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Abstract: Cast batch planning (CBP) is the bottleneck of batch planning in the
steelmaking-continuous casting-hot rolling (SM-CC-HR) section. With the
rapid development of the market-oriented demand of steel enterprises to
multiple species, small batches, and on-time delivery, the batch planning
integrated production process has dramatically increased the flexibility of the
CBP as well as the functional requirements of the time dynamic balance.
Therefore, it is of great significance to research the method of CBP to improve
production efficiency and reduce material and energy consumption. In this
paper, based on the improved surrogate absolute-value Lagrangian relaxation
(ISAVLR) framework, the heuristic method based on a multiplier iteration
strategy with controllable gradient direction combined with a local search (LS)
algorithm is proposed. The ‘zigzagging’ problem in the traditional Lagrangian
relaxation (LR) is overcome and the solution efficiency is improved while the
original problem is provided with tighter lower bounds. Finally, simulation
experiments based on real production data verify the effectiveness of the
proposed method.
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1 Introduction

A typical integrated manufacturing system for steel production consists of three main
successive stages: ironmaking, steelmaking-continuous casting, and rolling. In the
ironmaking stage, blast charge ironmaking is utilised to reduce iron from iron-containing
raw materials and convert it to molten iron in the blast charge. In the steelmaking-
continuous casting stage, the iron in the blast charge is converted into slabs matching the
specifications required by customer orders through three closely coordinated production
processes: steelmaking, refining, and continuous casting, The schematic diagram of
steelmaking-continuous casting is shown in Figure 1. In the rolling stage, it is divided
into hot rolling and cold rolling. Slabs can be made into hot-rolled strip coils through hot
rolling, and if they meet the customer’s order requirements they can be directly delivered
to the customer, if not, they will be delivered to the cold rolling stage for further
processing. Steelmaking-continuous casting plays a role in the production process of steel
manufacturing, which is an important stage in steel production and is also a bottleneck
stage (Sun et al., 2021). Steelmaking-continuous casting is divided into batch planning
and scheduling decisions (Tang et al., 2011). The cast batch planning (CBP) belongs to
the steelmaking-continuous casting batch planning. The problem of CBP is to determine
the optimal combination of charge production programs based on the charge steel grade,
size, and delivery date approximation, taking into account the utilisation rate of resource
allocation, production capacity, as well as process constraints. Therefore, under the
market demand of multiple species, small batches, and on-time delivery, the preparation
of a high-quality CBP can help steel enterprises ensure a quick response to customer
demand at the same time, reduce enterprise production costs, and improve production
efficiency.

Figure 1 Diagram of steelmaking-continuous casting (see online version for colours)
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The difficulty of the CBP problem is reflected in both modelling and optimisation. From
the perspective of mathematical modelling, the steel production process is accompanied
by high-temperature and high-pressure chemical and physical changes, accompanied by a
huge energy conversion (Xu et al., 2021), and the optimisation of the CBP needs to
comprehensively consider the customer’s needs, the rules for the implementation of the
production process and the limitations of the capacity of the machine, to satisfy the
dynamic balance of the logistics and time among the iron and steel production processes,
and then make efficient use of energy and resources, however, the actual modelling
process is difficult to comprehensively combine multiple performance indicators of the
production process.

From the optimisation aspect of the analysis, with the increase in the number of
orders, the number of charges also increases accordingly. In the process of reorganisation
of customer diversity order data from multiple varieties and small batches into large-scale
production batches of the enterprise, the difficulty of solving the model grows
exponentially with the increase in the number of production equipment and the increase
in the number of orders, resulting in difficulty in solving the problem with high quality
within the required time constraints.

