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Abstract: In sports dance training, dancers’ wrong movements are 
unavoidable, and if they are not corrected in time, it will not only reduce the 
effect of dance expression, but also directly related to the improvement of 
sports performance. Therefore, we suggest a correction method for sports dance 
movements based on stereo vision and deep learning. Firstly, a binocular stereo 
imaging model is established by using the principle of triangle similarity. 
Secondly, 3D CNN is used to extract spatio-temporal features from the 
preprocessed images, and the early attention mechanism is introduced to 
adaptively enhance the key features that are beneficial to early action 
prediction. Finally, the important features are used to model the action 
boundaries by estimating the relative probability distribution of the action 
boundaries to obtain the recognition results. Simulation experiments show that 
the accuracy and peak signal-to-noise ratio are 91.17% and 20.45 dB, 
respectively. 
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mechanism. 
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1 Introduction 

As the computer vision technology rapidly growing, the correction of incorrect 
movements through image recognition can not only correct dancers’ postures and assist 
dancers’ training, but also be of great value to the analysis of dance techniques and 
accelerate the development of sport dance (Potiwetchakul, 2010). In the real physical 
education process, owing to the complexity and variety of sports dance movements, there 
is an apparent difference among the students’ knowledge and understanding level and 
their movement capability, and some students have more wrong movements and are 
slower to master the correct sports dance movements (Petrenko, 2016). In this state, how 
to effectively rectify the incorrect movements of sport dance has become a major 
problem in this field. In sports dance training, incorrect movements reduce performance 
quality and may lead to injuries. Existing correction methods have limitations: manual 
correction is time-consuming and subjective, while video analysis lacks real-time 
feedback. The complexity of dance movements further complicates learning. Our 
research addresses these challenges by proposing a method for immediate, objective 
feedback, aiming to reduce injury risks and improve learning efficiency. 

Sports dance movement correction belongs to the field of human movement 
recognition and classification (Potempski et al., 2022). Mallick et al. (2022) used inverse 
synthetic image to achieve linear characteristic point tracking and camera position 
approximation, combined with tracking feature points to complete the tracking and 
matching of linear characteristic points, so as to obtain the points with a lower degree of 
matching as the basis for error movement correction. Zhang et al. (2019) used different 
manual feature extraction for human body parts to obtain the features of dance 
movements, and used SVM to classify the movements.  

Zhang et al. (2017) proposed a three-dimensional joint point localisation method 
based on stereo vision, which used Stacked-Hourglass network to detect the dancer’s 
joint point coordinates, and localised the three-dimensional human body joint point 
coordinates through stereo vision system. Ji et al. (2017) used a temporal energy pyramid 
according to the stereo vision theory to segment the image into several small blocks, 
feature extraction of human target by background elimination method, obtaining  
three-dimensional image of human contour, solving adjacent difference frames by 
Laplace method, extracting key frame feature vectors, setting similarity threshold, and 
taking images with similarity greater than the threshold as the recognition result, but the 
recognition efficiency is low. 

Deep learning has attracted the attention of many scholars due to its efficient 
performance and excellent spatial learning ability. Zhu and Zhu (2021) proposed the use 
of convolutional neural networks to solve the dance movement correction problem, and 
constructed a neural network that can learn the key features of the human body at both 
low and high levels, which shows the advantages of neural networks compared with the 
traditional two-dimensional human body gesture estimation methods. Matsuyama et al. 
(2021) first identify the regions where key nodes of dancers may exist, and obtain a 
connection graph based on all possible regions, and in this way the idea transforms the 
problem of correcting dance movements into a problem of classifying a dense connection 
graph. Yang et al. (2021) proposed feature extraction and classification of dance 
movement images using deep CNNs, leading to the model were poorly recognised. Lyu 
and Zhang (2022) designed a non-local network structure for dance action images in 
order to make the network model not limited to local spatial features, so that the model 
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distinguishes between local and non-local information and learns the global action 
information, but its failure to visually process the original action images resulted in poor 
correction. 

Based on the above analysis of the current state of research, it can be seen that the 
existing dance movement correction methods have poor recognition accuracy due to poor 
image quality and insufficient key feature extraction, which affects the movement 
correction effect. Aiming at the above problems, this paper researches on sports dance 
movement correction methods through stereo vision and deep learning. The study makes 
significant contributions in the following key aspects. 

