV t T F V t w t  (15) 

where F is the state transfer matrix and w(t) is the process noise. 
Based on the high-precision, real-time traffic data acquired by V2X technology, 

combined with the improved LSTM model proposed in Subsection 3.2, we construct a 
multi-intersection traffic flow prediction system. The system is able to predict the traffic 
flow at each intersection in the future time period   in real time: 

( )( ) ( ), ( 1), , ( 1)+ = − − +k k k kQ t τ LSTM M t M t M t w  (16) 

where τ is the prediction duration and w is the sliding window size. 
The prediction results are fed into the signal control optimisation module for dynamic 

adjustment of the signal timing scheme. Define the signal timing parameter vector Pk(t): 

[ ]1 2( ) ( ), ( ), , ( ), ( )= k LP t t t t C tφ φ φ  (17) 

where φl(t) denotes the green time of the lth phase, L is the number of phases, and C(t) is 
the cycle length. 

Optimising signal timing by minimising the objective function J(t): 

[ ]( )
1 2( 1) ( 1)( ) ( ) ( )= == +kmN

j jk jJ t sum sum w d t w q t  (18) 

where dj(t) and qj(t) denote the vehicle delay and queue length, respectively; w1 and w2 
are the weighting coefficients; mk is the number of lanes at intersection k. 

This objective function comprehensively evaluates the operation of the whole traffic 
network by weighted summation of delay time and queue length at all intersections and 
lanes. By minimising J(t), we can obtain a signal timing scheme that balances the 
efficiency of each intersection. 

4.2 Coordinated traffic signal control methods for multi-intersections 

In this section, an innovative collaborative adaptive method is proposed. The method 
makes full use of real-time traffic data to achieve dynamic optimisation and cooperative 
scheduling of signals at multiple intersections in a complex road network. The proposed 
coordinated multi-intersection traffic signal control method is implemented through a 
closed-loop adaptive optimisation process. 

The V2X system collects and transmits multi-intersection traffic data in real-time, and 
the improved LSTM model processes and predicts these data to generate traffic flow 
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estimates for a future period. Subsequently, a coordination mechanism constructed based 
on the intersection coupling degree matrix calculates the optimal phase difference to 
achieve green wave coordination at adjacent intersections. Meanwhile, the deep 
reinforcement learning algorithm dynamically adjusts the signal timing parameters of 
each intersection using the current traffic state, prediction results and historical 
performance evaluation. This process takes into account the overall efficiency of the road 
network and the fairness between intersections, and the control strategy is continuously 
optimised through the priority experience playback technique. This system continuously 
monitors the control effect and updates the model parameters and control strategies in 
real time according to the actual traffic changes, forming a closed-loop system for 
continuous optimisation, thus realising flexible and efficient multi-intersection 
cooperative control in a complex and changing traffic environment. 

Firstly, we construct a multi-objective optimisation framework aiming at balancing 
transport efficiency and fairness. Define the road network efficiency metric E(t) and the 
fairness metric F(t): 

1

1 ( )( )
=

= 
N

k

kk

Q tE t
N C

 (19) 

{ }( )
{ }( )

1

1

( )
( ) 1

( )
=

=

= −
N

k k
N

k k

σ d t
F t

μ d t
 (20) 

where Qk(t) denotes the number of vehicles passing through intersection k at moment t; 
Ck is the intersection capacity; dk(t) is the average vehicle delay; and σ and μ denote the 
standard deviation and the mean operation, respectively. 

In order to achieve cooperative control of multiple intersections, we introduce an 
intersection coupling degree matrix G, whose element gij denotes the traffic flow 
association strength between intersections i and j: 

( )
( ) ( )

cov ,

var var
=

⋅
i j

ij
i j

Q Q
g

Q Q
 (21) 

where cov and var denote covariance and variance, respectively. 
Based on the coupling degree matrix, we design an adaptive signal coordination 

mechanism. Define the phase difference φk(t) of intersection k: 

( ) Δ ( )
≠

= ⋅k kj kj
j k

φ t g t t  (22) 

where Δtkj(t) is the travel time between junctions k and j. 
To dynamically adjust the signal timing, we propose an adaptive control algorithm 

based on reinforcement learning. The state space S, action space A and reward function R 
are defined: 

{ }( ), ( ), ( ) 1, 2, ,= = k k kS Q t d t q t k N  (23) 

{ }( ) 1, 2, ,= = kA P t k N  (24) 
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( ) ( ) ( )= ⋅ + ⋅E FR t w E t w F t  (25) 

where qk(t) denotes the average queue length at junction k; wg and wF are the weighting 
factors. 