Recently, problems related to CBP problem have been widely explored by researchers
using different approaches. Problem optimisation methods are mainly divided into
three categories: Heuristic (Chang et al., 2000; Tang and Wang, 2008; Yi et al., 2012;
Yang et al., 2014), intelligent algorithm (Yang et al., 2015; Tang and Luo, 2007; Xu and
Wang, 2015; Xu et al., 2016; Wang et al., 2022) and optimisation method of operations
research (Zhu et al., 2021) as shown in Table 1. However, the works of literature (Chang
et al., 2000; Tang and Wang, 2008; Yi et al., 2012; Yang et al., 2014) only consider a part
of indicators in actual production as optimisation objectives, which makes the problem
optimisation incomplete and difficult to meet the actual production demand. Although the
intelligent optimisation method (Yang et al., 2015; Tang and Luo, 2007; Xu and Wang,
2015; Xu et al., 2016; Wang et al., 2022) has been able to take into account the
mathematical model structure and the exponential growth of data in the optimisation
problem of CBP, however, given various physical attributes of orders and the complexity
of steelmaking-continuous casting production flow, it is difficult to make the knowledge
reserve of the decision-making system complete or consistent, thus unable to meet the
actual production demand (Liu et al., 2016). A mixed integer programming (MIP) model
was established by comprehensively considering various optimisation objectives in the
production process and was solved based on the augmented Lagrangian relaxation (ALR)
algorithm (Zhu et al., 2021). The standard Lagrangian relaxation (LR) convergence rate
can be improved by the quadratic term penalty violation constraint in the ALR
framework. However, the introduction of the quadratic term under the ALR framework
transforms the problem into a nonlinear one, which in turn leads to model indivisibility.
A study (Bragin et al., 2018) shows that optimisation methods in the surrogate absolute-
value Lagrangian relaxation (SAVLR) framework can linearise the model exactly with
few additional constraints. However, the error of the SAVLR function comparison to the
quadratic function increases large with the level of constraint violation and does not
capture the quadratic growth characteristics well. Based on the previous research work,
the conclusion can be obtained, the steelmaking-continuous casting CBP problem due to
its optimisation process of large scale, multiple objectives, multiple constraints, multiple
coupling, and multiple stages characteristics, the existing CBP problem-solving method is
difficult to overcome the problem of the complex process constraints, data size is huge,
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the computational complexity of the problem is high. Therefore, it is the main research
content of this paper to propose optimisation model algorithms that are more suitable for
the complexity of the problem and to improve the efficiency and quality of the solution to
be more suitable for the actual production requirements. Table 1 shows the classification
of CBP problem descriptions. Where abbreviations are defined as, integer programming
(IP), multiple travelling salesman problem (MTSP), travelling salesman problem (TSP),
generalised vehicle routing problem (GVRP), quadratic integer programming (QIP), MIP.

Table 1 Classification of CBP

Papers Model Approach

Chang et al. (2000) Ip Heuristic

Tang and Wang (2008)  IP Two-stage heuristic

Yietal. (2012) MTSP Heuristic + K-opt Neighborhood Search +
Estimation of Distribution

Yang et al. (2014) TSP Heuristic + Cross Entropy

Yang et al. (2015) GVRP Improved Dross Entropy + Reaching algorithm

Tang and Luo (2007) QIP Iterated Local Search

Xu and Wang (2015) MIP Improved Differential Evolution

Xu et al. (2016) MIP Subpopulation-based Differential Evolution

Wang et al. (2022) MIP Improved Non-dominated Sorting Genetic
Algorithms + Local Search

Zhu et al. (2021) QIP Augmented Lagrangian Relaxation Algorithm

2 Problem description

CBP is the bottleneck of batch planning in the SM-CC-HR section. In the continuous
casting (CC) process, firstly, take over the steelmaking stage of the charge loaded with
steel, and then, in the continuous casting machine on the steel casting, formed with a
certain specification and quality of the slab, and finally, transported to the downstream
production stage for rolling. Therefore, CBP is a key stage that connects the entire steel
production process. The requirements of an intermediate contract (e.g., hot slab) or a final
contract (e.g., hot strip) determine the attributes of the steel grade, specification, and
delivery date of the molten steel in the charges, which in turn determines the attributes of
the charges. CBP is the process of determining the optimal combination scheme for
charges, using charges with given attributes as input conditions, taking into account
continuous CC constraints and tundish capacity constraints, depending on the degree of
approximation of the attributes.

The objective of optimisation of CBP is considered in the following aspects. Firstly,
the attributes of each charge are not consistent, however, the CC production process
places certain restrictions on the attributes of the charges that make up the same cast, the
violation of which will result in the inability to group casts or high additional costs.
Secondly, the steel of all charges in the same cast will be injected into the tundish
(the vessel that holds the steel on the continuous casting machine) when it is grouped, and
the tundish has a certain service life, and whether or not it reaches its service life it needs
to carry out regular maintenance on its high-temperature-resistant layer, which will incur
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a high cost (Ma et al., 2015), so to save costs, the optimisation process needs to consider
not exceeding the tundish’s service life and increase the utilisation rate of the tundish as
much as possible. Finally, to increase customer satisfaction, all charges in the pre-
selection pool are scheduled for production as much as possible. In summary, the CBP is
optimised using the following performance indicators as objective functions: minimising
the penalty for differences in charge attributes (steel grade, width, and delivery date)
within the same cast, minimising the difference between the tundish lifespan and the
number of charges produced by the tundish, and minimising the penalty due to charges
not being selected, respectively. In addition, the optimisation process needs to satisfy the
following production process constraints:

1

Steel grades of adjacent charges are required to be the same or similar in each CBP.
Interlocking billets are produced in the continuous casting of charges of different
steel grades. Interlocking billets are awarded to charges with low steel grades, and
the additional cost of substituting good for bad is caused.

The charges in the same cast should have similar delivery times. The delivery time is
one of the attributes of the charge, which is determined by the delivery time of the
slab in the charge, and is the identification of urgent orders. Excessive differences in
the delivery times of the charges in the same cast will lead to early or late deliveries
of the charges in the same cast, which reduces customer satisfaction.

