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Abstract: This study enhances support vector regression machine (SVR)
for COVID-19 mortality forecasting in Japan using three particle swarm
optimisation (PSO) variants. Our main contributions include: 1) achieving
superior model performance, notably with the fast convergence PSO-SVR
variant, which outperforms existing models with an R-Squared value of
0.717; 2) demonstrating consistent and improved prediction accuracy across
various PSO variants; 3) establishing the potential of our methods for broader
applications beyond epidemiological modelling. Our findings, significantly
advancing the accuracy and efficiency of predictive analytics in this domain,
are benchmarked against prior studies, showing notable improvements in SVR
hyperparameter optimisation.
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1 Introduction

Optimising machine learning algorithms, especially in terms of hyperparameter tuning,
remains a key area of research. Traditional methods like grid search, random
search, and trial-and-error, each come with their advantages and limitations (Akande
et al., 2017). While grid search offers a thorough exploration of the search space,
its computational intensity and inefficiency in multi-dimensional problems limit its
practicality (Syarif et al., 2016). Random search, in contrast, has emerged as a
more resource-efficient approach, offering a good balance between performance and
computational demand (Liashchynskyi and Liashchynskyi, 2019). The trial-and-error
method, although somewhat rudimentary, still holds value in quickly exploring the
insights of domain experts (Akande et al., 2017).

The evolving landscape of hyperparameter optimisation has seen the rise of particle
swarm optimisation (PSO) techniques. PSO, inspired by the social behaviour of birds
and fish, offers a robust approach to navigating complex search spaces, making
it suitable for a variety of applications, from environmental modelling to financial
forecasting (Gupta et al., 2019; Siddique et al., 2020; Lu et al., 2009).

Our research extends this exploration by applying three variants of PSO – fast
convergence PSO, reproduction strategy based on spawning global best PSO, and
Gaussian distribution-based PSO – to the fine-tuning of support vector regression
machine (SVR) hyperparameters, namely, C, gamma, and epsilon. We applied these
techniques to the pressing challenge of predicting COVID-19 mortality, using datasets
from Tokyo, Japan. This study aims to not only provide accurate and efficient models
for this critical application but also to demonstrate the adaptability of PSO in handling
complex, real-world datasets. By bridging the gap between theoretical optimisation
methods and practical applications, we hope to contribute valuable insights to the fields
of machine learning and public health analytics, especially in the context of pandemic
response and management.

The remainder of this paper is organised as follows: Section 2 delves into the
background of PSO, SVR as our primary machine learning algorithm, and a review
of current COVID-19 prediction algorithms. In Section 3 (methodology), we detail
our SVR-PSO experimental design. Section 4 presents our analysis and findings. The
results are then interpreted in the broader context of existing research in Section 5
(discussion). Finally, Section 6 concludes the paper, summarising our contributions,
addressing limitations, and suggesting future research directions.
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2 Literature review

2.1 Support vector regression machines

SVR is a type of support vector machine (SVM), a popular supervised machine learning
algorithm that is used for problems where forecasting is required (Drucker et al.,
1997; Goodfellow et al., 2016). It consists of four main components: the kernel, the
hyperplane, the boundary line, and the support vectors (Drucker et al., 1997). As
illustrated in Figure 1, the red line represent the hyperplane, while the dashed lines
represent the boundary lines (support vectors).

Figure 1 Support vector machine (see online version for colours)

Source: Cortes and Vapnik (1995)

The SVR is designed to process the data (xi, yi), where xi is the ith sample input vector
and yi is the predicted output (Cortes and Vapnik, 1995). The optimisation function in
SVR is:

f(x) = wTx+ b (1)

where the coefficients, w and b, are the adjustable weight and bias respectively. To find
the optimal w and b such that f(xi) ≈ yi, the minimisation of regularised risk function
is performed for estimation of w and b:

R(C) =
1

2
∥w∥2 + C ·

n∑
i=1

|yi − f(x)|ϵ (2)

|yi − f(x)|ϵ =

{
0 |yi − f(x)| ≤ ϵ

|yi − f(x)| otherwise
(3)

where C denotes the coefficient for penalty, which is considered as the trade-off
tuner between model flatness/structural risk and empirical risk; while epsilon (ϵ) is the
maximum tolerable error [equation (2)]. Moreover, both w and b are determined by the
user. Equation (3) illustrates that if the predicted value is within the ϵ constraint, the loss
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would be zero; otherwise the loss would be the difference between actual and forecasted
result. To handle cases when the error is larger than ϵ, two slack variables, ξi and ξi

∗

are introduced to soften margins. Therefore, equation (2) becomes:

min
w,b,ξ,ξ∗

1

2
∥w∥2 + C ·

n∑
i=1

|ξi + ξi
∗| (4)

which is subject to:

s.t. =


yi − (wTxi + b) ≤ ϵ+ ξi

(wTxi + b)− yi ≤ ϵ+ ξ∗i
ξi, ξ

∗
i ≥ 0, where i = 1, 2, 3, ..., n

C > 0

(5)

By using dual formation and introducing the language multiplier ai and a∗i , the original
function can be reformatted as:

f(x) =
n∑

i=1

(ai + a∗i )K(xi, x) + b (6)

where the K represents the kernel function. The kernel function determines the type of
hyperplane used to separate the data. Common types include linear, polynomial, radial
basis function (RBF), and sigmoid (Drucker et al., 1997). The RBF is a popular kernel
function defined as:

K(xi, x) = exp

(
−∥xi − x∥2

σ

)
(7)

where σ is the kernel parameter of the function in equation (7) and controls its
amplitude.

Figure 2 Support vector regression machine (SVR) with different epsilon values (see online
version for colours)

Source: Ji (2023)
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Figure 2 illustrates an SVR where the data was generated by a sine wave and predictions
are made by the SVR using different epsilons values. As ϵ increases, the prediction
becomes less sensitive to errors (Drucker et al., 1997).

In summary, SVR have several key hyperparameters. These hyperparameters are
crucial for the performance of SVR models and need to be carefully optimised for the
best results.

1 Kernel: Determines the type of hyperplane used to separate the data. Common
types include linear, polynomial, radial basis function (RBF), and sigmoid.

2 C (regularisation parameter): Balances the trade-off between achieving a low error
on the training data and minimising model complexity for better generalisation.

3 Epsilon (ϵ): Sets the margin of tolerance where no penalty is given to errors.
Smaller ϵ-values result in more support vectors and potentially more accurate
models, but with the risk of overfitting.

4 Gamma (γ): Used in nonlinear SVR algorithms for defining the influence of a
single training example. Higher values lead to training examples having a larger
influence.