1 Construct a binocular stereo imaging model, preprocess the acquired dance 
movement images, calculate the pixel values of the edge contours of the dance 
movement images, search for the edge of the dancer’s human body contour through 
threshold segmentation, remove the background of the environment, lighting and 
other backgrounds, and eliminate the noise by using the Gaussian model, so as to 
provide high-quality raw images for the recognition of erroneous movements. 

2 3D CNN is used for spatio-temporal feature extraction and fusion of preprocessed 
dance movement images to obtain stronger spatio-temporal structural 
representations, and the interaction of temporal features in different convolutional 
layers is used to enhance the characterisation of different dance movements, taking 
into account the need for temporal domain information. 

3 The introduction of an early attention mechanism promotes the model to concentrate 
on the early part of the action sequence, and adaptively enhances important features 
for early action recognition. Important features are input into Softmax to obtain 
recognition results, and incorrect action correction is implemented in the form of 
comparisons. 

4 Simulation experiments are implemented on the AIST++ dance movement dataset 
(Zhou et al., 2023), and the outcome indicates that the suggested method is with high 
recognition accuracy, peak signal-to-noise ratio, and image quality index, and can 
efficiently achieve the recognition and correction of dance movements. 

2 Relevant technologies 

2.1 Stereo vision principle 

Digital images are usually stored in the form of pixel coordinates within a medium, and 
the process of camera imaging is actually the process of the three-dimensional world to 
pixel points in the two-dimensional space of the image (Zhong and Quan, 2017). The 
most popularly adopted imaging model for stereo vision cameras is the pinhole model, 
which chiefly involves the alteration of four coordinate systems (world coordinate 
system, camera coordinate system, imaging plane coordinate system and pixel coordinate 
system) to each other (Islam et al., 2010), as indicated in Figure 1. 

The planar Cartesian coordinate system is a pixel coordinate system in pixels, with 
origin O0. The origin O1 is characterised at the junction of the optical axis of the camera 
and the imaging plane, with coordinate (u0, v0). The 3D coordinate system XcYcZc is the 
coordinate system of the camera, with the initial Oc defined in the position of the optical 
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centre of the camera, and XwYwZw is the coordinate system of the world. OcO1 is the 
central length f of the camera, and the x-axis and y-axis of the imaging plane coordinate 
system {xy} are parallel to the u-axis and v-axis in {uv}, separately. In XcYcZc, Zc is the 
central axis of the camera, and the Xc-axis and Yc-axis are parallel to the u-axis and v-axis 
of {uv}, respectively. Suppose that the world coordinates of point Q is (xw, yw, zw), the 
coordinates of this point in the camera coordinate system is (xc, yc, zc), and the 
coordinates of the projection of this point in the imaging plane coordinate system {xy} is 
q(x, y). 

Figure 1 Coordinate systems in camera imaging (see online version for colours) 
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Supposing that the coordinates of q(x, y) in the pixel coordinate system are (u, v), 
according to the law of similar triangles, we can get the conversion relation of point  
Q(xw, yw, zw) from 3D world coordinates to 2D pixel points as follows. 
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 (1) 

where dx denotes the physical dimension of every pixel point in the x-axis direction of the 
picturing plane coordinate system, dy denotes the physical dimension of the pixel point in 
the y-axis direction of the imaging plane coordinate system, and the matrices R and T are 
the rotation and translation transformation matrices between the world coordinate system 
and the camera coordinate system, respectively, and are known as the camera’s outer 
parameter matrices. The matrix M is the intrinsic parameter matrix of the camera. 
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2.2 3D convolutional neural network 

3D CNNs are extensions to standard convolutional neural networks (2D CNNs) that 
capture temporal and spatial information in images or time-series data, and therefore 
perform well in tasks for example image categorisation, action recognition, and 
prediction (Singh et al., 2019). 

The size of the input level is represented by a multidimensional array of inputs (c, d, 
h, w), where c, d, h, and w are the amount of channels, depth, height, and width of the 
input data, respectively, and the size of the input level is decided in terms of the specific 
situation. The 3D convolutional level extracts key features from the input image. As the 
hierarchy of the network deepens, the convolutional level starts to extract basic features 
such as edges and corners from the lower level s, and then gradually transitions to the 
higher level s of the convolution to perform more in-depth and abstract semantic feature 
extraction on the basis of the previously extracted features. The output of the 
convolutional level is shown below: 

2 1X P LY
S

+ −= +  (2) 

where X is the input, P is the padding value, L is the size of the convolution kernel, S is 
the step size, and Y is the convolution output. 

