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Abstract: This paper presents an investigation on the dynamic behaviour of single-walled carbon
nano-tubes (SWCNT) crossed by multiple moving nano-particles modelled as mobile loads based
on Timoshenko’s non-local beam theory, including rotational inertia. The governing equations
are derived using Hamilton’s principle combined with Galerkin’s method. The eigen-frequencies
are determined by solving analytically the system of equations which govern the problem of the
eigenvalues. Temporal integration of the Newmark’s method is adopted to find the dynamic
response of single-walled carbon nanotubes (SWCNT). The obtained eigen-frequencies are
validated by the results of previous published studies. A detailed parametric study is carried out
to analyse the effects of non-local parameters, the slenderness ratio, the displacement speed and
the number of moving loads on the vibration characteristics of the model. Type or paste your
abstract here as prescribed by the journal’s instructions for authors. The obtained results show
that above mentioned effects play an important role and have a significant effect on the
transitional dynamic behaviour of single-walled carbon nanotubes (SWCNT).
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1 Introduction

Nano-technologies and nano-sciences are a study domain of
systems measuring less than forty nanometres. The
nano-technology is not limited only to the study of the
systems but also aims to manufacture and manipulate
nano-metric objects and nano-materials. In fact the
applications of the nano-technology are multiple in various
domains (Dequesnes, 2019).

During these last years the structures at nano-metric
scale has brought a considerable interest for future
applications of nano-electro-mechanical systems (NEMS)
and microscopy of atomic force (MAF) (Dai et al., 1996;
Lourie and Wagner, 1998; Ahouel et al., 2016; Wang, 2022;
Agarwal et al., 2022). Conventional models of structures
based on classical continuous media theories were unable to
describe the effects due to the lack of the material scale
parameters (Khetir et al.,, 2016). One of the most known
models is the Eringen’s non-local elasticity theory. Works
based on this non-local elasticity theory had been published
such as Eringen and Wegner (2003), and Aydogdu (2009)
Thai (2012). In 1983 Eringen (1983) suggested that the
integral constitutive law can be simplified under the form of
differential equations when the type of the function core is
specified.

On the contrary, to the local theories which assume that
the stress at a point is a function of the deformation at the
same point, the non-local elasticity theory supposes that the
stress at a point depends on the deformations of all points of
the continuous media. The non-local elasticity theory has
been extensively applied to analysing the static and dynamic
response of nano-beams (Simsek, 2014; Karli¢i¢ et al.,
2016; Li et al., 2018; Baroudi et al., 2018; Eptaimeros et al.,
2018; Noroozi et al., 2019; Ghafarian and Ariaei, 2016),
nano-plates (Pugno, 2005; Murmu and Adhikari, 2011;
Hedayatian et al., 2020; Xu et al, 2023), nano-shells
(Brito-Silva et al., 2013; Ahmadi and Arami, 2013; Shi
et al., 2020 as well as nano-tubes (Dequesnes et al., 2004;

Pataki et al., 2007; Adali, 2023; Shokouhifard et al., 2023;
Borjalilou et al., 2019).

Many studies had been focused on the forced vibration
of nanobeams subjected to moving loads. Simsek (2011)
made a dynamic analysis of a single walled carbon
nano-tube (SWCNT) traversed by a single moving load
using the non-local Timoshenko beams theory. Togun
(2016) studied the non-linear vibration of a nano-beam with
a mass attached at its extremity using the non-local
elasticity theory. Abouelregal and Zenkour (2017) had
determined the dynamic response of a nano-beam induced
by ramped heating and under a moving load. Ghadiri et al.
(2017) studied the non-linear forced vibrations of
Euler-Bernoulli nano-beams under a concentrated moving
load supported on a viscoelastic foundation taking into
consideration the thermal and surface effects. Rahmani et al.
(2018) analysed the forced vibration of a nano-tube under
excitation of a moving harmonic force with considering
modified non-local elasticity. Elmeiche et al. (2018)
presented a forced dynamic behaviour of functionally
graded nano-beams excited by a unique concentrated
moving load using the non-local high order beams theory.
Malikan et al. (2018) makes an analysis of a damped forced
vibration of a SWCNT by means of a new beams shear
deformation theory; SWCNT are modelled as a flexible
beam resting on a viscoelastic foundation drown in thermal
environment. Barati et al. (2018) examined the dynamic
response of a nano-beam subjected to moving load under
hygrothermal environments based on the gradient theory of
non-local deformation.