A deep Q-network (DQN) algorithm is used to optimise the control strategy. The  
Q-function approximator Q(s, a; θ) is implemented by a multilayer perceptron, where θ is 
a network parameter. The θ is updated by minimising the timing difference error: 

( )( )2
, , ,( ) max , ; ( , ; )−

′ ′
 ′ ′= + − s a r s aL θ r γ Q s a θ Q s a θ  (26) 

where γ is the discount factor and θ– is the target network parameter. 
To improve convergence and stability, we use the prioritised experience replay (PER) 

technique. Define the sample priority pi: 

= +i ip δ   (27) 

where δi is the timing difference error and   is a small positive number. 

5 Experimental results and analyses 

5.1 Simulation experiment design 

A series of simulation experiments are designed to fully evaluate the proposed multi-
intersection traffic flow prediction and control method based on V2X and improved 
LSTM. The experiments aim to simulate the real urban traffic environment and verify the 
adaptability and effectiveness of this method under different traffic conditions. 

The experimental platform adopts simulation of urban mobility (SUMO) microscopic 
traffic simulation software, combined with self-developed V2X communication module 
and traffic signal control algorithms. SUMO can accurately simulate vehicle behaviour 
and traffic flow dynamics, providing a reliable simulation environment for the 
experiment. 

A typical urban road network containing N = 9 signal-controlled intersections 
constituting a 3 × 3 grid structure is selected for the experimental scenario. Each 
intersection is a standard four-way 12-lane intersection (three lanes for each inlet). The 
total length of the network is L = 4.5 kilometres, covering an area of about A = 2.25 
square kilometres. 

In order to simulate the variation of traffic demand in different time periods, three 
traffic patterns were designed: 1  (low flow), 2  (medium flow) and 3  (high flow). 
The vehicle generation rates for each mode are λ1 = 600 vehicles/hour/lane, λ2 = 1,000 
vehicles/hour/lane and λ3 = 1,400 vehicles/hour/lane, respectively. Vehicle types include 
small, medium and large vehicles, with the ratio set to ρs:ρm:ρl = 7:2:1. 

The V2X communication parameters are set as follows: RSU communication radius 
RRSU = 300 metres, OBU communication radius ROBU = 150 metres, data transmission rate 
vdata = 6 Mbps, sampling period Ts = 0.1 seconds. To simulate the actual communication 
environment, data packet loss rate ploss = 0.5 and transmission delay 

2 2~ (20 ms, 5 ms )delayτ   are introduced. 
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The hyperparameters of the improved LSTM model are determined by grid search: 
number of hidden layers nh = 2, number of neurons per layer nn = 64, learning rate  
η = 0.001, batch size B = 32, and number of training rounds E = 100. The sliding time 
window size is set to w = 10 minutes and the prediction duration τ = 5 minutes. 

The parameters of the reinforcement learning controller are set as follows: discount 
factor γ = 0.95,  -greedy exploration rate initial value 0  = 1.0, minimum value  

min  = 0.01, decay rate δ  = 0.995. Memory size for priority experience playback  
M = 10,000, small batch size b = 64. 

The experiment is divided into three phases: training phase, validation phase and 
testing phase. The training phase uses 1  and 2  alternating flow patterns with a 
duration of Ttrain = 48 hours; the validation phase uses 2  flow patterns with a duration 
of Tvalid = 12 hours; and the testing phase uses 1 2, ,   and 3  flow patterns with the 
duration of each pattern, respectively. 1 2, ,   and 3  traffic modes respectively, each 
lasting Ttest = 6 hours. 

To assess the performance of the proposed method, the following evaluation metrics 
were selected: average vehicle delay time d  (seconds/vehicle), average queue length q  
(metres), average number of stops s  (times/vehicle), road network throughput Θ 
(vehicles/hour) and fuel consumption   (litres/100 km). 