A 3 × 3 × 3 convolution cube is divided from the 3D input, and these 27 points are 
convolved so that each element is multiplied by the convolution kernel and summed to 
obtain the output value. The input data of 3D convolutional level is difficult to represent 
the complete information by simple linear relationship, so the nonlinear activation 
functions Sigmoid, Tanh, Relu (Steinerberger and Wu, 2023) are used after the 3D 
convolutional level, which strengthen the 3D CNN model’s ability of expressing complex 
data and feature learning. 

Stereo vision and deep learning were chosen for their superior ability to capture 
spatial-temporal information and handle complex movements. Unlike motion capture or 
wearable sensors, this approach is non-invasive and scalable. 3D CNN excels in 
extracting hierarchical features from dance sequences, while stereo vision provides 
accurate depth perception, crucial for precise movement analysis. 

3 Binocular stereo visual imaging modelling and pre-processing of sports 
dance movements 

3.1 Modelling binocular stereo vision imaging 

In stereo vision, to gain the position of a point in space, it is essential to describe the 
target point in space and the camera plane, gain the association between the camera 
coordinates and image coordinates, and establish a binocular stereo vision imaging 
model. On this basis, this article do image preprocessing, calculate the pixel value of the 
edge contour of the dance movement image, search for the edge of the dancer’s human 
body contour by threshold segmentation, remove the background of the environment and 
lighting, and eliminate the noise by adopting the Gaussian model, so as to reduce the 
complexity of the recognition of the dancer’s movement by the visual system. The 
Gaussian model application in preprocessing significantly reduces background noise 
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while preserving edge information critical for movement detection. This step, combined 
with adaptive thresholding, enhances the contrast between the dancer and the 
background, improving the accuracy of subsequent feature extraction and movement 
analysis by the 3D CNN. 

Figure 2 Geometric and parallax principles of binocular stereopsis, (a) the geometric principle of 
binocular stereo vision (b) parallax principle (see online version for colours) 
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From equation (1), it can be seen that the 3D coordinate (xw, yw, zw) is projected as a 2D 
pixel coordinate (u, v) on the imaging plane, and the depth information is lost, and  
(u, v) actually corresponds to a straight line in 3D space, so it is not possible to recover 
the 3D coordinate information by using a monocular camera only (Tian et al., 2022). 
Therefore, stereoscopic imaging of the same target through multiple known viewpoints is 
an effective method to measure the 3D information of dancers. 

The geometric principle of binocular stereoscopic imaging is shown in Figure 2, 
where B is the distance between the optical centres of the left and right cameras, and the 
coordinates of an articulation point P of the dancer in the coordinate system of the left 
camera are P(xl, yl, zl), and in the right camera’s coordinate system are P(xr, yr, zr). The 
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forecast points of the articulation point P in the picturing planes of the left and right 
cameras are Pl, Pr, and the coordinates of the corresponding pixels are Pl(ul, vl) and  
Pr(ur, vr). 

The X-axis of the left and right camera coordinate systems are co-linear, so there is  
vl = vr. From Figure 2, the pixel parallax of the hand joint point P on the left and right 
cameras is d = ul – ur. From the relationship established between the left and right camera 
coordinate systems. The equation is implied as bellow. 

2

2 2,
w

w w

x x B
y y z z

= −
 = =

 (3) 

Joint equation (1) and equation (3) yield the depth information (third dimension 
coordinates) of the joint P as follows: 

( )2w u u
w

r l

x x f Bfz
u u d

−= =
−

 (4) 

Substituting equation (4) into equation (1), the 3D coordinates of the joint P are 
calculated as follows. After obtaining the 3D coordinates, the link among the world 
coordinates and the image pixel coordinates of P can be obtained. 

0 0, ,l l u
w w w

v

u u v v f fx B y B z B
d d f d
− −= = ⋅ =  (5) 

where fu and fv are the standardised central lengths of the camera, respectively, (u0, v0) is 
the coordinate of the principal point of the pixel coordinate system. The internal 
parameters of the camera are determined by the camera’s camera and focal length. 

3.2 Sorting target types and spatial parameters 

For the goal of achieving the correction of erroneous movements in continuous sports 
dance, the acquired images are first pre-processed and the template combination 
equations for binocular stereo vision imaging of the images are calculated. 