5 Degree: The degree of the polynomial that is used in the polynomial kernel
function.

2.2 Search algorithms for hyperparameter optimisation

Hyperparameter optimisation, a critical process in machine learning, significantly
influences the effectiveness of prediction models (Shukla et al., 2020; Syarif et al.,
2016). Common hyperparameter optimisation strategies include grid search, random
search, trial and error, and genetic algorithms (Akande et al., 2017).

Grid search, in a classic Euclidean plane, exhaustively explores all possibilities
within a grid, with the total iterations being the product of the grid’s dimensions
(e.g., rows × columns). In a 3D space, this expands to |x| × |y| × |z|. However,
its performance diminishes with increasing dimensions due to exponential growth in
computational complexity (Akande et al., 2017; Al-Musaylh et al., 2018).

Conversely, random search, in a 2D space, requires significantly fewer test cases
than grid search (Al-Musaylh et al., 2018). It often outperforms grid search, particularly
when only a subset of hyperparameters significantly impacts performance. The process
begins by setting a range for each hyperparameter, followed by random selection within
these bounds (Al-Musaylh et al., 2018).

Beyond the grid search and random search, there are other approaches to optimise
hyperparameters. Genetic algorithms, for example, have been used in convolution neural
networks to systematically fine-tune parameters, in an efficient way (Liashchynskyi and
Liashchynskyi, 2019). PSO has also enjoyed the appreciation from diverse researchers
in assisting the process of hyperparameter optimisation (Zhao et al., 2018; Lin et al.,
2017). On the other hand, some researchers opted for bi-level programming, to combine
gradient-base tuning and meta-learning, which in turn contributed positively to the
hyperparameter selection of their deep learning network (Franceschi et al., 2018).

Some studies also reported on the use of evolutionary algorithms to fine-tune
convolution neural networks (CNN) with significant improvements (Bochinski et al.,
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2017). The most recent area of exploration is to use AI to identify and construct the
parameter search space, then automatically setting up strategies to find the optimal
hyperparameters for the problem domain (Akcora et al., 2018).

In 2011, Polson and Scott showed that the SVM’s hyperparameters can be effectively
optimised using Bayesian interpretation through data augmentation. In this approach
the SVM is viewed as a visual model where the parameters are connected through
probability distributions. Recently, a scalable version of the Bayesian SVR was
developed, enabling the application of Bayesian SVR forecasting on big data (Wenzel
et al., 2017).

2.3 Particle swarm optimisation algorithm

PSO, originally inspired by biology, was proposed in 1995 by Kennedy and Eberhart
(Olsson, 2011). Modelled on swarm intelligence, it uses a metastatic algorithm
employing the strategy to explore the search space to find an optimal solution (Olsson,
2011). The following sections present the standard particle swarm optimisation and six
of the most commonly used PSO variations (Olsson, 2011), namely:

1 the fast convergence PSO (FCPSO)

2 the genetic algorithm PSO (GAPSO)

3 the reproduction of spawning global best PSO

4 the lifecycle-based sub swarm PSO (LCPPSO)

5 the PSO with fitness adaptive inertia weight

6 the Gaussian distribution PSO (GDPSO).

2.3.1 The standard PSO algorithm

The standard PSO algorithm consists of the following:

• the position of the particle p at iteration k: xk
p

• the velocity of the particle p at iteration k: vkp

• the best position found by p up to iteration k: bkp

• the global best solution up to iteration k: gkp .

Building on this, the predicted next position for particle p may be calculated as:

xk+1
p = xk

p + vk+1
p (8)

where the current position at time t is added with the velocity of t+ 1 to find the next
position for the particle. While velocity is calculated using the following formula:

vk+1
p = wvkp + c1r1(b

k
p − xk

p) + c2r2(g
k
p − xk

p) (9)

In this case, w represents the inertia and is used as a weight in the calculation. In some
situations, a large w is related to a global, large search area, while a smaller inertia is
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referred to as a local search area. However, that is not always the case. Sometimes a
large value of w is needed for the optimisation of unimodal function, which is a local
search problem (Nickabadi et al., 2011). On the other hand, the variables c1 and c2 are
considered as trust parameters, with the former representing the trust the particle has
on itself, and the latter being confidence over neighbour’s position. The acceleration
coefficients, r1, and r2 are typically generated by uniform distribution with the range of
[0, 1]. Algorithm 1 presents the pseudocode for the standard PSO.

Algorithm 1 The standard PSO algorithm with diminishing inertia

Require: N > 0, D > 0,maxIte > 0 ◃ # particles, dimensions, and max iterations
Ensure: f(x) = 1

n

∑N
i=1(f(xi)− y)2

for n← 1, ..., N do ◃ particles initialisation
for d← 1, ..., D do

xn,d ← rand(lower, upper) ◃ uniformly distributed locs in boundaries
vn,d ← rand(lower − upper, upper − lower)

end for
bi = xi ◃ initialise personal best

end for
while iteration < maxIte do

for n← 1, ..., N do ◃ particles initialisation
for d← 1, ..., D do

r1 ← rand(0, 1)
r2 ← rand(0, 1)
vn,d = wvn,d + c1r1(bn,d − xn,d) + c2r2(gd − xn,d)

end for
xn ← xn + vn
if f(xn) < f(bn) then

bn ← xi

if f(bn) < f(gn) then
gn ← bn

end if
end if

end for
w ← wmin +

(wmax−wmin)∗(maxIte−iteration)
maxIte

iteration← iteration+ 1
end while

2.4 Variation 1: fast convergence PSO

The FCPSO stands out as one of the most prominent PSO variants (Olsson, 2011).
In the standard PSO, the velocity update is governed by equation (9), where the
subsequent velocity is influenced by both personal and global bests, given that these
values are non-zero. However, this approach can result in convergence being trapped
in local minima, especially for functions with high dimensions, due to interdimensional
variable restrictions (Sahu et al., 2012). To mitigate this, FCPSO introduces an additional
variable, Pmdi, into the velocity update formula. This variable is calculated as the mean
of each dimension’s value within the same iteration, as depicted in Figure 3. This leads
to a modified velocity calculation as shown in equation (10), where c3 represents the
average best learning factor, and r3 is a uniformly distributed value between 0 and 1.
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vk+1
p = wvkp + c1r1(b

k
p − xk

p) + c2r2(g
k
p − xk

p) + c3r3(Pmdkp − xk
p) (10)

Figure 3 Illustration of fast convergence mean dimension calculation

Source: Sahu et al. (2012)

2.5 Variation 2: genetic algorithm particle swarm optimisation

In 1998, researchers introduced a hybrid optimisation technique combining genetic
algorithms (GA) and PSO(Ren and Bai, 2010). This approach, termed genetic algorithm
PSO (GAPSO), enhances PSO performance by integrating GA’s selection mechanisms.
In GAPSO, less efficient particles are identified and replaced, intensifying selection
pressure while reducing diversity. This method is also referred to as selection-based
PSO, emphasising the selective replacement of particles. A high-level description of this
algorithm is presented in Algorithm 2.