The objective of this research consists in studying the
forced dynamic behaviour of a SWCNT using Eringen’s
non-local elasticity theory. The development of the model is
founded on Timoshenko beams theory under passing of
many crossing moving loads at constant speeds. The global
equation of the movement is derived via a combination of
Hamilton’s principle and Galerkin’s method taking into
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consideration the effect of the rotational inertia. The
mathematical solutions are treated analytically by modal
analysis and the forced dynamic responses are
computed numerically using the Newmark’s direct
integral. A computational numerical code is developed
under MATLAB software in order to determine the
eigen-frequencies and modal responses of the vibratory
system. A parametric study is made in order to analyse the
different physical and geometric criteria that react on the
transient dynamic behaviour of the SWCNT.

2 Non-local elasticity theory

The response of structures at a nano-metric scale is different
from that of the classical theory. According to the non-
elasticity theory, the stress field on an arbitrary point X’ in
an elastic continuum not only depends on the stress field at
the same point but also on the stresses at all other points of
the body Eringen and Edelen (1972).

This hypothesis can be expressed as:

[1-uV2]G=C:% (1)

where # = (epa)’ is the non-local parameter, ‘ey’ is an
appropriate constant for each material, ‘@’ is the internal
characteristic length Simsek and Reddy (2013). V? is the
Laplace operator. o is the stress tensor indicates the
product at a double point. C is the Hookean’s elasticity
tensor, ¢ is the deformation tensor. For a homogeneous
isotropic Timoshenko beam the non-local constitutive
relation is written as:

Oy — e =FEe,
o 2)
0 -1 =Gy
Xz ax2 Xz

where E is the modulus of elasticity. G = E/2(1 + v) is the
shear modulus (where v is Poisson’s coefficient, o, is the
axial stress, oy is the shear stress, &, is the axial strain and
is the shear deformation. When ‘¥%.’ is null we can derive
the constitutive relation of the classical theory.

3 Dynamic model of the SWCNT

A simply supported SWCNT with a length (L), a diameter
(d) and a thickness (#5) is shown in Figure 1. The SWCNT is
subjected to several moving loads Ps(f) which move in the
axial direction of the nano-tubes with a constant speed vps.

On the basis on the Timoshenko beam theory, the
displacement field of any point of the nano-beam is given as
follow:

U(x,z,t) =up(x,t) + 2y (x,t)
W(x,z,t) =wy(x,1) 3)

where uo (x, £) and wo(x, ) are displacement components in
the median plane, yp is the rotation of the nano-beam
section and ‘¢’ is the time.

Figure 1 Model of the simply supported single-walled carbon
nano-tube (see online version for colours)
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In the assumption of small perturbations the deformation
tensor is expressed as:

e = 2 0
S €
_M
s ox
The energy of deformation Uj, is given by:
Uint = lJ. (Uxxgxx + szyxz )dV (5)
2y

I VAL (M j aﬂ}
U,n,_zjo[zv 0| Sy JrMr e (©)

Nx and Mx are the results of the stresses defined:

N* :J' O odA, M* = J' 0w zdA, OF :J' odA 7
A A A

The kinetic energy K can be calculated from:

2 2 2
e [ o G e () o e
0 ot ot J\ ot ot ot
The inertia coefficients of equation (8) are defined as:

[11312’13]=j p[LZ’ZZ]dA
A

The potential energy of the moving forces is given by:

nload

L L
Uext = I{) F'exth)dx = ; J.O I:})Sé ()C - Dpsts ) Wo }dx (9)

where (6.) is the Dirac-delta function, v, is the speed of the
moving loads, P; is the module of the punctual force for the
s" order load, defined by:

pS:&
N

Using the Hamilton’s principle:

t
L (6Uppy — 0K +6U o )t =0 (10)
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By replacing equations (6), (8) and (9) in equation (10) and
performing partial integration the following equilibrium
equations are obtained:

BNC azuoj (821//0)
=] i
o ‘(aﬂ e

20" 0’
g +Fw—1,[ af] (1)

X 2
BM —QY ]2(8 u0)+13(8 l//oj
ox o’ o’
By introducing the equilibrium equations (11) in Eringen

non-local constitutive relation (2), the following differential
equations are obtained:
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Using equations (7), (9) and (12) the governing equations in
term of displacement can be found and expressed as:
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(15)

4 Mathematical solutions

To study the dynamic behaviour of the SWCNT, the
components uo(x, £), wo(x, £) and yo(x, f) are expressed in
modal expansions as the following:

tp (o, ) = D 0, ()1 (03w (5,8 = D & (). Wi (8);
j=1 k=1
g (16)
Vo(6,1) = D 6 (), (1)
p=l

where u(f), wi(f) and () are the general unknown
coordinates which depend on time and ¢,(¢f) is the
eigen-mode function of the nano-tubes.

By performing partial integration on equation (15) with
the moderated functions respectively ¢i(x), &(x) and ¢p(x);
(i=k=p=1,2,... n), which must satisfy the boundary
conditions, the weak forms of the governing equation of the
movement which is also equivalent to the ordinary
differential equation can be expressed in the following
form:

af wf(x)[Zw; (D (z)] derB.| d(x)(Z@: 0w, (t)} d
Jj=1 p=l
L u L /!
+1, jo (p,»(x)[Zgo, )idi; (t)].dx+[2 L gof(x)(zg,(x).zjkp(t)j.dx (17)
Jj=1 p=1
—/{11 IOL@(X)[ZQ?(X)-% (t)] .cbc+12j:@(x)[2co; @i (t)] .dx}
= j=l
V], =0
af é-’(X).(ka' (9 (r)] derde[ G [Z@ O, (z)] ds
k=1 p=l
-1 j:m{;@ (@ (r)].dx+{11j:é”<x>[jzlfi’<x).wk (t)}dx} a8
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—u {1 5 _[0 o (x) [Z%‘ ()i, (t)] de+1; _[0 @ () (Z% ()47, (t)J .dx}

M)y =0

(19)

The Dirac-delta function of the transient forces is defined by
Fryba (1972) as:

—(1)"&M(xp) sixg <X, <X

(20)
0 Autrement

I " E)0M (x—x, ). = {

where &n) represents the nth derivative of Dirac-delta
function. The coefficients of the test functions in the limited
integrals are called secondary variables. Their specifications
constitute the boundary conditions. In this investigation, the
analytical solutions are proposed for an isotropic simply
supported nano-beam defined as:

gz),,(x):cos( L” jfn(x) sm(%xj ¢ (x)= cos(ij Q1)
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The secondary are eliminated through the virtual
displacement principle. The global system of equations of
the SWCNT crossed by multiple mobile forces is written
under the matrix form as:

[KT {q()}+ < [M1< — i M1 > (G0} = (F@O1 —p(FO) - (22)

The terms [K] and [M]t¢ are the global stiffness and mass
matrices in the classical local elasticity theory. Their order
is [3n x 3n]. [M]M¢ is a [3n x 3n] supplementary global
mass matrix due to the non-local effect. {g(¢)} is the global
column vector of temporary unknown coefficients of order

[3n x 1], {{(¢)} is the acceleration. {F(#)}% and {F(¢)}V¢

are respectively the global local and non-local vectors
produced by the mobile transversal forces of order [3n x 1].