The charges in the same CBP shall have the same thickness. When processing
charges with different thicknesses, the continuous casting machine must be stopped
for several hours to adjust the equipment, and restarting the machine will incur
additional costs (Long et al., 2018). To avoid the additional cost of adjustments, steel
mills generally produce the same thickness of charges on consecutive days. In this
paper, it is assumed that all charges to be group-cast have the same thickness
attribute.

The charges should be arranged in a non-increasing order of width in the continuous-
casting process. In addition, the frequency and range of jumps between charges are
limited by production regulations. During the continuous casting process, the width
of the slabs in the charges is adjusted only from wide to narrow due to production
technology requirements. The width of adjacent slabs can only be adjusted once, to
one of two discrete values of 50 mm or 100 mm.

The number of charges in a tundish must not exceed the lifespan of the tundish. The
lifespan of a tundish is the maximum number of charges it can hold, and the length
of the lifespan is affected by the grade composition of the molten steel it holds.
When multiple charges are included in the CBP, multiple tundishes are used to meet
the production demand. However, due to the high cost of replacing tundishes, it is
necessary to maximise the capacity utilisation of the lifespan to reduce production
costs.

Actual production quantities meet machine capacity constraints. In the production
target, the following requirements for the next production cycle are given: the range
of the number of charges, the range of the number of refining charges, the range of
the weight of the hot roll materials in the hot rolling process, and the range of the
total weight of slabs to be processed by the downstream units. The above ranges
should be met by the charge properties in the charge batch planning.
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The mathematical model of the CBP optimisation problem is as follows, and all symbol
definitions for this model are presented as follow.

N Number of charges

i,j Job number of charges, i ={1,2,...N}.j={12,...,N}.

G, G,- Steel grades of charges i and j

W, W] Cast widths of charges i and j

D, Dj Rolling due dates of charges i and j

TL Tundish lifespan

p;.; Penalty caused by steel grade jumps under steel grade compatibility conditions of

charges i and j (‘G,. -G /.‘ <3). When the steel grade is not compatible

(6,-6,|>3), pl=oo
p_V_V Penalty caused by casting width jumps of charges i and j
ij
p.L.) Penalty caused by jumps in rolling due dates of charges i and j
ij
pr Penalty caused by the difference between the tundish lifespan of the jth tundish
4 and the total number of charges in the cast
p_US Penalty caused by the ith charge is not selected for the cast batch planning
o, Weighting coefficients. Zk @ =Lk={1,2,...,5}

[ L H ] Lower and upper limits of the number of charges required in the production
ehr>"Zehr - protocols

[ Ly, HRH] Lower qnd upper limits on the number of refining charges required in the
production protocols

[ L H ] Lower and upper limits for the weight of the hot roll materials required by the
pre>=pre I production protocols

[ L. H ] Lower and upper limits for the total mass of downstream slabs required in
A production protocols

th Refining mark of charge i
ore The weight of hot roll materials in charge {
Q/ The slab weight required by the downstream production process f* in charge i
F Total number of downstream processes
f Downstream process index, f =41,2.... F!.
p 2 b b
Decision variables
X.. A binary variable, which is equal to 1 if charge i is assigned to produce with j,
ij
otherwise 0
X A binary variable, which is equal to 1 if the charge ; selected as a charge centre

of the cast batch planning, otherwise 0
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1  Minimising penalties caused by steel grade jumps in adjacent charges within the
same cast.

z° =min§:i|Gi—Gj|-pf-x[j )

i=l j=1

2 Minimising penalties caused by casting width jumps in adjacent charges.

i=l j=1

3 Minimising penalties caused by jumps in rolling due dates in adjacent charges.

2 =min§:i|Di—Dj|-pf-x[j 3

i=l j=1

4 Minimise the difference between the tundish lifespan and the number of charges (the
charges included in the cast).

N N
zZm = minzllp? ~(TL~xjj —Zl:xijJ 4)
Jj= i=

5 Minimising penalties caused by unchecked charges.

N N
Us _ . Us
Z —mmzlpl. -{I—Z‘xijj ®)
i= j=
The objective function is weighted and constraints are added to get the following form:
min Z
with Z=¢,-Z°+¢, 2" +¢,- Z° +@,- Z" +¢,- Z% (6)

Subject to (s.t.):

N
D, <Li={1,2,...,N}. (7)
j=1
N
2<%, <TL, j={1,2,...,N}. (8)
i=1
N
ijj =M )
j=1

N
S <H, (10)
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N N
Lpre < ZZQ[IWG ’ 'xij < Hpre (12)
i=1 j=1
N N .
L,<YN0/ x,<H, feF (13)
i=1 j=1
x,€{0,1},x, e {01}, i={1,2,...,N}.j ={1,2,...,N}. (14)

Constraint (7) guarantees that each charge is assigned to at most one cast plan. Constraint
(8) tundish capacity constraint which means that the number of charges processing on
tundish cannot exceed the tundish lifespan. Constraints (9) ensure that the total number of
casts should be equal to the number of available casts in the given planning. Constraints
(10)—(13) indicate that the number of selected charges, the number of refining charges,
the weight of the hot roll materials, and the total weight of slabs processed in the
downstream production line are within the limits specified for production. Constraint (14)
indicates the range of values of the decision variable.