Algorithm 2 Genetic algorithm with particle swarm optimisation (GAPSO)

for each particle i = 1, ..., n do
Randomly select a subset of particles nsubset

Evaluate and compare the performance of particle i with the selected subset
end for
Rank all particles based on their performance
Maintain the personal bests but replace the lower-performing half of the particles with the
higher-performing half

Source: Ren and Bai (2010)

2.6 Variation 3: reproduction strategy by spawning based on global best in PSO

This PSO variation, introduced by Koay and Srinivasan (2003), enhances the
selection-based PSO by focusing on generating new particles influenced by the global
best performer. Unlike methods that replace underperforming particles, this approach
creates new particles, potentially improving the algorithm’s ability to explore the
solution space. Algorithm 3 outlines the spawning process based on the global best
particle.
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Algorithm 3 Reproduction strategy by sprawling based on global best PSO

if particlei is minimum then
temp← particlei
while f(particlei) > f(temp) do

temp← particlei
for spawn = 1 to N do

for var = 1 to num of spawn do
potential mutant← temp+M(0, σ)
if f(potential mutant) < f(temp) then

temp← potential mutant
end if

end for
end for

end while
particlei ← temp

end if
Source: Koay and Srinivasan (2003)

2.7 Variant 4: lifecycle-based sub swarm PSO

Koay and Srinivasan (2003) proposed an innovative approach to enhance PSO’s
accuracy and performance by integrating the standard PSO, GAPSO, and stochastic hill
climbing into a single, adaptive hybrid algorithm. This method, referred to as LCPSO,
leverages the strengths of each individual technique within a lifecycle framework, as
detailed in Algorithm 4.

Algorithm 4 Lifecycle-based sub swarm PSO

Require: n = num of particles
while termination condition not met do

for each particle i = 1 to n do
Evaluate fitness of particle i
If no improvement, switch to another lifecycle stage

end for
for PSO phase: particles 1 to n do

Calculate and update velocity for each particle
Move particle according to updated velocity

end for
for GA phase: particles 1 to n do

Select a subset of particles for reproduction
Perform crossover and mutation operations

end for
for Hill climbing phase: particles 1 to n do

Explore neighbouring solutions
Evaluate fitness of new solutions
Move to a new solution with probability p

end for
end while

Source: Koay and Srinivasan (2003)
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2.8 Variant 5: PSO with fitness-adaptive inertia weight

This variant of PSO introduces an innovative approach to adjust the inertia weight based
on the fitness of the particles. In traditional PSO, the inertia weight is commonly updated
uniformly with each iteration. However, this fitness-adaptive method, demonstrated to be
effective in a study on oxygen content (Liu et al., 2013), aligns the inertia weight more
closely with the performance of individual particles. The adaptive update mechanism is
formalised in equation (11).

w =

{
w − (w − wmin) · | f(xi)−f(pi)

f(pgbesti
)−f(pi)

| if f(xi) < f(pgbesti)

wmin + (wmax − wmin) · 1
1+exp(− maxIte

iteration )
if f(pgbesti) < f(xi) < f(pi)

(11)

Here, wmax and wmin represent the maximum and minimum inertia weights, respectively.
The formula adjusts w based on the fitness difference between a particle and the global
best.

Additionally, a modified inertia weight calculation, influenced by the work of Shi
and Eberhart (1998), was proposed to further enhance accuracy (Dai et al., 2018a). This
alternative equation is presented in equation (12):

w =

(
wmax − (wmax − wmin) ·

iteration
maxIte

)
· f(iteration)− f(globalFitness)

f(iteration)
(12)

This formula integrates the iteration’s progress and the relative improvement in fitness,
offering a more dynamic adaptation of the inertia weight.

2.9 Variation 6: Gaussian distribution in PSO

This variation integrates the Gaussian distribution into PSO, presenting a significant
modification from the standard PSO where the stochastic components r1 and r2 are
uniformly distributed (Dai et al., 2018b). In GDPSO, these variables follow a Gaussian
distribution, which could provide a more nuanced control over the particles’ movement,
potentially leading to more effective exploration and exploitation in the search space.
Previous research has suggested that this modification may positively impact the
optimisation process by adjusting the distribution of particle steps (Dai et al., 2018b).

The algorithm adheres closely to the standard PSO structure, with the key difference
being that r1 and r2 are drawn from a Gaussian distribution. This distribution is
mathematically described as follows:

ri =
1√
2πσ2

e
−(x−µ)2

2σ2 (13)

Here, ri (representing either r1 or r2) is a random variable with a mean µ and a standard
deviation σ, reflecting the Gaussian distribution’s parameters. This variation in PSO
aims to leverage the properties of the Gaussian distribution to enhance the search process
by providing a diverse range of step sizes for the particles.
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2.10 Related machine learning work in the COVID-19 domain

The application of machine learning in modelling and forecasting COVID-19 and its
variants has been a critical area of research over the past several years. This importance
stems from the potential of predictions to guide governments and local authorities in
managing the pandemic more effectively and in implementing necessary infrastructure
to prevent future outbreaks and reduce mortality.

A significant study compared the predictive capabilities of SVM regression against
linear regression, lasso, and exponential smoothing using data from Johns Hopkins
University. This research demonstrated the SVM regression model’s effectiveness
with an R-squared value of 0.53 (Rustam et al., 2020). Contrastingly, another study
focusing on India used multiple linear regression to forecast deaths, spread, and
recovery, achieving a remarkably high R-squared value of 0.9992 (Kumari et al., 2021).
Additionally, a novel approach involving transfer learning with an LSTM network was
applied to forecast COVID-19 related deaths. This method yielded impressive error
metrics, including RMSE (1.3) and MAE (1.4) for Italy, and RMSE (1.03) and MAE
(0.9) for France (Gautam, 2022).

A comprehensive review of machine learning papers on COVID-19 forecasting
was completed early January 2024 which revealed a predominant use of compartment
models, followed by researcher-designed models, and deep learning techniques (Rahimi
et al., 2021). Notably, while SVM was the fourth most common approach, it lagged
significantly behind deep learning techniques in frequency of use and was only
marginally more common than the fifth-placed approach (Rahimi et al., 2021).