( , ) ( , ) ( , ) ( , )I x y h x y f x y δ x y= ∗ +  (6) 

where h(x, y) denotes the parallax function, ⁎ describes the convolution, f(x, y) is the 
picture edge contour pixels and δ(x, y) represents the picture sub-pixel features. 
Estimation of edge contour pixel values for sports dance image 

2( , ) ( ,ˆ ) (1 )f x y F x y A σ= + − +α α  (7) 

where α represents the differential pixel eigenfactor, A is the pixel cloth texture set, and 
σ2 represents the local area variance. 

A reliable initial image is obtained by the above processing, and in order to separate 
the moving part of the dancer from the whole image, it is necessary to choose a proper 
threshold in terms of equation (8) to determine the edge of the dancer’s silhouette. 

[ ], ( , ), ( , )px yT T f x y p x y=  (8) 
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where f(x, y) represents the grey value at pixel (x, y) and p(x, y) represents the grey 
gradient operation at this point. The segmented image of the dancer’s movement can be 
obtained by using the above equation. 

Using Gaussian mixture model (Martins et al., 2018) to remove the background, the 
foreground target can be obtained. For a new input image, assuming that its pixel value is 
Qt, the expression for determining whether this pixel and the Gaussian model can match 
is as follows. If the following formula is met, the pixel and the Gaussian model match 
each other and belong to the background point; on the contrary, this point cannot match 
the model and belongs to the foreground point. 

, 1 , 12.5t i t i tQ μ δ− −− ≤  (9) 

where μi,t–1 denotes the mean and δi,t–1 denotes the variance. 
After Gaussian model background elimination, noise is generated near the foreground 

and therefore interferes with the visual system to recognise the target. So noise reduction 
is used to protect the image edges. The expression of the output pixel grey value after 
noise reduction is as bellow. 

{ }( , ) ( , ) ( , )g x y median f x i y j i j W= − − ∈  (10) 

where W denotes the template window, g(x, y) and f(x – i, y – j) represent the output and 
input pixel grey values respectively. 

4 Stereo vision and deep learning based movement correction for sports 
dance 

4.1 3D CNN-based feature extraction for sports dance images 

To increase the accuracy of sports dance movement recognition and improve the effect of 
movement correction, this paper designs a sports dance movement correction method 
relied on stereo vision and deep learning. Spatio-temporal features are extracted from the 
high-quality stereo vision images preprocessed in the previous section using 3D CNN, 
and the early attention mechanism is introduced to adaptively enhance the discriminative 
information that is beneficial for early action prediction. The critical features are inputted 
into Softmax to output the category prediction results of dance movements, and the 
comparison form is used to achieve the error movement correction. The model structure 
of the suggested dance correction method is shown in Figure 3. 

Figure 3 The model structure of the proposed dance correction method (see online version  
for colours) 
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After obtaining the preprocessed images, this paper uses 3D CNN to extract features from 
the movements of sports dance images. Assume that the input vector in 3D CNN is  
G ∈ Rc×t×h×w, where c is the amount of channels, h and w stand for the height and width of 
the feature map, respectively, and t represents the temporal dimension of the feature map. 
Firstly, the spatio-temporal dimension of G is done pooling operation to get the features 
X, Y ∈ Rc×t representing temporal and spatial information respectively. To unify the 
dimensions of the spatio-temporal features, the up-sampling operation of the  
spatio-temporal dimension is performed on X and Y respectively, and the processed 
spatio-temporal features are as follows. 

[ ] [ ]1 21 2 1 2,, , ..., , , ...,T T
c cX X X X Y Y Y Y= =  (11) 

where c1 and c2 represent the number of channels of spatio-temporal features, 
respectively. The spatio-temporal fusion is performed by a bilinear pooling operation and 
is calculated as follows. 

T
i i iZ X W Y b= +  (12) 

where 1 2c c
iW R ×∈  is the weight matrix of the output vector Zi, bi is the offset value, and 

Zi is the vector of dimension i in the third vector space. Matrix decomposition  
of the weight matrix Wi yields the approximation matrix ,i i i

TW U V=  where 
1 2 .,c l c l

i iU R V R× ×∈ ∈  Substituting i i
T

iW U V=  into equation (12) yields the following 
equation. 

T T
i i i iU X VZ Y b= ⋅ +  (13) 

The fused spatio-temporal feature T TZ U X V Y b= ⋅ +  is obtained by extending equation 
(13), where 1 2, ,c d c dU R V R× ×∈ ∈  and b ∈ Rd are the parameters of the bilinear pooling 
of the decomposition, Z ∈ Rd×T is the fused feature of X and Y, and d is the dimension of 
the fused new feature space. 