3 Solution methodology

3.1 Improved surrogate absolute-value Lagrangian relaxation model

The study of improved surrogate absolute-value Lagrangian relaxation (ISAVLR)
function model framework has been proposed by Liu et al. (2021), in this method, a
piecewise linear function F (x) is introduced by the convergence factor 7 to replace the
absolute value penalty function by Bragin et al. (2018). Because the quadratic
approximation difference of the (SAVLR) function cannot capture the quadratic growth
characteristics of the quadratic function well when the multiplier is far from the optimal
value and the degree of constraint violation is large, the absolute value function cannot
impose a large enough penalty in the early stage of optimisation. Where the convergence
factor 7 is used to construct an ISAVLR function, which introduces an absolute-value
penalty term through the convergence factor ». The absolute-value term penalises the
violation and thus improves the speed of convergence and the lower bound of the
conventional Lagrangian relaxation (LR). The F(x) piecewise function is as follows:

F(x)=max[0,(4x-3),(-4x-3)] (15)

The CBP problem is optimised based on the ISAVLR framework by a set of Lagrangian
multipliers {ui,i =12,...,N } relax constraint (7), and by introducing convergence factor
r and piecewise function F'(x), the above problem model can be transformed into the
following form:

(LR)Z 51z (u;) = min(Z + B) (16)

B=B +B, (17)

B = iu,. -(ix[j —IJ (18)
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=1 j=

B, ZF-iF(ixij —lj (19)
s.t(8)~(14). i={L2,...,N}.; ={12,...,N}.

N N N - N
zz ALY '[TL'X‘/}_ZIXUJ

i
i=1 j=I Jj=1

N N
Z[SAVLR (uz) =min =y +¢; ZP:US '[l_zxij} (20)
i=l j=1
N M N M
+2u,. (in. —1J+r-ZF{inj —lj
=1 i=1 =1

]
i= j=1 j

st (8)-(14). i={1,2,...,N}.j={1,2,...,N}.

Let P, =¢,|G, =G| pj +o,|W,~W|-p] +,-|D,~D,|-p, formula (18) can be

ij

expressed as (20).

3.2 Dual problem

Since constraint (7) is relaxed, the optimal solution of the ISAVLR problem is not
necessarily the optimal solution of the original problem. To get closer to the optimal
solution of the original problem, the solution of the relaxation problem is replaced by the
dual solution of the dual problem. It can be expressed as (21):

(LD)ZIgAVLR (”i ) =max minZ, ;. (“;) 2D

st (8)(14). i={1,2,...N}.j={L2,...N}.
Let P, =P, — p;" —¢,-p;°, formula (21) can be expressed as (22):

(22)

ZLDS'AVLR (ul) = maxmin

st (8)-(14). i={1,2,...,N}.j={1,2,...,N}.

To solve the optimisation model of CBP more efficiently, formula (22) was transformed
into a form containing a subproblem. Each subproblem represents an optimal value of
CBP with charge j as the clustering centre for the optimal solution. The conversion form
is as formula (23).
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N N N
Z e (1) = max min{Zvj (x,.j.)-xjj + @, ZplUS —Zu[} (23)
i=1 i=1

J=1

st (8)-(14). i={1,2,...,N}.j={1,2,....N}.

3.3 Dynamic programming to solve subproblems

Based on constraints (9) and x,e€{0,1},j={L2,...,N}. Formula (23) can be

decomposed into M subproblems with a single cast as the optimal value for solving, and
each cast is based on the charge ;j as the clustering centre and the form of subproblems

is as follows:
¢, TL-p}' +i(P,, +“i)'xzf
. i=1
+r-Zmax[0,(4xi/. —7),(—4)@7 +1)J
i=1

j={L2,...,N}. 24)

(LD/)Vj(xff’y):mm

B

s.t. (8), (10)~(14). i={1,2,...,N}.

According to the linearisation method on page 150 of Boyd and Vandenberghe
(2004), the auxiliary target variable y is introduced to linearise the function

le max[o,(4xij - 7),(—4xl.j + 1)}, j=L2,...N. (y is the least upper bound of piecework

linear function), and the subproblem is transformed into:

(LDj.)vj (x,.j,y) =min{(p4 -TL-p}* +i(PU +ul.)-xy. +r-y},

Jj={12,...,N}. (25)

s.t. (8), (10)(14)i ={1,2,...,N}. and:

0<y (26)
4x,-7<y,i={1,2,...,N}. (27)
—4x, +1< y,i={1,2,...,N}. (28)

pr,TL and @, are constants in formula (25), and the decision variable x;, the variable
» and the objective function v; are the unknowns to be solved. The model of LD; is to
satisfy the objective function min{vj (x,.j, y)} and all of its constraints: (8), (10)—(14),
(26)—(28), where constraint (8) is the machine capability constraint. Therefore the LD,
can be abstracted to be solved as a 0-1 knapsack problem. And solve the problem based
on a dynamic programming algorithm.
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N charges are combined into M casts, and the tundish lifespan is 7L . The charges
combined into each cast will result in penalties due to differences in physical properties
(steel grade, width, delivery time, etc.). Therefore, the objective optimisation decision
can be expressed as, under the premise of not exceeding the lifespan of tundish, the
decision to assign which charges to cast will minimise the penalty brought by the
different physical properties of these charges. However, different from the traditional
backward dynamic programming algorithm, there is an additional penalty term -y in
formula (25), where ) is a function based on the value of the variable x;;, so y can be
used as a coefficient and 7 as a penalty term in the objective function. According to
constraints (8), (26)-(28) it follows that {y =0| when x, =1}, and {y =1| when x, =0} .

Based on backward dynamic programming (Ibaraki, 1987) the service lifespan of a

tundish is divided into (7L, .7, ..., 7L ....TL° |T —-TL, =..=TL! -
1L, =...=TL., —TL) =&}, (TL., =TL) capacity stages. 7 (i,7L!,) is the ideal

target penalty generated in the optimisation process when the capacity stage number is
TL! = for the first i charges. g [i] is the service lifespan of tundish consumed by charge
i. PU is the penalty caused by assigning the i charge for production in the cast with j
as the clustering center. PU :—P,.j',. T denotes the set of charge attribute difference
penalties for clustering into a cast. 7° denotes the set of charge attribute difference
penalties that are not clustered into a cast. R denotes the set of additional penalties
associated with charges that are not clustered into a cast. @ and a’ denote the element
position indexes, for example, in the set 7', 7, denotes the optimal objective value of the
ath position with j as the clustering center. f denotes the state parameter, which is
used during iteration to update convergence factor r. The recursive equations based on

backward dynamic programming and the optimisation order are given in Table 2.

Table 2 Backward dynamic programming optimisation rules (see online version for colours)
e Tundish lifespan
No.  Weight Q“:r':z:;i“
P TLium TLGum LS
" Objective
—_— — —
L g 2 t - - = waluo
T i Recursion relation: ‘: T
! ]
! ]
1 =f. d
L gli] P[; T i E(i TId ) = max t(z B 1,TL5um). i T
I 3 sum = d . "
' t(i — 1,1 — glil) + P}
L N S
N g[N] Py; T — — — T

Based on the above description, this paper designs a subproblem optimisation method
based on the inner heuristic method.

In the inner heuristic algorithm, the subproblem feasible solution is solved and
optimised. Based on equation (25) it is known that the subproblem objective function is
composed of three parts. The first part is the constant term {(/)4 -TL- pr} . The second
part is the penalty due to the attribute differences during the charge clustering process in
each cast, to facilitate the expression in the algorithm, let the part be expressed as
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{tﬁ = ZZI(PU +ui)-xif} . The third part is the additional penalty {r-y} for unselected
charges. The inner heuristic first abstracts the second part of the subproblem as a
knapsack problem, for which the dynamic programming method is used to solve, and
based on the results obtained it can compute the sets T', 7° and R . And arrange the

elements of the three sets in increasing order. T = {taj,t(m)j,...,t(nfl)j,t”j}, it denotes the

set of charge attribute difference penalties for clustering into a cast.

T ':{ta,j,t( ) _,...,t( y sy ¢ 1t denotes the set of charge attribute difference penalties
a J n— J

that are not clustered into a cast. R = r'y(xa,j ),r~y(x(a+l)‘/_ ,...,r~y(x(”71)‘f ),r~y(xn,j) ,
it denotes the set of additional penalties associated with charges that are not clustered into
a cast. Finally, if the sum of the charge attribute difference penalty clustered into the cast
and the additional penalty not clustered into the cast is less than the charge attribute
difference penalty not clustered into the cast, the current solution is optimal, otherwise, it

is adjusted. The pseudo-code of the inner heuristic algorithm is shown in Figure 2.

Figure 2 Pseudo-code of the inner heuristic algorithm

Inner heuristic
Initialization:
1.Set i=1, j=1, a=1, a =1,r=10, g =11,TL,, =1,T =null, T' =null, R = null
2. Total number of charges N
3. Service lifespan of a tundish TL2,,,
For j=1to N
/* Solve the solution of subproblem */
For TL.,, = 1to TL?,,,
Fori=1to N
Obtain the value of the objective value function ¢;;
Obtain the decision variable x;;
End For
End For
/* Optimization subproblem feasible solution */
Update the following set according to {t;; } and {x;; }
T = {tyj, ta+1)js -+ Em—1)j. tnj } /* charge clustering penalty increasing order set for

grouping into cast */
T = {ta'jrtsy o b1y j tn'j} /* charge clustering penalty incremental order set for
ungrouped cast */
R={ry(xy;)m ¥(x@s1y;) -7 Y(Xu1y; )7 y(xy7;)}  /* Additional penalty
increment set for charges not grouped into cast */
While ZaEn ta/' tre Za’En' y(xa'/') = Za'En' ta'/' Do
tnj < td';
roe-
ﬁ r
Update T, T , R, {tl]} . {XU}
End While
vj(xijry) < @4 TL- pjTL + Yaen lgjtT: Yden’ y(xa'j)
End For
Output {v;}, {x;; }