This overview underscores the varied efficacy and application of different machine
learning models in pandemic forecasting. The high R-squared value achieved by linear
regression in the Indian context suggests its potential effectiveness in specific regional
scenarios, while the success of LSTM networks in European countries indicates the
utility of deep learning techniques in different geographical settings. The disparity in
the frequency of use between different models raises important questions about the
factors influencing the choice of methodology, such as data availability, computational
resources, and specific forecasting goals. This analysis not only provides insight into the
current state of pandemic modelling but also guides future research directions in this
rapidly evolving field.

Table 1 COVID-19 mortality predictions using SVR: research paper performance metrics

Research paper title Algorithm MAE RMSE R-squared Max error

‘COVID-19 future forecasting
using supervised machine
learning models’ (Rustam et al.,
2020)

SVR 23.933 11.967 0.530 NA

‘Transfer learning for COVID-19
cases and deaths forecast using
LSTM network’ (Gautam, 2022)

SVR 1.400 1.300 NA NA

Table 1 presents the most recent research outcomes from studies focusing on COVID-19
forecasting utilising support vector regression (SVR) machines, all employing the
same dataset from Johns Hopkins University. One noteworthy study, titled ‘COVID-19
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future forecasting using supervised machine learning models’, utilised an SVR and
benchmarked its efficacy against other models such as linear regression, lasso, and
exponential smoothing (Rustam et al., 2020). This study reported an R-squared value
of 0.53. Another significant work, ‘Transfer learning for COVID-19 cases and deaths
forecast using LSTM network’ (Gautam, 2022), demonstrated superior mean absolute
error (MAE) and root mean square error (RMSE) results, albeit without providing
R-squared values.

2.11 Past results of SVR-PSO framework in other research domains

There have been many modern approaches in utilising SVR-PSO and its variants
in solving complex issues in various domains, most of which have achieved
satisfactory results. One study focused on forecasting multiple-horizon electricity
demand implemented a variant of SVR-PSO, achieving the lowest MAE and RMSE
(Al-Musaylh et al., 2018). Another research, dealing with modelling a combined
infrared radiation convection dryer for grain drying, achieved remarkable accuracy
using SVR-PSO (Dai et al., 2018a). SVR-PSO has also been applied in solar
radiation prediction (Olsson, 2011), real-time sensor fault analysis (Che, 2013),
electrical discharge machining (EDM) modelling (Aich and Banerjee, 2014), stock price
forecasting (Olsson, 2011), and financial time series modelling (Lu et al., 2009), to name
just a few. All these experiments with SVR-PSO and its variants have yielded decent
results in their respective research areas.

2.12 Summary

This literature review has established a thorough foundation in the domains of
optimisation, SVR and PSO. It serves as an essential precursor to the methodology
section of this study. The primary objective of this research is to develop a machine
learning algorithm specifically designed for optimising hyperparameters in forecasting
COVID-19 fatalities, with potential applicability in other areas. We have scrutinised
leading research in this field, focusing particularly on their methodologies and the results
they achieved.

A significant insight from this review is the relatively unexplored area concerning
the application of various PSO variants for SVR hyperparameter optimisation, especially
in predicting COVID-19 deaths. This lack of research highlights the unique contribution
of our study. The forthcoming methodology section details the experimental design, the
dataset used, and provides a comprehensive analysis of the PSO variants implemented
in our research.

3 Methodology

This section presents the methodology that was used in this study including:

1 experiment setup (Google Colab, SVR coupled with the PSO variants)

2 dataset description and features

3 analysis techniques.
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3.1 Experiment setup

The experiments were conducted using Google Colab for data preprocessing, machine
learning, training, and validation. Key software and libraries included pandas (v2.1.4),
numpy (v1.26.2), Matplotlib (v3.8.2), and Scikit-Learn (v1.3.2). The computational
environment comprised an AMD Ryzen 5 5600G with Radeon Graphics (3.90 GHz),
32 GB RAM, running on a 64-bit Windows operating system. No additional computing
resources were purchased from Google Colab; the experiments utilised the platform’s
free tier.

3.2 Dataset and features

Numerous datasets are available for COVID-19 research, including those from the
Center for Disease Control and Prevention, Google Open Data Repository, and others.
For this study, the COVID-19 Data Repository by the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University was chosen. This dataset is preferred
due to its daily updates since 22 January 2020, and its data integrity (Dong et al., 2023).
It has also been used in over a dozen ML research papers (Dong et al., 2023). Table 2
details the dataset’s features.

Table 2 Dataset description – COVID-19 Dataset Repository

Province/state Represented province/state, it is legacy column that was replaced by
Province State in 2021

Country/region Represented country/region, it is legacy column that was replaced by
Province State in 2021

Last update The time when this record was last updated
Confirmed The number of people who were confirmed of having COVID-19
Deaths The number of people who were deceased due to COVID-19
Recovered The number of people who have recovered from COVID-19
Province State The new column that replace the previous column in keeping track of

the province/state
Country Region The new column that replace the previous column in keeping track of

the country/region
Lat The latitude of this region
Long The longitude of this region
Combined Key The concatenated name for the province and country

Source: Dong et al. (2023)

In this study, we utilised data spanning from 22 January 2020 to 19 November 2023,
for training, testing, and evaluating our algorithms. This dataset was sourced from
the COVID-19 Data Repository by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University (available at: https://datacatalog.med.nyu.edu/
dataset/10400). The repository is updated daily, with each day’s data being stored in a
separate file labelled by the date of the record.
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3.3 Data pre-processing

Data pre-processing involved several key steps:

1 removing rows with missing values

2 discarding irrelevant features (e.g., house size)

3 excluding records with incorrect or null values.

The pre-processed dataset was then divided into dataframes specific to various regions
(e.g., Japan, USA, Canada). For this study, the Japanese data was selected for in-depth
analysis. These regional dataframes were employed in training and testing the SVR-PSO
model variants. Table 3 illustrate the feature sets used for Japan’s X-train and Y-train
data.

Table 3 Sample feature sets used for Japan’s X-train and Y-train data, respectively

X-train Y-train

Confirmed Deaths

count 633.000000 count 633.000000
mean 16.541449 mean 10.223000
std 1.946977 std 1.273972
min 12.341797 min 8.224002
25% 14.933183 25% 8.842350
50% 16.931303 50% 10.812177
75% 18.504656 75% 11.394463
max 19.769316 max 11.744413

3.4 SVR-PSO algorithms

This study explored the impact of applying different PSO algorithms on SVR
hyperparameter tuning by first creating the standard PSO and then exploring the
following variants, FCPSO, reproduction strategy by spawning based on global best
PSO, and GDPSO.

