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Abstract: This paper presents an investigation on the dynamic behaviour of single-walled carbon 
nano-tubes (SWCNT) crossed by multiple moving nano-particles modelled as mobile loads based 
on Timoshenko’s non-local beam theory, including rotational inertia. The governing equations 
are derived using Hamilton’s principle combined with Galerkin’s method. The eigen-frequencies 
are determined by solving analytically the system of equations which govern the problem of the 
eigenvalues. Temporal integration of the Newmark’s method is adopted to find the dynamic 
response of single-walled carbon nanotubes (SWCNT). The obtained eigen-frequencies are 
validated by the results of previous published studies. A detailed parametric study is carried out 
to analyse the effects of non-local parameters, the slenderness ratio, the displacement speed and 
the number of moving loads on the vibration characteristics of the model. Type or paste your 
abstract here as prescribed by the journal’s instructions for authors. The obtained results show 
that above mentioned effects play an important role and have a significant effect on the 
transitional dynamic behaviour of single-walled carbon nanotubes (SWCNT). 
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1 Introduction 
Nano-technologies and nano-sciences are a study domain of 
systems measuring less than forty nanometres. The  
nano-technology is not limited only to the study of the 
systems but also aims to manufacture and manipulate  
nano-metric objects and nano-materials. In fact the 
applications of the nano-technology are multiple in various 
domains (Dequesnes, 2019). 

During these last years the structures at nano-metric 
scale has brought a considerable interest for future 
applications of nano-electro-mechanical systems (NEMS) 
and microscopy of atomic force (MAF) (Dai et al., 1996; 
Lourie and Wagner, 1998; Ahouel et al., 2016; Wang, 2022; 
Agarwal et al., 2022). Conventional models of structures 
based on classical continuous media theories were unable to 
describe the effects due to the lack of the material scale 
parameters (Khetir et al., 2016). One of the most known 
models is the Eringen’s non-local elasticity theory. Works 
based on this non-local elasticity theory had been published 
such as Eringen and Wegner (2003), and Aydogdu (2009) 
Thai (2012). In 1983 Eringen (1983) suggested that the 
integral constitutive law can be simplified under the form of 
differential equations when the type of the function core is 
specified. 

On the contrary, to the local theories which assume that 
the stress at a point is a function of the deformation at the 
same point, the non-local elasticity theory supposes that the 
stress at a point depends on the deformations of all points of 
the continuous media. The non-local elasticity theory has 
been extensively applied to analysing the static and dynamic 
response of nano-beams (Şimşek, 2014; Karličić et al., 
2016; Li et al., 2018; Baroudi et al., 2018; Eptaimeros et al., 
2018; Noroozi et al., 2019; Ghafarian and Ariaei, 2016), 
nano-plates (Pugno, 2005; Murmu and Adhikari, 2011; 
Hedayatian et al., 2020; Xu et al., 2023), nano-shells  
(Brito-Silva et al., 2013; Ahmadi and Arami, 2013; Shi  
et al., 2020 as well as nano-tubes (Dequesnes et al., 2004; 

Pataki et al., 2007; Adali, 2023; Shokouhifard et al., 2023; 
Borjalilou et al., 2019). 

Many studies had been focused on the forced vibration 
of nanobeams subjected to moving loads. Şimşek (2011) 
made a dynamic analysis of a single walled carbon  
nano-tube (SWCNT) traversed by a single moving load 
using the non-local Timoshenko beams theory. Togun 
(2016) studied the non-linear vibration of a nano-beam with 
a mass attached at its extremity using the non-local 
elasticity theory. Abouelregal and Zenkour (2017) had 
determined the dynamic response of a nano-beam induced 
by ramped heating and under a moving load. Ghadiri et al. 
(2017) studied the non-linear forced vibrations of  
Euler-Bernoulli nano-beams under a concentrated moving 
load supported on a viscoelastic foundation taking into 
consideration the thermal and surface effects. Rahmani et al. 
(2018) analysed the forced vibration of a nano-tube under 
excitation of a moving harmonic force with considering 
modified non-local elasticity. Elmeiche et al. (2018) 
presented a forced dynamic behaviour of functionally 
graded nano-beams excited by a unique concentrated 
moving load using the non-local high order beams theory. 
Malikan et al. (2018) makes an analysis of a damped forced 
vibration of a SWCNT by means of a new beams shear 
deformation theory; SWCNT are modelled as a flexible 
beam resting on a viscoelastic foundation drown in thermal 
environment. Barati et al. (2018) examined the dynamic 
response of a nano-beam subjected to moving load under 
hygrothermal environments based on the gradient theory of 
non-local deformation. 