Research on steelmaking-continuous casting cast batch planning 49

In the process of solving the subproblem of CBP based on backward dynamic

programming, the tundish life of the cast is divided into TL” ~stages. In the optimisation

process of each stage, it is necessary to judge the number of charges from 1 to N, (N, is

the total number of charges when the clustering center charge j is not included. Whether

N, e N) is combined into CBP with charge j as the clustering center to meet the

optimal value under the constraint of not exceedinf tundish life. So, it is worth noting
(

that the complexity of the optimisation process is O|( N, )2)

3.4 Construction of feasible solutions to the original problem

The Lagrangian dual function Zj,,,(u,) is a non-differentiable, piecewise linear
concave function. At the same time, this function has a large scale in the process of CBP
optimisation, so it is difficult to optimise Z,,,, (1) function efficiently (Sun et al.,
2022a). Therefore, this paper develops a heuristic optimisation method and proposes a
controlled direction of the gradient iterative strategy based on the ISAVLR framework,
which is combined with the local search (LS) (Lorena and Senne, 2003) algorithm in the
optimisation process. The controlled subgradient iteration direction (Bragin et al., 2014;
Sun et al., 2022b) can effectively avoid the problem of zigzagging caused by the obtuse
angle of the adjacent two iteration directions during the iteration process of the
Lagrangian relaxation subproblem, which greatly improves the solution speed. The LS
algorithm can further select the appropriate charge as the clustering center to ensure the
optimal objective function of the subproblem. Figure 3 shows the optimisation sequence
diagram.

The outer heuristic algorithm is described in three stages. In the outer heuristic-1, the
approximate optimised solution and the best dual value are obtained by iterating
the Lagrangian multipliers. The relationship between the objective function values
of the original problem, the dual problem, and the relaxation problem obtained based on
the ISAVLR framework is Z > Zy0,,,, (4,) > Z,5,, (,) . The core idea of the proposed
method is to keep converging to the original problem objective by iterating the best dual
values, and finally, the original problem objective function value is approximated by the
best dual value when the stopping condition is satisfied. An iterative strategy with a
controlled gradient direction is used for Lagrangian multiplier updating. The Lagrangian
multipliers obtained from each iteration are fed into the inner heuristic, which solves the
objective function and decision variables of the subproblem based on the known
multipliers and feeds them into the outer heuristic to compute the best dual values. The
stopping conditions are as follows.

Jul™" —u™ |l &, (29)

i

i =X |l< g, (30)

i

The iteration can be stopped when one of the conditions of equation (29) or (30) is
satisfied. The pseudo-code of the outer heuristic-I is as Figure 4.



50

C. Liand L. Sun

Figure 3 Optimisation sequence diagram (see online version for colours)

In outer heuristic-II, the feasible solutions that violate the constraints being relaxed are
adjusted. To reduce the difficulty of solving the model, the charge allocation constraint
(7) is relaxed during the optimisation process of the ISAVLR framework and the original
problem model is transformed into a CBP model with a separable structure. Therefore,
the feasible solution output by outer heuristic-I may not satisfy the constraint (7). The
outer heuristic-II is mainly used to adjust the feasible solutions that violate the constraints
(7); the feasible solutions of the outer heuristic-I output are further optimised. The

Initial solution

Cherges in violation of constraint

Optimal charge center

!

The solution that violates the constraint
is adjusted

Cast 1 Cast 2

— The charge center is adjusted to optimum —

Cast1 Cast2

pseudo-code of the outer heuristic-II algorithm is shown in Figure 5.
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Figure 4 Pseudo-code of the outer heuristic-I algorithm

Outer heuristic-1
Initialization:
1. Set m=1, xO=0, u®=0, 5 = 1.6,y =1.2,6§ = 0.6
2. Total number of charges N
While the stop criterion is not satisfied Do
/* Whether the surrogate optimality condition is satisfied */
I ZR 10 (™, xM) < ZB 4y 1r (W™, xm=D) Do
Save x (™)
Else
x M) xm=1)
End If
Fori=1to N

h(m)(u(m)) « Z}V:l xl.(].m) — 1 /* Calculate the subgradient */

J(m m- Ta m m-=
Em)  max {0' —B <d( (") 4 l))>}

am (™) aem (um)

pel-——3
a1 -1
ymP

S(m—1>.g(m)(ul§m—1))T.g(m)(u§m—1))
() gem (um)
u, ™D« max{0,u,™ + s . gm (ui(m))} /* Updating the multipliers */
End For
pMt { (um+D) L (D) {xi(]m+1)} /* Inner heuristic for solving subproblems */
um+D) {ui(m-i-l)}
Calculate ZR 4,z (u(m), x(m)) according to Eq. (23)
mem+1
End While
Output x™) 3™

sm)  g(m)