5 Results and discussions

The transient vibrations of the SWCNT simply supported
acting by several moving loads are investigated for different
physical and geometrical parameters. The choice of the
effective wall thickness and the elasticity modulus was for a
long time a problem in nano-mechanics of SWCNT (Wang
and Zhang, 2008). However this problem has been recently
treated and solved in Gupta et al. (2010). The mechanical
properties are expressed as: the Young’s modulus E = 17pa,
the density p = 2,300 kg/m’, the Poisson’s coefficient
v = 0.3. The internal and external diameters of the
nano-tube are respectively dime- = 0.3 nm and dyuer = 1 nm.
The forced modal responses are numerically solved
using the Newmark’s temporal integral Newmark (1959),
with f = 0.25 and y = 0.5. For a better satisfaction in
Newmark schema, the time increment is fixed at dt =
Tf/500. Tf is the necessary time to make move the last
punctual load (Ps) to the right extremity of the nano-tube.
The transient forces are spaced from each other by a
uniform distance A = L/4. For practical reasons the
numerical results are presented in terms of a standard form:

w:wL\/pj;D(t):lmxw(%’t);D,m:maxw(%’t);azvl’;T:T*' (23)
= w (%) (b)) e

ws (L/2) is the deflection at mid-span of the SWCNT under
the static load Q. ver is critical value defined by Fryba
(1972).

In order to validate the mathematical model the first
three fundamental frequencies of the simply supported
SWCNT are compared in Table 2. This is accomplished by
varying the values of the slenderness ratio (L/d) and the
non-local scale factor (1). The Table 1 shows that there is a
good agreement between the analytical results of the present
study with the numerical solutions of reference Esen (2020).
It is worth mentioning that the eigen-frequencies have been
obtained using the same geometrical and material
parameters of reference Esen (2020) with the shear modulus
was Ks = 5/6.

From the analysis of the dynamic results, it can be
noticed that the non-local effect soften the values of the
fundamental frequencies which create a decrease the
stiffness of the nano-tubes systems. The scale factor has a
significant effect on the higher frequencies. For a non-local
parameter (1) which varies in the interval from [0 to 4] the
first frequency (A1) is reduced by an average of 15.33% and
the second frequency (A2) by 37.73% while the third
frequency (A3) is reduced by 53.14%. Moreover, the
increase of the geometrical ratio (L/d) also has a significant
effect on the higher eigen-frequencies than that of lower
eigen-frequencies. For a change from 5 to 100 of the aspect
ratio, the change increment increases of 6.40% for the first
frequency (A1), 22.65% for the second frequency (A2) and
44.30% for the third frequency (A43).

Table 2 illustrates the maximum normalised dynamic
responses (Dmax) obtained from different thickness aspect
ratios (L/h) taking into account the three modes of
solicitations of the transient loads of a SWCNT. The
numerical results are determined by varying the speed of the
displacement load (or) and the non-local elasticity parameter
(«). We notice that the non-local parameter (u) is related to
Dmax. This tendency is quasi-linear to all the excitation
modes whatever the applied displacement speeds. It is also
observed a decreasing slope when the aspect ratio (L/h)
increases. We also notice that the geometric ratio is
inversely proportional to the maximum dynamic responses.

The solicitation of a single mobile load has an additional
effect on the dynamic flexions compared to the other
excitation modes. For a geometrical shrink from 100 to 5,
the average Dmax ratio increases by 58.09% for a
solicitation of a single moving load, by 54.05% for two
moving loads and by 53.02% for three moving loads.

Figure 2 describes the forms of the transversal non
dimensional displacements with respect to the normalised
time at the mid-span of the simply supported SWCNT using
different non-local parameters. The normalised dynamic
deflections are plotted under several numbers of punctual
moving loads with variable displacement speeds (). The
geometrical ratio is taken in the critical state with a value of
L/d = 5 (see Table 2). We notice that the dynamic flexions
are proportional to the non-local parameter (1). The rate of
deformation becomes minimum when the SWCNT is
modelled without taking into consideration the scale effect
(). It is maximum when the non-local parameter (1) takes
extreme values. This is due to the flexibility given to the
vibratory system which generates instability under the form
of dynamic responses.