The objective of this research consists in studying the 
forced dynamic behaviour of a SWCNT using Eringen’s 
non-local elasticity theory. The development of the model is 
founded on Timoshenko beams theory under passing of 
many crossing moving loads at constant speeds. The global 
equation of the movement is derived via a combination of 
Hamilton’s principle and Galerkin’s method taking into 
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consideration the effect of the rotational inertia. The 
mathematical solutions are treated analytically by modal 
analysis and the forced dynamic responses are  
computed numerically using the Newmark’s direct  
integral. A computational numerical code is developed  
under MATLAB software in order to determine the  
eigen-frequencies and modal responses of the vibratory 
system. A parametric study is made in order to analyse the 
different physical and geometric criteria that react on the 
transient dynamic behaviour of the SWCNT. 

2 Non-local elasticity theory 
The response of structures at a nano-metric scale is different 
from that of the classical theory. According to the non-
elasticity theory, the stress field on an arbitrary point ‘x’ in 
an elastic continuum not only depends on the stress field at 
the same point but also on the stresses at all other points of 
the body Eringen and Edelen (1972). 

This hypothesis can be expressed as: 

[ ]21 :μ σ C ε− ∇ =  (1) 

where μ = (e0a)2 is the non-local parameter, ‘e0’ is an 
appropriate constant for each material, ‘a’ is the internal 
characteristic length Şimşek and Reddy (2013). ∇2 is the 
Laplace operator. σ  is the stress tensor indicates the 
product at a double point. C  is the Hookean’s elasticity 
tensor, ε  is the deformation tensor. For a homogeneous 
isotropic Timoshenko beam the non-local constitutive 
relation is written as:  

.

.

2
xx

xx xx2

2
xz

xz xz2

σσ μ E ε
x
σσ μ G γ
x

∂− =
∂

∂− =
∂

 (2) 

where E is the modulus of elasticity. G = E/2(1 + v) is the 
shear modulus (where v is Poisson’s coefficient, σxx is the 
axial stress, σxz is the shear stress, εxx is the axial strain and 
is the shear deformation. When ‘γxz’ is null we can derive 
the constitutive relation of the classical theory. 

3 Dynamic model of the SWCNT 
A simply supported SWCNT with a length (L), a diameter 
(d) and a thickness (tb) is shown in Figure 1. The SWCNT is 
subjected to several moving loads Ps(t) which move in the 
axial direction of the nano-tubes with a constant speed vps. 

On the basis on the Timoshenko beam theory, the 
displacement field of any point of the nano-beam is given as 
follow: 

( , , ) ( , ) z . ( , )
W( , , ) ( , )

0 0

0

U x z t u x t ψ x t
x z t w x t
= +

 =  (3) 

where u0 (x, t) and w0(x, t) are displacement components in 
the median plane, ψ0 is the rotation of the nano-beam 
section and ‘t’ is the time. 

Figure 1 Model of the simply supported single-walled carbon 
nano-tube (see online version for colours) 

 

In the assumption of small perturbations the deformation 
tensor is expressed as: 

0 0

0
0

xx

xz

u ψε z
x x
wγ ψ
x

∂ ∂ = + ∂ ∂
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 ∂

 (4) 

The energy of deformation Uint is given by: 

( )1
2int xx xx xz xz

V
U σ ε σ γ dV= +  (5) 

0 0 0
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1
2
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x x x

int
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x x x

 ∂ ∂ ∂  = + + +  ∂ ∂ ∂    (6) 

Nx and Mx are the results of the stresses defined: 

, ,x x x
xx xx xz

A A A
N σ dA M σ zdA Q σ dA= = =    (7) 

The kinetic energy K can be calculated from: 
2 2 2

0 0 0 0 0
1 2 3 1

0
2

L u u ψ ψ wK I I I I dx
t t t t t

 ∂ ∂ ∂ ∂ ∂        = + + +         ∂ ∂ ∂ ∂ ∂           (8) 

The inertia coefficients of equation (8) are defined as:  

[ ]2
1 2 3[ , , ] 1, ,

A
I I I ρ z z dA=   

The potential energy of the moving forces is given by: 