The experiments compare three methods: FTC, independent adaptive control (IAC) 
and coordinated adaptive control (CAC) proposed in this paper. Each method is run under 
the same traffic scenario to ensure the comparability and reliability of the experimental 
results. 
Table 1 Comparison of the performance of different models in each traffic pattern 

Traffic 
pattern Modelling MAE (vehicles/ 

5 minutes) 
RMSE (vehicles/ 

5 minutes) 
MAPE 

(%) 
Calculation 
time (ms) 

1  LSTM 7.8 10.5 8.6 42 
Traffic-GGNN 6.2 8.4 6.9 120 

Improvement of LSTM 6.5 8.7 7.2 48 

2  LSTM 15.1 21.2 9.2 45 
Traffic-GGNN 11.8 16.3 7.5 128 

Improvement of LSTM 12.3 16.7 7.8 52 

3  LSTM 24.6 33.8 10.5 47 
Traffic-GGNN 19.2 26.1 8.4 135 

Improvement of LSTM 20.1 27.3 8.7 55 

5.2 Predictive model performance evaluation 

In this section, the performance of the traffic flow prediction model based on improved 
LSTM is evaluated and compared with the conventional LSTM model proposed by Yang 
et al. (2019) and the traffic-GGNN model developed by Wang et al. (2022), and the 
results are shown in Table 1. 

The results show that the traffic-GGNN model slightly outperforms our improved 
LSTM model in terms of prediction accuracy in all traffic patterns, but its computational 
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time increases significantly. In contrast, our improved LSTM model substantially reduces 
the computational complexity while maintaining high prediction accuracy. In particular, 
the performance of the improved LSTM model is closer to that of the traffic-GGNN in 
the high traffic ( 3 ) scenario, while maintaining a lower computational time. 

To further illustrate the advantages of the improved LSTM model in a dynamic traffic 
environment, we simulated a traffic flow mutation scenario: 

Figure 3 Convergence curves of prediction errors of different models after high volume ( 3 ) 
traffic contingencies (see online version for colours) 
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All models have high prediction errors at the onset of a sudden event (0 minutes). The 
improved LSTM model performs best in the short term (first 20 minutes), demonstrating 
its ability to adapt quickly. Traffic-GGNN eventually achieves the lowest stabilisation 
error (6.5%), which is about 1% lower than the improved LSTM (7.5%). The 
performance of the traditional LSTM lagged behind the other two models throughout. 
The improved LSTM strikes a balance between fast response and long-term stability, and 
although the final error is slightly higher than that of the traffic-GGNN, its ability to 
adapt quickly may be more valuable in real-world applications. 
Table 2 MAPE of different models (%) 

Traffic 
pattern Projected duration (minutes) LSTM Traffic-GGNN Improvement of LSTM 

1  5 8.6 6.9 7.2 
10 10.2 8.3 8.6 
15 12.5 10.1 10.4 

2  5 9.2 7.5 7.8 
10 11.5 9.1 9.4 
15 14.3 11.2 11.6 

3  5 10.5 8.4 8.7 
10 13.2 10.3 10.7 
15 16.8 12.9 13.4 
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Additional experiments were conducted to quantify the performance of the model under 
different prediction durations and traffic patterns (Table 2). 

The results show that the performance of all models decreases as the prediction 
duration increases and the traffic volume increases. However, our improved LSTM 
model maintains a similar performance to traffic-GGNN for all prediction durations and 
traffic patterns, while the computational efficiency is substantially improved. In 
particular, the performance advantage of the improved LSTM model is more obvious in 
the case of high traffic ( 3 ) and long prediction durations (15 minutes). 

These results fully demonstrate that our proposed improved LSTM model 
significantly improves the computational efficiency while maintaining high prediction 
accuracy. In particular, it shows faster adaptability and better scalability when dealing 
with high and dynamically changing traffic flows. These properties make the model more 
suitable for practical real-time traffic control applications, especially in complex multi-
intersection systems. 

Through the above analysis, we verify the validity of the second innovation point of 
this paper: the improved LSTM model introducing the sliding time window update 
mechanism can guarantee the prediction performance under various traffic conditions, 
and at the same time, it significantly improves the computational efficiency, which is 
more suitable for real-time applications in practical traffic control, especially when 
dealing with high traffic flow and complex traffic situations. 

5.3 Evaluation of signal control effectiveness 

According to the experimental scheme and steps in Subsection 5.1, the performance 
comparison of different control methods at each flow condition is shown in Table 3. 