3.4.1 Flowchart of SVR-PSO optimisation methodology

Figure 4 illustrates a flowchart depicting the high-level functionalities and
decision-making steps in our SVR-PSO optimisation process.

3.5 Dependent and independent variables

The independent variables in this experiment included:

• the PSO algorithm,

• the number of particles, (N),
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• the number of dimensions, (D),

• the number of iterations, (MaxIte), and

• the hardware configuration (CPU, GPU, memory, etc.).

The dependent variables were the SVR hyperparameters (C, ϵ, γ). The key performance
metrics commonly used in regression algorithms were then collected, namely mean
absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE),
and R-squared (R2). These metrics are further elaborated in the following section.

Figure 4 Flow diagram of optimisation methodology for SVR hyperparameters (see online
version for colours)

3.6 Performance evaluation metrics

We employed several metrics to assess the performance of our SVR-PSO models,
commonly used in evaluating ML regression algorithms (Goodfellow et al., 2016;
Pouyanfar et al., 2019).

The MAE measures the average magnitude of errors in a set of predictions, without
considering their direction. It is the average over the test sample of the absolute
differences between prediction and actual observation where all individual differences
have equal weight. A lower MAE indicates better model performance. MAE does not
have an upper limit, and its interpretability depends on the context and scale of the data
(Goodfellow et al., 2016). MAE is defined as:

MAE =

∑n
i=1 |Ŷi − Yi|

n
(14)
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where Yi represents the actual value and Ŷi the predicted value.
RMSE is similar to MAE but gives more weight to larger errors, as it involves

squaring the individual differences. This means RMSE is more sensitive to outliers than
MAE. Like MAE, a lower RMSE indicates a better fit, and its value depends on the
scale of the data. RMSE is more commonly used when large errors are particularly
undesirable. RMSE is defined as:

RMSE =

√∑n
i=1(Yi − Ŷi)2

n
(15)

R-squared, also known as the coefficient of determination, is a statistical measure in
regression analysis that represents the proportion of the variance for a dependent variable
that is explained by an independent variable or variables in a regression model. R2 is
defined as:

R2 = 1− SSreg

SStot
(16)

where SSreg is the sum of squares due to regression (explained sum of squares); and
SStot is the total sum of squares. The R2 value ranges from 0 to 1. A value of 0
indicates that the model does not explain any of the variability of the response data
around its mean. A value of 1 indicates that the model explains all the variability of the
response data around its mean. In terms of performance:

• an R2 close to 1 is usually considered excellent, indicating a high level of
correlation between the observed and predicted values

• a moderate R2 (e.g., 0.5-0.7) might be considered good, depending on the context
and domain of the study

• a low R2 (closer to 0) is generally viewed as poor, suggesting that the model fails
to accurately capture the variance in the dependent variable.

Max error in regression analysis is a metric that identifies the largest single error
between the predicted and actual values in the dataset. It focuses on the worst-case
scenario, providing insight into the maximum deviation in the model’s predictions.
Unlike MAE and RMSE, max error is not influenced by the average performance across
the entire dataset but is solely concerned with the largest error. Max error is defined as:

Max error = max(|yi − ŷi|) (17)

where yi represents the actual value and ŷi the predicted value. While there is no
standard range for good or bad values, a lower max error is generally preferable as it
indicates less deviation in the worst-case prediction.

4 Findings (analysis and evaluation)

This section presents the main findings obtained through the experiment and displayed
through plots. There are four types of graphs for each variant of PSO-SVR for Japan
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related data, and they are positioned in the order of MSE, RMSE, R-squared value
and max error. The order of PSO-SVR is as follows: fast convergence PSO-SVR
configuration, the spawning global best PSO-SVR, and, the Gaussian distribution
PSO-SVR configuration.

4.1 Fast convergence PSO configuration

Figure 5 present the MAE and RMSE results for the fast convergence PSO-SVR on
Japanese COVID data for 3–15 particles and 1–40 iterations. Figure 6 presents the
R-squared and max error results on the FCPSO. As shown in Figures 5 and 6(b), there
is a clear pattern of improvement in the SVR predictions with increased number of
particles, where the higher particle count, generally yielded better results. Furthermore,
there is also an improvement with increased number of iterations. The best prediction
performance under this configuration was achieved for MAE = 0.031 (15 particles, 40
iterations); RMSE = 0.039 (10 particles, 40 iterations); R-squared = 0.715 (15 particles,
40 iterations); and max error = 0.090 (15 particles, 15 iterations).

Figure 5 Fast convergence PSO: 3–15 particles; 0–40 iterations, (a) MSE and (b) RMSE
results (see online version for colours)

(a) (b)

Figure 6 Fast convergence PSO: 3–15 particles; 0–40 iterations, (a) R2 and (b) max error
results (see online version for colours)

(a) (b)
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4.2 Spawning global best PSO-SVR configuration

Figures 7 and 8 present the MAE and RMSE, and R-squared and max error results,
respectively, for the spawning global best PSO-SVR configuration for 3-15 particles and
1-40 iterations. Figures 7 and 8(b) indicate that there is a distinct improvement in the
SVR’s prediction capability with increased number of particles. Furthermore, there is
also an improvement when the number of iterations is increased. The best prediction
performance for the spawning global best PSO-SVR was achieved for MAE = 0.036
(15 particles, 40 iterations); RMSE = 0.042 (15 particles, 30 iterations); R-squared =
0.713 (15 particles, 40 iterations); and max error = 0.032 (15 particles, 40 iterations).

Figure 7 Spawning global best PSO: 3–15 particles; 0–40 iterations, (a) MAE and (b) RMSE
results (see online version for colours)

(a) (b)

Figure 8 Spawning global best PSO: 3–15 particles; 0–40 iterations, (a) R-squared and
(b) max error results (see online version for colours)

(a) (b)

4.3 Gaussian distribution SVR-PSO configuration

Figures 9 and 10 present the MAE and RMSE, and R-squared and max error results,
respectively, for the Gaussian PSO-SVR configuration for 3-15 particles and 1-40
iterations. Figures 9 and 10(b) present a similar pattern indicating that there is a
significant improvement in the SVR’s predictions as the number of particles increase.
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This is also true as the number of iterations is increased. It was discovered that the SVR
produced the best predictions for MAE = 0.035 (15 particles, 40 iterations); RMSE =
0.042 (15 particles, 40 iterations); R-squared = 0.704 (15 particles, 30 iterations); and
max error = 0.034 (15 particles, 15 iterations).