( )
nloadL L

ext ext 0 s ps s 0
0 0s 1

U F w dx P δ x υ t w dx
=

= = −  −     (9) 

where (δ.) is the Dirac-delta function, vps is the speed of the 
moving loads, Ps is the module of the punctual force for the 
sth order load, defined by: 

0
s

Qp
s

=  

Using the Hamilton’s principle: 

( )
0

0
t

int extδU δK δU dt− + =  (10) 
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By replacing equations (6), (8) and (9) in equation (10) and 
performing partial integration the following equilibrium 
equations are obtained: 

1

1

3

c 2 2
0 0

22 2

x 2
0

ext 2

x 2 2
0 0x

2 2 2

N u ψI I
x t t

Q wF I
x t

M u ψQ I I
x t t

∂ ∂ ∂   = +    ∂ ∂ ∂   
∂ ∂ + =  ∂ ∂ 
∂ ∂ ∂   − = +    ∂ ∂ ∂   

 (11) 

By introducing the equilibrium equations (11) in Eringen 
non-local constitutive relation (2), the following differential 
equations are obtained: 

3 3
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Such as:  
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Using equations (7), (9) and (12) the governing equations in 
term of displacement can be found and expressed as: 

( )
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 (15) 

4 Mathematical solutions 
To study the dynamic behaviour of the SWCNT, the 
components u0(x, t), w0(x, t) and ψ0(x, t) are expressed in 
modal expansions as the following: 

1 1

1

( , ) ( ). ( ); ( , ) ( ).w ( );

( , ) ( ). ( )

n n

0 j j 0 k k
j k

n

0 p p
p

u x t φ x u t w x t ξ x t

ψ x t x ψ t

= =

=

= =

=

 

φ
 (16) 

where uj(t), wk(t) and ψp(t) are the general unknown 
coordinates which depend on time and φp(t) is the  
eigen-mode function of the nano-tubes. 

By performing partial integration on equation (15) with 
the moderated functions respectively ϕi(x), ξk(x) and ϕp(x); 
(i = k = p = 1, 2, … n), which must satisfy the boundary 
conditions, the weak forms of the governing equation of the 
movement which is also equivalent to the ordinary 
differential equation can be expressed in the following 
form: 
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The Dirac-delta function of the transient forces is defined by 
Fryba (1972) as: 

1 2(n) (1) . ( )
(x). ( ).

0
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1

n nx p p
p

x

ξ x si x x x
ξ δ x x dx
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−
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 
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where δ(n) represents the nth derivative of Dirac-delta 
function. The coefficients of the test functions in the limited 
integrals are called secondary variables. Their specifications 
constitute the boundary conditions. In this investigation, the 
analytical solutions are proposed for an isotropic simply 
supported nano-beam defined as: 

. . .(x) cos , ( ) sin , ( )n n n
nπ nπ nπφ x ξ x x x cos x
L L L
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φ  (21) 
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The secondary are eliminated through the virtual 
displacement principle. The global system of equations of 
the SWCNT crossed by multiple mobile forces is written 
under the matrix form as:  

[ ] { (t)} [ ] [ ] { (t)} { ( )} { (t)}
NLcLc Lc NLc LcK q M μ M q F t μ F+ < − > = −  (22) 

The terms [K] and [M]Lc are the global stiffness and mass 
matrices in the classical local elasticity theory. Their order 
is [3n × 3n]. [M]NLc is a [3n × 3n] supplementary global 
mass matrix due to the non-local effect. {q(t)} is the global 
column vector of temporary unknown coefficients of order 
[3n × 1], { ( )}q t  is the acceleration. {F(t)}Lc and { ( )}NLcF t  
are respectively the global local and non-local vectors 
produced by the mobile transversal forces of order [3n × 1]. 

5 Results and discussions 
The transient vibrations of the SWCNT simply supported 
acting by several moving loads are investigated for different 
physical and geometrical parameters. The choice of the 
effective wall thickness and the elasticity modulus was for a 
long time a problem in nano-mechanics of SWCNT (Wang 
and Zhang, 2008). However this problem has been recently 
treated and solved in Gupta et al. (2010). The mechanical 
properties are expressed as: the Young’s modulus E = 1Tpa, 
the density ρ = 2,300 kg/m3, the Poisson’s coefficient  
υ = 0.3. The internal and external diameters of the  
nano-tube are respectively dinner = 0.3 nm and douter = 1 nm. 