/* Calculate step size */

Figure 5 Pscudo-code of the outer heuristic-1I algorithm

Outer heuristic-11

Initialization:
1. Total number of charges N
For i=1to N
While 31, x™ > 1 Do
ti; «min_1, nty
(m)
X"
(1) # 7} < (0}
Update x(™) « {xi(/.m)}
End While
End For
Output x™

-1
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In outer heuristic-III, a local search (LS) algorithm is used to adjust the clustering centers
for each CBP to further optimise the objective function value. The feasible solution for
the outer heuristic-1I output presents the charge numbers in the CBP, and the selection of
which charge to use as the clustering center still needs to be further optimised, as the
value of the objective function is directly affected by the selection of the clustering
center. The proposed method is implemented by enumerating the charges in each CBP,
the function value of each charge as a clustering center is calculated, and finally, the
charge that can achieve the smallest function value is selected as the most clustering
center in the cast. The symbols of outer heuristic-III are defined as well as the flow as
follows. The number of casts is M . The total number of charges in cast j is
X, X, 1j=12,...,M}. The index of the clustering center in cast j is c,,{c, € Xj};
The other charges in cast j are indexed by i, {i eX, i+ cj} . The value of the objective

function solved with ¢; as the clustering center in cast j is z, = Z fkc/ . The pseudo-

keX;
code of the outer heuristic-III algorithm is shown in Figure 6. The flowchart of the

overall algorithm is shown in Figure 7.

Figure 6 Pseudo-code of the outer heuristic-III algorithm

Outer heuristic-111
Initialization:
1. Total number of casts M
2. The set of charge quantities contained in all casts {X; |j = 1,2, ..., M}
Forj=1to M
Fori=1toX;
Zi = Zkex, Ehi
If z; < z Do
%
G < i
Else
5 <
G<G
End If
End For
End For
Update x « {x;;}
Solving for Z2 4y .r (1, x) according to Eq. (23)
Output Zjtuyip, X

—z

4 Computational results

To test the optimisation performance of CBP based on the ISAVLR, and to test the
characteristics of its solutions, a simulation experiment is carried out on a random data
example of a large steel mill.
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Figure 7 Flowchart of the overall algorithm (see online version for colours)

Outer heuristic-I Inner heuristic
| Selection of gradient iteration direction I Obtain the solution to the subproblem based
I on dynamic programming
!
| Selection of gradient iteration step size - N
I | Compute the increasing order set T, T, R |
| Undate L . ltinli ] Stop condition ]
pdafe Lagranglan muitiplers | not satisfied | Further optimization of the solution |
Outer heuristic-IT Outer heuristic-IIT
Whether the solution violates the “charge Enumerate the clustering penalties for all
allocation constraint" Eq.(7) charge as centers
Specify the minimum clustering penalty cast Select the charge with the lsmallest penalty
for violated charge value as the clustering center
| Update the solution I Update the solution set and the optimal dual
values

4.1 Parameter setting

To analyse the computational performance of the algorithm proposed in this paper in
solving the optimisation process of CBP, this paper is based on the LR, SAVLR, and
ISAVLR. The proposed algorithms are evaluated for the following performance indexes:
duality gaps (%), running times, and iteration numbers. Where the duality gaps

uB-LE) x100% , UB is the upper bound calculated based on the

LB

calculation method is G =
feasible solution in the original problem Zg,,,, (1), LB is the lower bound calculated
based on the approximate feasible solution in the dual problem Z,,,. (u,). The

parameters are as follows: g =le—-3, &g, =1le—-5/=1.02,y=1.05,0=0.25. The
specific values of penalty parameters are given in Table 3.

Table 3 The value of parameters
G w D TL
TL Pi Pi P; P " o v
20 15 12 20 15 100 0.2 10

The above algorithm implementation process is in the same simulation environment
optimisation effect, several algorithms are implemented in Matlab R2022b and installed
Intel Core 15-1135 2.4GHz CPU, Windows 11 operating system (64 bit) of the PC
running.
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4.2 Problem instances

In this paper, 20 groups of case data are used for simulation, and each 4 groups of data is
a batch. In each batch, the number of charges of each group of data is the same, which is
{100,150,200,250,300}. To test under different conditions of LR, SAVLR, and ISAVLR
algorithm in duality gaps, running times, and iteration numbers performance indicators,
each group of charge steel grade in data quantisation parameters by randomly selected
from the set {5,6,7,8,9,10,11,12,13,14,15}. Table 4 shows the optimisation results and
average values of duality gaps, running times, and iteration numbers based on three
different algorithms when the number of different charges and the number of the same
charges correspond to different randomly selected steel grades.