4.2 Fine-grained feature enhancement based on attention mechanism 

After obtaining the fused spatio-temporal features, the early attention mechanism (EAM) 
is used to generate a temporal attention map, which adaptively pays more attention to the 
more distinguishing message in the early content of some sequences, to improve the 
performance of action recognition, the structure of the EAM is implied in Figure 4. For 
each time step, EAM uses the time domain weights to selectively enhance features with 
high contribution and suppress features with less distinguishing message. The input to 
EAM is a d-dimensional characteristic mapping graph Zin ∈ Rd×T×V, where T denotes the 
time step length and V denotes the amount of joints. EAM performs mean pooling of each 
joint to aggregate spatial message to obtain a mean pooled characteristic map  
Zave ∈ RC×T×1, which is provided to the convolutional and bulk normalisation layers to 
generate a set of feature maps GAM(Zin) ∈ R1×T×1. 

( ) ( )( )AM in Conv aveG Z BN W Z=  (14) 

where WConv denotes a one-dimensional convolution operation and BN denotes a bulk 
normalisation level. The feature mapping map is to be triggered by the Sigmoid level to 
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generate the related weights among 0 and 1. For the goal of improving the performance 
of movement recognition, this chapter exploits the monotonically augmenting nature of 
the Sigmoid activation operation to adjustably promote the model to concentrate on the 
early part of the action. For this purpose, a set of translation offsets is denoted by χ and 
initialised as [0, 1 / (T – 1), …, (T – 1) / (T – 1)]. The translation offsets are used to boost 
the significance of early observations. Finally, the early attention map is produced as 
shown in equation (15). 

( ) ( )( )( )EAM in AM inG Z δ G Z IN χ= −  (15) 

where δ is the Sigmoid activation operation and IN is the standardisation level adjusting 
the translation variables by acquirable parameters. 

At last, the attention graph GEAM(Zin) ∈ R1×T×1 is subjected to an element-level 
multiplication operation with the input characteristic map for adjustive characteristic 
refinement denoted as Zref, as shown in equation (16). 

( )in Ef M ir ne AZ Z G Z= ∗  (16) 

Figure 4 Early attention mechanism process (see online version for colours) 
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4.3 Sports dance movement recognition and correction 

The fine-grained fusion feature Zref is fed into the action recognition module. Zref is 
processed by the start boundary branch, end boundary branch and centre offset branch in 
parallel, and the response intensity of each moment in the feature sequence Zref as the 
start boundary and the end boundary is predicted respectively, and the feature sequences 
Zstart and Zc are obtained. 

The relative boundary distribution is further estimated by summing the predicted 
boundary response intensity at moment t with the centre offset at the corresponding 
moment t on an element-by-element basis. In addition, the offset is calculated based on 
the current expectation value. In this case, for example, the process of predicting the 
response intensity of the starting boundary is expressed as equation (17) and equation 
(18). 

( )[( ): ] ,0max t B t t
start cstartP Soft Z Z−= +  (17) 

( )
0

[ ]
start

B
st stbb P

b
d E b bP∼

=
= ≈    (18) 
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where startP  is the relative probability, which represents the probability that each moment 
t is the start of the action; [( ): ]t B t

startZ −  and ,0t
cZ  represent the characteristic of moment t and 

the central offset predicted only by moment t, respectively; and dst represents the distance 
from moment t to the start of the action. Similarly, the distance det from moment t to the 
end point of the action can be derived. The corresponding predictions of the features of 
each level of the 3D CNN are scaled to 2l–1 by the predefined local features to obtain the 
updated features of each level 1(2 ) ,ll T DZ R − ×∈  and the output at each moment t is denoted 
as ( , ˆ ˆˆˆ , ).l l l l

t t st etz c d d=  
Loss function (Muhammad et al., 2021) was used in the training phase as shown 

bellow: 

{ }( ) { }
1, 1,

1 101 01l l
IOU cls regt tt tpos neg

L c δ L L c
N N

= > + + =   (19) 

where δIOU is the temporal intersection ratio, Lcls and Lreg are the focal loss function and 
IOU loss function respectively, Npos and Nreg are the number of positive and negative 
samples respectively. Based on the above results, the action boundary distances ˆ l

std  and 
ˆ l
etd  are estimated to obtain the action instances a. The final predictions of the action 

categories as well as the start time ˆ
tS  and the end time t̂e  are obtained in the model 

testing phase and the redundant instances are reduced using Soft-NMS (Chen et al., 2023) 
as follows: 

( ),ˆ ˆt ta s e=  (20) 

( ) 1ˆˆ 2l l
t sts t d −= − ×  (21) 

( ) 1ˆˆ 2l l
t ete t d −= + ×  (22) 

After identifying the classes of dance movements, the error correction is implemented in 
the form of a comparison. A point in the input vector G is P(x, y) and its affine phantom 
parameter on the scale σ is given by. 