Figure 9 Gaussian PSO: 3–15 particles; 0–40 iterations, (a) MAE and (b) RMSE results
(see online version for colours)

(a) (b)

Figure 10 Gaussian PSO: 3–15 particles; 0–40 iterations, (a) R-squared and (b) max error
results (see online version for colours)

(a) (b)

5 Discussion

5.1 Analysis of results

Our findings, detailed in Section 4, reveals a consistent improvement in SVR predictions
with increased particles in all PSO variants. Notably, this enhancement exhibits
diminishing returns beyond certain thresholds of particles and iterations, following a
logarithmic pattern. After a sharp initial improvement, performance gains plateau. The
following observations have been gleaned from the experiments conducted on each of
the PSO variants:
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For the fast convergence PSO:

• the best performance for MAE (≈0.037), RMSE (≈0.390) and R2 (≈0.7) was
achieved at 40 iterations (where all 3-, 4-, 5-, 10- and 15-particles converged)

• with 15 particles, the R2 reached 0.7 within four iterations. From this point, there
was no statistically significant improvement with increased iterations.

For the spawning global best PSO:

• RMSE stabilised after approximately 20 iterations, regardless of the number of
particles

• there was no statistically significant difference in MAE, RMSE or R2 results
between 5 and 40 iterations using 15 particles.

For the Gaussian distribution PSO:

• the performance of this PSO was more impacted by the number of particles than
other PSO algorithms tested; the best performance was achieved with 15 particles
(the maximum explored)

• there was no statistically significant difference in MAE, RMSE or R2 results
between 15 and 40 iterations using 15 particles.

In cases where only one particle is used in PSO, there is no significant improvement in
the optimisation process. This is because, with a single particle, the global best position
and velocity are identical to that of the particle itself. This scenario leads to ineffective
movement and velocity calculations, and thus does not effectively guide the optimisation
process. Essentially, the lack of diversity in potential solutions restricts the algorithm’s
ability to explore and converge on the most optimal solution.

In our study, we observed a strong correlation among MAE, RMSE, R2, and max
error across all PSO variants. Lower errors in MAE and RMSE typically indicated a
closer approach to the optimal R2 value. However, max error’s relationship with R2

was not as straightforward. For example, at a particle count of 15, max error remained
constant from the 5th to the 40th iteration, while R2 values showed slight but continuous
improvements. In the context of mortality forecasting in Japan using fast convergence
PSO, we noted that the R2 value had an upper limit of approximately 0.715, unaffected
by changes in the number of particles or iterations.

Overall, a proportional relationship was discovered: the number of particles ∝
rate of convergence; and the number of iterations ∝ rate of convergence. However,
there are diminishing returns as the relationship of both variables’ impact on SVR’s
performance is logarithmic in nature. This characteristic was confirmed through
additional experimentation. We also explored what happens when we significantly
increase the number of particles and iterations. We experimented with up to 50 particles
for the FCPSO and went up to 50 iterations. The summary results are shown in Table 4
which presents the R-squared values using 50 particles for the fast convergence PSO
using 20 and 50 iterations. The best we were able to achieve was an R2 of 0.717
which was with 50 particles and 50 iterations; this is only a 0.001 improvement over
the 50 particles and 20 iteration case, and a 0.002 improvement over the 15 particles
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and 40 iterations case (the base maximum for all experiments conducted in this study).
To achieve these results took considerable GPU processing resources and time.

Table 4 R2 results using large particle count and high number of iterations (fast convergence
PSO)

Iteration count 20 50
R-squared results (using 50 particles) 0.716 0.717

These findings demonstrate that substantially increasing the particle count and iteration
number beyond 15 particles and 40 iterations offers little to no enhancement in
SVR’s predictive performance. This observation highlights the importance of optimising
resource usage in PSO applications, avoiding unnecessary computational expenses for
minimal gains in accuracy.

Our results indicate diminishing returns when increasing the number of particles
and iterations in PSO optimisation. Specifically, extending beyond 15 particles and
30 iterations did not yield significant improvements in performance. The relationship
between particle/iteration count and the R2 value follows a logarithmic pattern, with
rapid initial improvements tapering off over time.

Similarly, the reproduction of spawning global best method (variant 2) mirrored the
fast convergence PSO in terms of performance. In both cases, increasing particles and
iterations beyond 15 particles at 15 iterations did not significantly enhance the R2 value,
highlighting an optimisation threshold in these PSO variants.

5.2 Comparison with previous studies

As shown in Table 5, our work shows a significant improvement over previous
research. For the paper that utilised SVM regression against linear regression, lasso and
exponential smoothing (Rustam et al., 2020), they have achieved an R-squared value of
0.53. Even though the R-squared value is missing in the second paper (Gautam, 2022),
it has a higher MAE and RMSE value using the dataset from John Hopkins University.
Comparing with the past papers, it not only demonstrates that this experiment provided
additional insight and contribution to the COVID-19 death forecasts using SVR, but it
also showcased the effectiveness of PSO in fine-tuning of the SVR hyperparameters,
namely C, gamma and epsilon.

Our research has demonstrated that utilising various PSO techniques with linear SVR
for COVID-19 mortality forecasting yields promising results, achieving an R-squared
value greater than 0.7. This is accompanied by satisfactory MSE, RMSE, and max error
values, which improved with increasing iterations and particles. Compared to previous
studies, such as Rustam et al. (2020) which reported an R-squared value of 0.53 using
SVR, our findings underscore the enhanced effectiveness of PSO variants in precisely
fine-tuning SVR hyperparameters.
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Table 5 COVID-19 mortality predictions using SVR: research papers and our algorithm

Research paper title Algorithm MAE RMSE R-squared Max error

‘COVID-19 future forecasting
using supervised machine
learning models’ (Rustam et al.,
2020)

SVR 23.933 11.967 0.530 NA

‘Transfer learning for COVID-19
cases and deaths forecast using
LSTM network’ (Gautam, 2022)

SVR 1.400 1.300 NA NA

Our fast convergence PSO-SVR
algorithm

SVR 0.031 0.040 0.717 0.091

6 Conclusions

6.1 Summary

This study advanced the application of PSO variants for optimising the hyperparameters
of linear SVR in the context of COVID-19 mortality forecasting. Conducted on Google
Colab, our research focused on the efficacy of various PSO-SVR configurations. The
primary contributions of our work include:

• The fast convergence PSO-SVR variant excelled, surpassing all previous studies
in this domain with an R-squared value of 0.717 and corresponding MSE and
RMSE values around 0.03 and 0.04, respectively. This represents a significant
leap forward in the field of COVID-19 mortality prediction.