Moreover the displacement speed f the moving loads
plays an essential role in the study of forced vibration since
the structure become more stable when the speed (@)
overcomes the critical speed (vp > ver). For the low crossing
speeds, the dynamic behaviour of the SWCNT reacts in a
remarkable flexibility which provokes disequilibrium in the
form of the transversal dynamic responses. The solicitation
to several moving loads induces a damping of the
movement in the SWCNT which leads to a stabilised forced
dynamic behaviour.
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This stability is reflected in the free dynamic vibratory
of the system which allows optimising the harmonic
dynamic responses.

Figures 3(a) and 3(b) show the variation of the
normalised maximum dynamic responses (Dmax) at the
mid-span of the simply supported SWCNT with respect to
the speed parameter (o) with and without taking into
account the non-local effect. The study is based on different
numbers of moving loads for a critical aspect ratio (L/d =
5). It is observed that the effect of the interatomic bonding
which is taken into account by the small scale parameter (p)
leads to a more important modal responses with respect to

those of the classical local theory which gives insignificant
and erroneous results. We note that the maximum dynamic
flexion increases up to a certain value of the speed (vp =
[0.5 to 0.7].Vcr). After this critical value the increase in
moving speed generate a quasi progressive reduction.
Moreover, the modelisation for a single concentrated
moving load on the SWCNT gives non acceptable results in
term of the dynamic stability with respect to other models
for two or three moving loads, i.e., the transversal dynamic
responses are reduced with the increase of the number of
moving loads.

Table 1 Fundamental frequencies (@) for simply supported SWCNT
A1 A2 A3
L/d MU (nm?)
Present Esen (2020) Present Esen (2020) Present Esen (2020)
5 0 9.2740 9.2740 32.1665 32.1948 61.4581 61.4592
1 8.8477 8.8476 27.2364 27.2654 44.7247 44.7847
2 8.4752 8.4753 24.0453 24.0555 36.8831 36.8941
3 8.1461 8.1461 21.7642 21.7842 32.1036 32.1536
4 7.8526 7.8527 20.0293 20.0495 28.8023 28.8523
10 0 9.7075 9.7075 37.0962 37.0999 78.1547 78.1855
1 9.2612 9.2613 31.4105 31.4148 56.8753 56.8953
2 8.8713 8.8714 27.7303 27.7340 46.9034 46.9220
3 8.5269 8.5270 25.0996 25.1035 40.8254 40.8414
4 8.2196 8.2197 23.0989 23.1025 36.6272 36.6413
20 0 9.8281 9.8281 38.8299 38.8309 85.6619 85.6672
1 9.3763 9.3763 32.8786 32.8796 62.3385 62.3429
2 8.9816 8.9816 29.0263 29.0271 51.4087 51.4137
3 8.6328 8.6328 26.2727 26.2733 44.7469 44.7490
4 8.3218 8.3219 24.1785 24.1790 40.1454 40.1472
100 0 9.8679 9.8679 39.4517 39.4517 88.6914 88.6915
1 9.4143 9.4144 33.4051 33.4052 64.5431 64.5435
2 9.0180 9.0181 29.4911 29.4911 53.2268 53.2268
3 8.6678 8.6679 26.6934 26.6935 46.3294 46.3294
4 8.3555 8.3556 24.5657 24.5658 41.5652 41.5655
Table 2 Maximum dynamic deflections (Dmax) for simply supported SWCNT
a=01 a=0.5 a=1
L/ (n/r;l 2) Single load  Two loads Three Single Two Three Single Two Three
loads load loads loads load loads loads
5 0 1.2357 1.1016 0.9192 1.9066 1.6327 1.2655 1.7445 1.6106 1.4159
1 1.8557 1.5452 1.2675 2.7219 2.2966 1.8282 3.2603 2.3192 2.0411
2 2.4556 1.9851 1.6171 3.3150 3.1264 2.3381 3.2747 2.5771 2.7209
3 3.0935 24511 1.9576 4.4546 4.0468 2.7396 4.9127 3.7786 3.2198
4 3.7291 2.8707 2.3489 5.7490 4.8841 3.3325 6.1055 4.4823 3.6861
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Table 2 Maximum dynamic deflections (Dmax) for simply supported SWCNT (continued)
a=01 a=05 a=1