2 2

2

( )2 2

2

( ) ( )  
( , ) ( , )

( ) ( )   
k

f σ f σ
x x y

F I i j I i j
f σ f σ
y x y

∂ ∂
∂ ∂ ∂

=
∂ ∂

∂ ∂ ∂

 (23) 

Choosing the critical value P(x, y) of the Hessian matrix, the following equation is given. 
2 2( ) ( ) 0f σ f σ
x y y x

∂ ∂− =
∂ ∂ ∂ ∂

 (24) 

Therefore, the neighbouring frames of the current frame Ic are represented as follows. 

{ ; }cNF n c k n c k= − ≤ ≤ +  (25) 
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Calculating the average value of the error action parameters, the following error action 
correction factors can be obtained. 

22 2 2

2 2
( ) ( ) ( )f σ f σ f σH

x y x y
 ∂ ∂ ∂= −  ∂ ∂ ∂ ∂ 

 (26) 

5 Experimental results and analyses  

To verify the recognition and correction effect of the proposed model in sports dance 
error movements, the AIST++ dance movement dataset (Zhou et al., 2023) was used to 
conduct simulation experiments, and a total of 1,579 dance images were selected, 
including ten common dance movements such as walking, clapping, waving, kicking, 
splitting, and flipping, etc., and the dataset was divided into a training set and a test set, in 
which the training set contained 1,105 images and the test set contains 474 images. The 
model is trained using Adam with an initial learning rate of 0.0001, using a cosine 
studying rate decay strategy with Batch size set to 2, weight decay of 0.0001, and a  
Soft-NMS threshold set to 0.5. The experiments are based on the Pytorch Deep Learning 
Platform framework, with the hardware configuration of Intel® CoreTM i5-12400 CPU, 
and NVIDIA 3080 GPU. 

The accuracy of the proposed model for each type of movement recognition is shown 
in Figure 5, the recognition accuracy of walk, kick, split, flip, slide, jump, revolve and 
slide are all above 90%, but the recognition accuracy of clap and wave is relatively low, 
due to the similarity of clap and wave movements, the recognition accuracy is not as 
good as that of the other eight dance movements, but the overall recognition accuracy is 
above 90%, which verifies the effectiveness of the designed method. 

Figure 5 Recognition accuracy of the proposed model for various types of dance movements  
(see online version for colours) 
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For the goal of further evaluating the recognition performance of the models, 
comparative experiments are conducted on SLTE (Ji et al., 2017), DCNN (Zhu and Zhu, 
2021), NRDN (Yang et al., 2021), and the proposed model Ours using accuracy, TOP1 
and TOP5 accuracy as the metrics, and the comparison outcome are indicated in Table 1. 

TOP1 and TOP5 accuracies are common metrics used to assess the performance of a 
model, and the difference lies in whether the model predicts the first few highest 
probability categories correctly or not. As can be seen from Table 2, the suggested model 
has the best accuracy, TOP1 and TOP5 accuracy metrics among all the models, which are 
14.88%, 10.9% and 21.2% higher than SLTE, 9.21%, 5.2% and 10.6% higher than 
DCNN, and 3.53%, 2.5% and 3.7% higher than NRDN, respectively. 
Table 1 Comparative test results 

Model Accuracy (%) TOP1 (%) TOP5 (%) 
SLTE 76.29 40.8 50.9 
DCNN 81.96 46.5 61.5 
NRDN 87.64 49.2 68.4 
Ours 91.17 51.7 72.1 

The recognition performance of SLTE is the worst. Although the stereoscopic vision of 
the image is fully considered, the performance of SLTE is far lower than that of the other 
three models because it is only based on the traditional manual method for image feature 
extraction and similarity judgement as recognition results. The accuracy rate of DCNN 
reached more than 80%, which has certain validity. However, it only considers the 
transformation of dance movement images into connection graphs without stereo vision l 
and image preprocessing, resulting in insufficient feature extraction. The performance 
indicators of NRDN are the closest to ours, but the recognition performance of NRDN is 
weaker than ours due to the lack of fine-grained feature enhancement of dance 
movements during training. Thus, ours has obvious superiority in the recognition of 
sports dance movements. 