• Our results demonstrate improved accuracy in forecasting COVID-19 mortality
using SVR and PSO, underscoring the potential of these methods for precise
epidemiological analysis.

• Consistency was observed across different PSO variants in terms of the number of
particles and iterations needed to achieve optimal R-squared values, indicating the
robustness of our PSO-SVR methodology.

• When compared to previous studies, notably Rustam et al. (2020) which reported
an R-squared value of 0.53, our approach shows considerable improvements, as
detailed in Table 5. This achievement underscores our contributions in enhancing
accuracy and fine-tuning the SVR hyperparameters, specifically C, gamma, and
epsilon.

• The versatility of the SVR and PSO optimisation techniques developed in this
study suggests their potential for effective application across various domains
beyond epidemiological forecasting.

6.2 Limitations

Our study effectively implemented, assessed, and evaluated three specific PSO variants
in combination with SVR: the fast convergence PSO, the spawning global best PSO,
and the Gaussian distribution PSO. While these variants yielded valuable insights, our
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research scope was limited and did not encompass other promising PSO variations
that might offer further enhancements. Potential future explorations could excitingly
encompass:

1 the GAPSO, merging genetic algorithm principles with PSO for enhanced
optimisation

2 the LCPPSO, promising novel insights with its unique sub-swarm dynamics
approach

3 the PSO with fitness adaptive inertia weight, aiming for a more dynamic PSO
adaptation process.

Investigating these additional variants could significantly broaden our understanding and
efficacy of PSO in complex predictive modelling tasks, such as COVID-19 mortality
forecasting.

6.3 Future work

Future research should focus on thoroughly exploring and evaluating the remaining
PSO-SVR variants outlined in our methodology. This endeavour is crucial to identify
any particular variant that might significantly excel in forecasting COVID-19 mortality.
While our study has implemented and analysed three of the six proposed PSO-SVR
configurations, revealing similar trends in hyperparameter fine-tuning of linear SVR, it
is imperative to conduct a comprehensive examination of all variants for an in-depth
understanding and enhanced optimisation.

An essential aspect of future research will be the evaluation of computational
efficiency in these models. Considering the resource-intensive nature of these
optimisations, it is vital to meticulously measure and analyse processing time, with
a special emphasis on CPU and GPU resource utilisation throughout the modelling
process.

A detailed evaluation of these efficiency metrics will illuminate the computational
requirements of each PSO-SVR variant and further inform their practical utility and
scalability in a range of real-world applications.
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Appendix

This appendix contains the supplementary tables of results from our experiments on
the Fast Convergence PSO, Reproduction of Spawning Global Best PSO, and Gaussian
Distribution PSO. The findings presented in Section 4 and the subsequent analysis
in Section 5 are based on the data detailed in these tables. These tables provide
the empirical foundation for our research conclusions and facilitate a comprehensive
understanding of our study’s outcomes.

Table 6 Mean absolute error for fast convergence PSO

Iterations 1 2 3 4 5 10 15 30 40

1 particle 0.417 0.390 0.471 0.382 0.405 0.413 0.434 0.469 0.430
2 particles 0.365 0.338 0.283 0.230 0.186 0.170 0.136 0.088 0.132
3 particles 0.303 0.247 0.169 0.115 0.177 0.117 0.146 0.095 0.040
4 particles 0.257 0.215 0.222 0.178 0.112 0.132 0.150 0.033 0.034
5 particles 0.213 0.232 0.155 0.111 0.109 0.101 0.048 0.043 0.037
10 particles 0.155 0.106 0.092 0.067 0.062 0.062 0.056 0.075 0.031
15 particles 0.127 0.089 0.065 0.052 0.041 0.040 0.036 0.032 0.031

Table 7 Root mean square error for fast convergence PSO

Iterations 1 2 3 4 5 10 15 30 40

1 particle 0.420 0.392 0.474 0.385 0.408 0.415 0.426 0.471 0.432
2 particles 0.3684 0.3417 0.2873 0.2356 0.1912 0.175 0.143 0.094 0.1368
3 particles 0.306 0.251 0.176 0.122 0.182 0.124 0.150 0.103 0.047
4 particles 0.261 0.219 0.226 0.183 0.121 0.138 0.156 0.043 0.043
5 particles 0.218 0.236 0.160 0.118 0.115 0.108 0.054 0.043 0.046
10 particles 0.160 0.1132 0.100 0.075 0.070 0.704 0.642 0.083 0.039
15 particles 0.133 0.097 0.728 0.060 0.050 0.048 0.045 0.040 0.040

Table 8 R-squared results for fast convergence PSO

Iterations 1 2 3 4 5 10 15 30 40

1 particle –45.947 –51.884 –34.215 –40.035 –35.151 –29.479 –52.875 –46.463 –40.314
2 particles –21.843 –28.575 –17.739 –7.668 –10.242 –7.810 –1.228 0.323 0.683
3 particles –12.857 –14.594 –10.118 –8.942 –4.774 0.228 –0.367 0.422 0.584
4 particles –10.656 –7.691 –11.740 –5.674 –3.784 –0.189 0.616 0.666 0.646
5 particles –10.870 –12.770 –3.329 –2.488 –0.513 –0.236 0.446 0.652 0.593
10 particles –5.315 –2.847 –0.508 –0.552 0.307 0.664 0.659 0.712 0.712
15 particles –3.441 –0.378 0.302 0.563 0.504 0.693 0.655 0.713 0.715
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Table 9 Max error for fast convergence PSO

Iterations 1 2 3 4 5 10 15 30 40

1 particle 0.529 0.549 0.442 0.513 0.474 0.458 0.559 0.524 0.507
2 particles 0.389 0.433 0.357 0.252 0.288 0.261 0.151 0.097 0.099
3 particles 0.302 0.344 0.282 0.286 0.186 0.111 0.129 0.105 0.088
4 particles 0.285 0.269 0.306 0.230 0.203 0.119 0.093 0.101 0.099
5 particles 0.292 0.311 0.179 0.176 0.138 0.134 0.095 0.103 0.105
10 particles 0.235 0.177 0.132 0.136 0.110 0.097 0.096 0.097 0.097
15 particles 0.197 0.130 0.104 0.098 0.097 0.094 0.090 0.095 0.097