The forced modal responses are numerically solved 
using the Newmark’s temporal integral Newmark (1959), 
with β = 0.25 and γ = 0.5. For a better satisfaction in 
Newmark schema, the time increment is fixed at dt = 
Tf/500. Tf is the necessary time to make move the last 
punctual load (Ps) to the right extremity of the nano-tube. 
The transient forces are spaced from each other by a 
uniform distance Δ = L/4. For practical reasons the 
numerical results are presented in terms of a standard form:  

( )
( )

( )
( )

( )max
, ,; max ; max ; ;p s

cr 1s s

L Lw w νρA T2 t 2 tωL D t D T
L LEI ν Tw w2 2

= = = = =ϖ α  (23) 

ws (L/2) is the deflection at mid-span of the SWCNT under 
the static load Q0. vcr is critical value defined by Fryba 
(1972). 

In order to validate the mathematical model the first 
three fundamental frequencies of the simply supported 
SWCNT are compared in Table 2. This is accomplished by 
varying the values of the slenderness ratio (L/d) and the 
non-local scale factor (μ). The Table 1 shows that there is a 
good agreement between the analytical results of the present 
study with the numerical solutions of reference Esen (2020). 
It is worth mentioning that the eigen-frequencies have been 
obtained using the same geometrical and material 
parameters of reference Esen (2020) with the shear modulus 
was Ks = 5/6. 

 

From the analysis of the dynamic results, it can be 
noticed that the non-local effect soften the values of the 
fundamental frequencies which create a decrease the 
stiffness of the nano-tubes systems. The scale factor has a 
significant effect on the higher frequencies. For a non-local 
parameter (μ) which varies in the interval from [0 to 4] the 
first frequency (λ1) is reduced by an average of 15.33% and 
the second frequency (λ2) by 37.73% while the third 
frequency (λ3) is reduced by 53.14%. Moreover, the 
increase of the geometrical ratio (L/d) also has a significant 
effect on the higher eigen-frequencies than that of lower 
eigen-frequencies. For a change from 5 to 100 of the aspect 
ratio, the change increment increases of 6.40% for the first 
frequency (λ1), 22.65% for the second frequency (λ2) and 
44.30% for the third frequency (λ3). 

Table 2 illustrates the maximum normalised dynamic 
responses (Dmax) obtained from different thickness aspect 
ratios (L/h) taking into account the three modes of 
solicitations of the transient loads of a SWCNT. The 
numerical results are determined by varying the speed of the 
displacement load (α) and the non-local elasticity parameter 
(μ). We notice that the non-local parameter (μ) is related to 
Dmax. This tendency is quasi-linear to all the excitation 
modes whatever the applied displacement speeds. It is also 
observed a decreasing slope when the aspect ratio (L/h) 
increases. We also notice that the geometric ratio is 
inversely proportional to the maximum dynamic responses. 

The solicitation of a single mobile load has an additional 
effect on the dynamic flexions compared to the other 
excitation modes. For a geometrical shrink from 100 to 5, 
the average Dmax ratio increases by 58.09% for a 
solicitation of a single moving load, by 54.05% for two 
moving loads and by 53.02% for three moving loads. 

Figure 2 describes the forms of the transversal non 
dimensional displacements with respect to the normalised 
time at the mid-span of the simply supported SWCNT using 
different non-local parameters. The normalised dynamic 
deflections are plotted under several numbers of punctual 
moving loads with variable displacement speeds (α). The 
geometrical ratio is taken in the critical state with a value of 
L/d = 5 (see Table 2). We notice that the dynamic flexions 
are proportional to the non-local parameter (μ). The rate of 
deformation becomes minimum when the SWCNT is 
modelled without taking into consideration the scale effect 
(μ). It is maximum when the non-local parameter (μ) takes 
extreme values. This is due to the flexibility given to the 
vibratory system which generates instability under the form 
of dynamic responses. 

Moreover the displacement speed f the moving loads 
plays an essential role in the study of forced vibration since 
the structure become more stable when the speed (α) 
overcomes the critical speed (vp ≥ vcr). For the low crossing 
speeds, the dynamic behaviour of the SWCNT reacts in a 
remarkable flexibility which provokes disequilibrium in the 
form of the transversal dynamic responses. The solicitation 
to several moving loads induces a damping of the 
movement in the SWCNT which leads to a stabilised forced 
dynamic behaviour. 
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This stability is reflected in the free dynamic vibratory 
of the system which allows optimising the harmonic 
dynamic responses. 