Figure 6 Dance movement recognition performance comparison (see online version for colours) 
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The variation of recognition accuracy of different models with the number of images is 
shown in Figure 6. The prediction accuracies of all four models increase with the 
enhancement of the number of images, and ours obtains a higher performance gain 
because ours not only models and preprocesses the stereo vision of the dance images, but 
also extracts fine-grained spatial-temporal features of the dance movements using the 
early attention mechanism, and the learned characteristics are complementary to certain 
movement instances, which further indicates the high efficiency of ours for the dance 
movement recognition task. 

In addition to the recognition performance described above, the effectiveness of the 
ours correction needs to be objectively examined, as measured using the peak signal-to-
noise ratio (SNR), the normalised mean square error (NMSE), the multi-scale structural 
similarity (MS-SSIM) and the image quality index (IQI), as indicated in Table 2 for the 
comparisons. 
Table 2 Comparison of calibration effects of different models 

Model SNR (dB) NMSE MS-SSIM IQI 
SLTE 9.29 0.205 0.127 0.461 
DCNN 14.08 0.136 0.186 0.525 
NRDN 18.26 0.081 0.228 0.568 
Ours 20.45 0.067 0.243 0.581 

From the above table, the SNRs of Ours, SLTE, DCNN, and NRDN are 20.45 dB,  
9.29 dB, 14.08 dB, and 0.581, respectively, which indicates that the images processed by 
the proposed model are clearer and more conducive to recognition. MS-SSIM and IQI are 
proportional to the quality of stereoscopic vision, and ours has the highest MS-SSIM and 
IQI, with the best visual effect, making it easier to correct errors. Furthermore, the NMSE 
of ours is 0.067, which is reduced by 0.1983, 0.069, and 0.014 compared to SLTE, 
DCNN, and NRDN, respectively, indicating that the recognition error is small, and ours 
has high correction performance and strong generalisation ability. The recognition 
accuracy of clapping and waving is relatively low, which may be due to the high spatial 
similarity of these actions, which makes it difficult to distinguish the models. This 
discovery highlights the limitations of the model in dealing with subtle movement 
differences. 

Although AIST++ dataset provides a variety of dance movements, we realise that it 
may not fully represent all sports dance styles and complexity. Future research will 
consider using multiple datasets or creating synthetic data to cover a wider range of dance 
styles and individual differences. 

6 Conclusions 

To improve the effect of sports dance movement correction, this paper researches on the 
basis of binocular stereo vision and deep learning. By calculating the template feature 
combination equation of image imaging, we obtain the pixel values of image edge 
contour, and then after image threshold segmentation, we can effectively distinguish the 
target from the background, and provide high-quality original images for dance 
movement recognition. Then, 3D CNN is adopted to extract spatio-temporal 
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characteristics from the preprocessed dance action images to obtain stronger  
spatio-temporal feature representations, and the early attention mechanism is introduced 
to encourage the model to pay more attention to the key features of the action sequences 
at an early stage. Finally, the critical features are input into Softmax, and the recognition 
results are output by estimating the relative probability distribution of the action 
boundaries, and the error action correction is achieved by using the contrast form. 

The simulation experiments indicate that the offered method improves the recognition 
accuracy and efficiency, and generates important application value for dancer movement 
analysis. The designed method in this paper is based on binocular vision imaging for 
feature extraction and action recognition, and in future work, further research will be 
conducted on the theory of polyocular vision to improve the generalisation.  

Although the experiments in this study mainly focus on specific datasets, the future 
work will include a wider range of actual scene tests to further verify the robustness and 
generalisation ability of this method. In addition, we will explore the possibility of 
cooperation with professional coaches and collect feedback through field application, so 
as to evaluate the performance of this method in actual sports dance training more 
comprehensively. In addition to exploring the theory of multi-vision, future research 
directions include developing hardware systems for real-time applications and 
interdisciplinary cooperation with wearable technologies. These expansions will help to 
transform the theoretical results of this study into practical applications and further 
improve the effect of sports dance training. 
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