Table 10 Mean absolute error (MAE) for reproduction of spawning global best PSO

Iterations 1 2 3 4 5 10 15 30 40

1 particle 0.407 0.459 0.438 0.459 0.441 0.437 0.487 0.372 0.420
2 particles 0.362 0.291 0.278 0.221 0.172 0.165 0.151 0.123 0.121
3 particles 0.310 0.238 0.188 0.182 0.169 0.155 0.119 0.052 0.068
4 particles 0.195 0.179 0.168 0.105 0.135 0.087 0.084 0.051 0.045
5 particles 0.198 0.207 0.168 0.145 0.115 0.103 0.090 0.079 0.069
10 particles 0.128 0.100 0.067 0.071 0.079 0.042 0.043 0.048 0.043
15 particles 0.139 0.125 0.061 0.047 0.041 0.040 0.037 0.036 0.036

Table 11 Root mean square error (RMSE) for reproduction of spawning global best PSO

Iterations 1 2 3 4 5 10 15 30 40

1 particle 0.409 0.461 0.440 0.461 0.443 0.439 0.488 0.376 0.420
2 particles 0.364 0.293 0.280 0.225 0.177 0.172 0.157 0.129 0.128
3 particles 0.313 0.241 0.193 0.188 0.173 0.162 0.127 0.063 0.076
4 particles 0.199 0.184 0.173 0.117 0.140 0.095 0.092 0.058 0.053
5 particles 0.202 0.211 0.174 0.151 0.122 0.111 0.096 0.079 0.077
10 particles 0.135 0.107 0.074 0.079 0.088 0.052 0.053 0.055 0.053
15 particles 0.144 0.133 0.068 0.055 0.042 0.044 0.044 0.042 0.043

Table 12 R-squared value for reproduction of spawning global best PSO

Iterations 1 2 3 4 5 10 15 30 40

1 particle –34.577 –47.199 –40.388 –44.932 –43.494 –41.990 –35.341 –31.841 –39.400
2 particles –28.064 –16.542 –16.990 –10.760 –7.055 –6.183 –5.081 –3.626 –3.688
3 particles –19.198 –11.939 –8.149 –8.181 –5.824 –5.412 –3.333 0.156 –0.636
4 particles –8.207 –6.663 –5.815 –2.157 –3.657 –1.286 –1.212 0.255 0.394
5 particles –7.978 –8.633 –6.606 –4.409 –2.721 –2.822 0.0374 –1.184 –0.513
10 particles –3.305 –1.758 –0.727 –0.860 –1.233 0.267 0.253 0.169 0.179
15 particles –3.443 –3.669 –0.258 0.102 0.671 0.658 0.623 0.704 0.713
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Table 13 Max error for reproduction of spawning global best PSO

Iterations 1 2 3 4 5 10 15 30 40

1 particle 0.476 0.518 0.512 0.527 0.510 0.510 0.551 0.442 0.488
2 particles 0.423 0.356 0.332 0.284 0.237 0.240 0.224 0.183 0.185
3 particles 0.388 0.301 0.250 0.254 0.227 0.237 0.193 0.125 0.124
4 particles 0.257 0.242 0.232 0.169 0.203 0.152 0.151 0.105 0.110
5 particles 0.262 0.269 0.229 0.211 0.187 0.179 0.151 0.123 0.132
10 particles 0.204 0.152 0.137 0.127 0.152 0.114 0.115 0.104 0.093
15 particles 0.195 0.192 0.124 0.108 0.097 0.058 0.036 0.040 0.032

Table 14 Mean absolute error (MAE) for Gaussian distribution PSO

Iterations 1 2 3 4 5 10 15 30 40

1 particle 0.421 0.425 0.426 0.463 0.439 0.427 0.489 0.392 0.419
2 particles 0.355 0.299 0.278 0.222 0.174 0.167 0.152 0.122 0.122
3 particles 0.315 0.236 0.188 0.184 0.167 0.154 0.117 0.051 0.069
4 particles 0.196 0.175 0.168 0.105 0.137 0.088 0.085 0.052 0.046
5 particles 0.199 0.206 0.168 0.147 0.113 0.106 0.091 0.080 0.070
10 particles 0.129 0.103 0.067 0.074 0.077 0.046 0.045 0.045 0.038
15 particles 0.133 0.128 0.061 0.048 0.045 0.045 0.036 0.038 0.035

Table 15 Root mean square error (RMSE) for Gaussian distribution PSO

Iterations 1 2 3 4 5 10 15 30 40

1 particle 0.405 0.467 0.453 0.445 0.455 0.436 0.487 0.375 0.422
2 particles 0.367 0.296 0.282 0.230 0.178 0.175 0.155 0.131 0.130
3 particles 0.314 0.243 0.193 0.190 0.176 0.166 0.123 0.067 0.075
4 particles 0.200 0.186 0.176 0.118 0.143 0.097 0.095 0.061 0.055
5 particles 0.205 0.213 0.176 0.153 0.126 0.115 0.098 0.081 0.073
10 particles 0.134 0.108 0.076 0.080 0.085 0.056 0.056 0.056 0.052
15 particles 0.147 0.134 0.069 0.056 0.046 0.046 0.043 0.046 0.042

Table 16 R-squared value for Gaussian distribution PSO

Iterations 1 2 3 4 5 10 15 30 40

1 particle –37.366 –46.635 –42.388 –44.396 –43.467 –41.963 –35.653 –31.094 –39.524
2 particles –23.275 –15.367 –15.990 –10.635 –7.050 –6.375 –5.363 –3.652 –3.649
3 particles –15.737 –11.958 –7.149 –8.463 –5.396 –5.265 –3.958 0.299 –0.592
4 particles –7.643 –7.959 –5.456 –2.986 –3.602 –1.725 –1.172 0.359 0.375
5 particles –5.745 –6.745 –4.653 –4.479 –2.647 –2.753 0.649 –1.764 –0.554
10 particles –3.468 –1.635 –0.367 –0.470 –1.374 0.548 0.595 0.619 0.696
15 particles –2.637 –3.636 –0.648 0.163 0.583 0.456 0.623 0.704 0.702
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Table 17 Max error for Gaussian distribution PSO

7 Iterations 1 2 3 4 5 10 15 30 40

1 particle 0.475 0.563 0.512 0.526 0.512 0.516 0.556 0.424 0.488
2 particles 0.436 0.363 0.326 0.286 0.239 0.243 0.227 0.163 0.181
3 particles 0.373 0.363 0.253 0.252 0.225 0.236 0.193 0.135 0.126
4 particles 0.235 0.276 0.236 0.165 0.206 0.155 0.175 0.115 0.114
5 particles 0.286 0.222 0.231 0.212 0.182 0.172 0.124 0.126 0.135
10 particles 0.263 0.152 0.138 0.126 0.157 0.116 0.110 0.103 0.095
15 particles 0.174 0.136 0.128 0.109 0.093 0.056 0.034 0.041 0.036