Table 4 Computational results
Number Duality gaps (%) Running times (s) Iteration numbers
of Steel

No. charges &I ade LR SAVLR ISAVLR LR SAVLR ISAVLR LR SAVLR ISAVLR
1 100 5 171 146 1.17 13.95 10.64 8.35 86.00 73.00 68.00
2 100 6 213 1.65 1.42 1647 1193 10.17 67.00 61.00 52.00
3 100 8 260 212 1.73 21.73 1598 12.04 75.00 58.00 49.00
4 100 10 2.84 230 1.96 40.69 24.73 1421 63.00 44.00 24.00
Average 232 1.88 1.57 2321 1583 11.19 7275 59.00 48.25
5 150 6 224 203 1.82 5635 40.86 26.73 118.00 106.00 86.00
6 150 5 194 1.76 1.73  43.81 27.81 24.59 142.00 115.00 83.00
7 150 4 168 1.52 1.23  49.53 28.53 22.08 174.00 133.00 113.00
8 150 9 268 194 1.67 66.79 49.48 30.32 169.00 127.00 107.00
Average 2.14 1.81 1.61 54.12 36.67 2593 150.75 120.25 97.25
9 200 10 324 253 2.14 8253 547 4039 157.00 114.00 94.00
10 200 12 341 3.06 256 7142 5192 41.27 143.00 111.00 91.00
11 200 13 347 3.09 2.14  78.13 58.47 43.04 176.00 132.00 109.00
12 200 4 208 1.76 1.56  65.52 4536 3293 229.00 183.00 153.00
Average 3.05 2.61 210 74.40 52.61 3941 176.25 135.00 111.75
13 250 6 250 194 1.72  84.76 64.29 552 208.00 167.00 137.00
14 250 7 264 223 201 94.89 69.75 59.38 201.00 159.00 129.00
15 250 8 3.05 245 227 105.87 7534 6342 195.00 161.00 131.00
16 250 10 3.78 33 296 11946 76.86 65.74 194.00 159.00 129.00
Average 299 248 224 101.25 71.56 60.94 199.50 161.50 131.52
17 300 12 386 3.32 2.67 144.63 114.58 83.03 267.00 206.00 174.00
18 300 15 436 3.51 3.24 17647 126.29 93.46 202.00 148.00 116.00
19 300 14 432 3.66 286 128.52 99.31 87.25 238.00 182.00 152.00
20 300 13 393 283 2.50 126.21 96.74 84.86 245.00 208.00 159.00

Average 412 3.33 2.82  143.96 109.23 87.15 238.00 186.00 150.25
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As shown in Figures 8-10, it can be seen that with the increase in the number of charges,
the duality gaps, running times, and iteration numbers all show an overall upward trend
under the action of the three algorithms. Meanwhile, ISAVLR is superior to SAVLR and
LR in duality gaps, running times, and iteration numbers.

1

The average value of duality gaps in {100,150,200,250,300} group is ISAVLR:
{1.57%, 1.61%, 2.1%, 2.24%, 2.82%}, SAVLR: {1.88%, 1.81%, 2.61%, 2.48%,
3.33%}, LR: {2.32%, 2.14%, 3.05%, 2.99%, 4.12%}, based on the average data, it
can be concluded that the duality gaps generated by ISAVLR in the optimisation
process is the smallest, indicating that the optimisation quality of this algorithm is
the best among the three algorithms.

The average running time in {100,150,200,250,300} group is ISAVLR: {11.19,
25.93,39.41, 60.94, 87.15}, SAVLR: {15.83, 36.67, 52.61, 71.56, 109.23}, LR:
{23.21, 54.12, 74.40, 101.25, 143.96}.

The average number of iterations in {100,150,200,250,300} group is ISAVLR:
{48.25,97.25,111.75, 131.52, 150.25}, SAVLR: {59.00, 120.25, 135.00, 161.50,
186.00}, LR: {72.75, 150.75, 176.25, 199.50, 238.00}.

Figure 8 Comparison of duality gaps (%) (see online version for colours)
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Figure 9 Comparison of running times (see online version for colours)
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Figure 10 Comparison of iteration numbers (see online version for colours)
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Based on the results in (2) and (3), it can be seen that among the three algorithms,

ISAVLR is the smallest in terms of the running time and iteration numbers, indicating
that the optimisation efficiency of ISAVLR is the best among the three algorithms.

5 Conclusion

In this paper, a heuristic optimisation method proposes a controlled direction of the
gradient iterative strategy based on the ISAVLR framework for the optimisation problem
of CBP. On this basis, the constraint condition “each charge can only be combined into
one cast” is relaxed, and a piecewise linear function is introduced to accelerate the
convergence rate. The objective function is decomposed into subproblems with a single
cast as the optimisation unit, and the backward dynamic programming algorithm is used
to solve the subproblems. Finally, the experimental results show that the proposed
optimisation method can guarantee optimisation efficiency as well as optimisation
quality.
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