The experimental results show that the CAC method is superior to the SAC and GNC 
methods in all flow conditions and evaluation indicators. The specific analyses are as 
follows: 

1 The CAC method reduces 21.2%, 26.7% and 29.0% compared to SAC and 12.8%, 
14.7% and 17.5% compared to GNC under low, medium and high traffic conditions, 
respectively. This indicates that the CAC method has significant advantages in 
dealing with complex traffic conditions, especially in high traffic conditions. 

2 The CAC method achieves the shortest average queue length in all flow conditions, 
and the improvement over SAC and GNC increases with increasing flow rate, 
showing its superiority in high load situations. 

3 The CAC method performs well in improving the throughput of the road network, 
improving 14.6% over SAC and 6.9% over GNC under high traffic conditions, 
effectively reducing traffic congestion. 

4 The CAC method significantly reduces the number of vehicle stops, by 26.2% and 
16.2% compared to SAC and GNC, respectively, under high volume conditions, 
improving the continuity of traffic flow. 

5 The CAC method achieved the lowest fuel consumption in all flow conditions, with 
reductions of 13.0% and 6.9% over SAC and GNC, respectively, in high flow 
conditions, demonstrating its environmental contribution. 
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The excellent performance of the CAC method is mainly attributed to its combination of 
real-time traffic data provided by the V2X technology and the high-precision prediction 
capability of the improved LSTM model. This enables the system to respond more 
quickly and accurately to changes in traffic flow, especially when dealing with high 
traffic volumes and complex traffic conditions. 
Table 3 Comparison of the performance of different control methods at various flow 

conditions 

Flow rate Methodologies d  q  Θ s    

1  SAC 38.2 25.6 3,800 1.8 7.2 
GNC 34.5 22.9 3,950 1.6 7 
CAC 30.1 19.8 4,120 1.4 6.8 

2  SAC 62.5 48.3 5,100 2.9 8.9 
GNC 53.7 41.2 5,450 2.5 8.4 
CAC 45.8 35.6 5,780 2.2 7.9 

3  SAC 95.7 76.2 5,950 4.2 10.8 
GNC 82.3 65.7 6,380 3.7 10.1 
CAC 67.9 54.3 6,820 3.1 9.4 

In summary, the experimental results fully validate the significant advantages of the 
multi-intersection cooperative adaptive control (CAC) method based on V2X and 
improved LSTM in improving traffic efficiency, reducing delays and energy 
consumption. The method not only effectively copes with different traffic conditions, but 
also performs well in dealing with traffic peaks and complex road conditions, which 
provides strong support for the practical application of ITS. 

6 Conclusions 

In this paper, a multi-intersection traffic flow prediction and control method based on 
V2X and improved LSTM is proposed, which effectively solves the limitations of the 
traditional method in dealing with complex traffic environment and real-time response. 
By introducing V2X technology, the system is able to efficiently collect and transmit 
real-time traffic data, which significantly improves the accuracy and timeliness of traffic 
state perception. In addition, the improved LSTM model utilises a sliding time window 
update mechanism to further enhance the prediction capability of dynamic traffic flow, 
ensuring the adaptability and effectiveness of the control strategy. The following 
conclusions can be drawn from the simulation experiments conducted under multiple 
traffic flow conditions: 

1 The application of V2X technology can significantly improve the real-time and 
accuracy of traffic data collection and lay the foundation for accurate traffic flow 
prediction. 

2 The improved LSTM model significantly reduces the computational complexity 
while maintaining high prediction accuracy, making it more suitable for real-time 
traffic control applications. 
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3 The multi-intersection CAC strategy based on V2X and improved LSTM 
outperforms the conventional method in all performance metrics, especially in high 
traffic conditions. 

4 The CAC strategy not only improves transport efficiency, but also demonstrates 
potential in reducing energy consumption and environmental protection. 

The experiments in this paper were conducted mainly based on the SUMO simulation 
platform, which may not fully reflect the complexity of the real world, although a wide 
range of traffic flow conditions were simulated. Future work should consider conducting 
field tests in real road networks to further validate the effectiveness and reliability of this 
method in real traffic environments. Meanwhile, combining this method with other 
emerging technologies (e.g., autonomous driving, edge computing) can be explored to 
further enhance the overall performance of ITS. 
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