Figures 3(a) and 3(b) show the variation of the 
normalised maximum dynamic responses (Dmax) at the 
mid-span of the simply supported SWCNT with respect to 
the speed parameter (α) with and without taking into 
account the non-local effect. The study is based on different 
numbers of moving loads for a critical aspect ratio (L/d = 
5). It is observed that the effect of the interatomic bonding 
which is taken into account by the small scale parameter (μ) 
leads to a more important modal responses with respect to 

those of the classical local theory which gives insignificant 
and erroneous results. We note that the maximum dynamic 
flexion increases up to a certain value of the speed (vp = 
[0.5 to 0.7].Vcr). After this critical value the increase in 
moving speed generate a quasi progressive reduction. 
Moreover, the modelisation for a single concentrated 
moving load on the SWCNT gives non acceptable results in 
term of the dynamic stability with respect to other models 
for two or three moving loads, i.e., the transversal dynamic 
responses are reduced with the increase of the number of 
moving loads. 

Table 1 Fundamental frequencies (ϖ) for simply supported SWCNT 

L/d μ (nm2) 
λ1  λ2  λ3 

Present Esen (2020)  Present Esen (2020)  Present Esen (2020) 

5 0 9.2740 9.2740  32.1665 32.1948  61.4581 61.4592 
1 8.8477 8.8476  27.2364 27.2654  44.7247 44.7847 
2 8.4752 8.4753  24.0453 24.0555  36.8831 36.8941 
3 8.1461 8.1461  21.7642 21.7842  32.1036 32.1536 
4 7.8526 7.8527  20.0293 20.0495  28.8023 28.8523 

10 0 9.7075 9.7075  37.0962 37.0999  78.1547 78.1855 
1 9.2612 9.2613  31.4105 31.4148  56.8753 56.8953 
2 8.8713 8.8714  27.7303 27.7340  46.9034 46.9220 
3 8.5269 8.5270  25.0996 25.1035  40.8254 40.8414 
4 8.2196 8.2197  23.0989 23.1025  36.6272 36.6413 

20 0 9.8281 9.8281  38.8299 38.8309  85.6619 85.6672 
1 9.3763 9.3763  32.8786 32.8796  62.3385 62.3429 
2 8.9816 8.9816  29.0263 29.0271  51.4087 51.4137 
3 8.6328 8.6328  26.2727 26.2733  44.7469 44.7490 
4 8.3218 8.3219  24.1785 24.1790  40.1454 40.1472 

100 0 9.8679 9.8679  39.4517 39.4517  88.6914 88.6915 
1 9.4143 9.4144  33.4051 33.4052  64.5431 64.5435 
2 9.0180 9.0181  29.4911 29.4911  53.2268 53.2268 
3 8.6678 8.6679  26.6934 26.6935  46.3294 46.3294 
4 8.3555 8.3556  24.5657 24.5658  41.5652 41.5655 

Table 2 Maximum dynamic deflections (Dmax) for simply supported SWCNT 

L/d μ 
(nm2) 

α = 0.1  α = 0.5  α = 1 

Single load Two loads Three 
loads  Single 

load 
Two 
loads 

Three 
loads  Single 

load 
Two 
loads 

Three 
loads 

5 0 1.2357 1.1016 0.9192  1.9066 1.6327 1.2655  1.7445 1.6106 1.4159 
1 1.8557 1.5452 1.2675  2.7219 2.2966 1.8282  3.2603 2.3192 2.0411 
2 2.4556 1.9851 1.6171  3.3150 3.1264 2.3381  3.2747 2.5771 2.7209 
3 3.0935 2.4511 1.9576  4.4546 4.0468 2.7396  4.9127 3.7786 3.2198 

 4 3.7291 2.8707 2.3489  5.7490 4.8841 3.3325  6.1055 4.4823 3.6861 
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Table 2 Maximum dynamic deflections (Dmax) for simply supported SWCNT (continued) 