Lid  (nm’) Single Two Three Single Two Three Single Two Three
load loads loads load loads loads load loads loads

10 0 1.1300 1.0143 0.8489 1.7577 1.5039 1.1638 1.5993 1.4747 1.3016
1 1.2591 1.1177 0.9305 1.9245 1.6515 1.2835 1.7771 1.6326 1.4198

2 1.3871 1.2217 1.0135 2.0978 1.7983 1.3950 1.9197 1.7955 1.5598

3 1.5167 1.3237 1.0925 2.2807 1.9580 1.5083 2.1331 1.9088 1.6733

4 1.6433 1.4256 1.1774 2.4058 2.1223 1.6044 2.3181 2.0878 1.8369

20 0 1.1039 0.9927 0.8309 1.7155 1.4686 1.1435 1.5631 1.4405 1.2843
1 1.1339 1.0173 0.8514 1.7626 1.5082 1.1670 1.6025 1.4803 1.3051

2 1.1641 1.0418 0.8716 1.7981 1.5399 1.1986 1.6449 1.5199 1.3344

3 1.1948 1.0677 0.8914 1.8416 1.5799 1.2274 1.6797 1.5457 1.3747

4 1.2266 1.0926 09114 1.8882 1.6198 1.2546 1.7241 1.5880 1.4060

100 0 1.0960 0.9852 0.8256 1.7052 1.4574 1.1346 1.5493 1.4297 1.2746
1 1.0973 0.9862 0.8264 1.7064 1.4590 1.1359 1.5514 1.4307 1.2762

2 1.0985 0.9873 0.8273 1.7077 1.4604 1.1372 1.5531 1.4325 1.2775
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Figure 2 Time history of the mid-span dynamic deflections d(t): (a) oo = 0.25, (b) o = 0.5, (c) . =0.75, (d) =1, (e) oo = 1.25, (f) . = 1.5
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Figure 3 Variation of the maximum dynamic deflections (Dmax) with moving loads speed (a), (a) with non-local effect, (b) without

non-local effect (see online version for colours)

6 Conclusions

The study of the transient dynamic behaviour of a SWCNT
subjected to several moving loads has been carried out
based on Eringen’s non-local constitutive differential
relations. The governing equations of the movement are
deduced from the Hamilton’s principle combined with
Galerkin’s method using Timoshenko beam theory. The
present model is able to capture simultaneously the scale
effect and the shear deformation effect for a SWCNT. The
eigen-frequencies have been carried out by a numerical
method using the modal approximation and the dynamic
responses are computed numerically using Newmark’s
temporal method.

In this paper, parametric study has been conducted on
many physical and geometrical configurations of SWCNT
to analysis the impact of the different factors such as: the
scale parameter, the geometric aspect ratio, the
displacement speed and the number of the crossing loads on
the transient dynamic behaviour of SWCNT. From this
research the following conclusions have been put into
evidence:

e The effect of the interatomic bending affects the
stiffness of the system which is directly reflected on the
results of the dynamic behaviour of the SWCNTs

e The high frequencies are considerably influenced by
the variation of the geometrical aspect ratio compared
to low frequencies

e  The aspect ratio is inversely proportional to the
dynamic responses

e The speed displacement of the moving loads plays an
essential role in the analysis of forced dynamic
behaviour

e  The critical speed has a direct impact on the modulation
of the transient modal responses

e  The modelling by several moving loads gives better
results in terms of dynamic stability with respect to a
solicitation by a single concentrated moving load

Dmax

—Singleload —Twoloads ——Threeloads
8' ____ [ i L r====a=-=--"-" B A T==="" 1
S R
L S S N SV S S SN SO

(b)

e  The value of the critical speed varies depending on the
number of transverse moving loads applied to the
SWCNTs.
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