L/d μ (nm2) 
α = 0.1  α = 0.5  α = 1 

Single 
load 

Two 
loads 

Three 
loads  Single 

load 
Two 
loads 

Three 
loads  Single 

load 
Two 
loads 

Three 
loads 

10 0 1.1300 1.0143 0.8489  1.7577 1.5039 1.1638  1.5993 1.4747 1.3016 
1 1.2591 1.1177 0.9305  1.9245 1.6515 1.2835  1.7771 1.6326 1.4198 
2 1.3871 1.2217 1.0135  2.0978 1.7983 1.3950  1.9197 1.7955 1.5598 
3 1.5167 1.3237 1.0925  2.2807 1.9580 1.5083  2.1331 1.9088 1.6733 
4 1.6433 1.4256 1.1774  2.4058 2.1223 1.6044  2.3181 2.0878 1.8369 

20 0 1.1039 0.9927 0.8309  1.7155 1.4686 1.1435  1.5631 1.4405 1.2843 
1 1.1339 1.0173 0.8514  1.7626 1.5082 1.1670  1.6025 1.4803 1.3051 
2 1.1641 1.0418 0.8716  1.7981 1.5399 1.1986  1.6449 1.5199 1.3344 
3 1.1948 1.0677 0.8914  1.8416 1.5799 1.2274  1.6797 1.5457 1.3747 
4 1.2266 1.0926 0.9114  1.8882 1.6198 1.2546  1.7241 1.5880 1.4060 

100 0 1.0960 0.9852 0.8256  1.7052 1.4574 1.1346  1.5493 1.4297 1.2746 
1 1.0973 0.9862 0.8264  1.7064 1.4590 1.1359  1.5514 1.4307 1.2762 
2 1.0985 0.9873 0.8273  1.7077 1.4604 1.1372  1.5531 1.4325 1.2775 
3 1.0997 0.9884 0.8281  1.7093 1.4618 1.1384  1.5554 1.4339 1.2787 
4 1.1008 0.9895 0.8288  1.7109 1.4633 1.1396  1.5573 1.4347 1.2799 

Figure 2 Time history of the mid-span dynamic deflections d(t): (a) α = 0.25, (b) α = 0.5, (c) α = 0.75, (d) α = 1, (e) α = 1.25, (f) α = 1.5 
(see online version for colours) 
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Note: μ = 0 nm2 (——), μ=1 (——), μ = 2 nm2 (——), μ = 3 nm2 (——), μ = 4 nm2 (——). 
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Figure 2 Time history of the mid-span dynamic deflections d(t): (a) α = 0.25, (b) α = 0.5, (c) α = 0.75, (d) α = 1, (e) α = 1.25, (f) α = 1.5 
(continued) (see online version for colours) 
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Note: μ = 0 nm2 (——), μ=1 (——), μ = 2 nm2 (——), μ = 3 nm2 (——), μ = 4 nm2 (——). 
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Figure 3 Variation of the maximum dynamic deflections (Dmax) with moving loads speed (α), (a) with non-local effect, (b) without  
non-local effect (see online version for colours) 

   
(a)     (b) 

 
6 Conclusions 
The study of the transient dynamic behaviour of a SWCNT 
subjected to several moving loads has been carried out 
based on Eringen’s non-local constitutive differential 
relations. The governing equations of the movement are 
deduced from the Hamilton’s principle combined with 
Galerkin’s method using Timoshenko beam theory. The 
present model is able to capture simultaneously the scale 
effect and the shear deformation effect for a SWCNT. The 
eigen-frequencies have been carried out by a numerical 
method using the modal approximation and the dynamic 
responses are computed numerically using Newmark’s 
temporal method. 

In this paper, parametric study has been conducted on 
many physical and geometrical configurations of SWCNT 
to analysis the impact of the different factors such as: the 
scale parameter, the geometric aspect ratio, the 
displacement speed and the number of the crossing loads on 
the transient dynamic behaviour of SWCNT. From this 
research the following conclusions have been put into 
evidence: 

• The effect of the interatomic bending affects the 
stiffness of the system which is directly reflected on the 
results of the dynamic behaviour of the SWCNTs 

• The high frequencies are considerably influenced by 
the variation of the geometrical aspect ratio compared 
to low frequencies 

• The aspect ratio is inversely proportional to the 
dynamic responses 

• The speed displacement of the moving loads plays an 
essential role in the analysis of forced dynamic 
behaviour 

• The critical speed has a direct impact on the modulation 
of the transient modal responses 

• The modelling by several moving loads gives better 
results in terms of dynamic stability with respect to a 
solicitation by a single concentrated moving load 

• The value of the critical speed varies depending on the 
number of transverse moving loads applied to the 
SWCNTs. 
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