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Abstract: Cast batch planning (CBP) is the bottleneck of batch planning in the 
steelmaking-continuous casting-hot rolling (SM-CC-HR) section. With the 
rapid development of the market-oriented demand of steel enterprises to 
multiple species, small batches, and on-time delivery, the batch planning 
integrated production process has dramatically increased the flexibility of the 
CBP as well as the functional requirements of the time dynamic balance. 
Therefore, it is of great significance to research the method of CBP to improve 
production efficiency and reduce material and energy consumption. In this 
paper, based on the improved surrogate absolute-value Lagrangian relaxation 
(ISAVLR) framework, the heuristic method based on a multiplier iteration 
strategy with controllable gradient direction combined with a local search (LS) 
algorithm is proposed. The ‘zigzagging’ problem in the traditional Lagrangian 
relaxation (LR) is overcome and the solution efficiency is improved while the 
original problem is provided with tighter lower bounds. Finally, simulation 
experiments based on real production data verify the effectiveness of the 
proposed method. 

Keywords: steelmaking-continuous casting; ISAVLR; improved surrogate 
absolute-value Lagrangian relaxation; CBP; cast batch planning; heuristic. 
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1 Introduction 

A typical integrated manufacturing system for steel production consists of three main 
successive stages: ironmaking, steelmaking-continuous casting, and rolling. In the 
ironmaking stage, blast charge ironmaking is utilised to reduce iron from iron-containing 
raw materials and convert it to molten iron in the blast charge. In the steelmaking-
continuous casting stage, the iron in the blast charge is converted into slabs matching the 
specifications required by customer orders through three closely coordinated production 
processes: steelmaking, refining, and continuous casting, The schematic diagram of 
steelmaking-continuous casting is shown in Figure 1. In the rolling stage, it is divided 
into hot rolling and cold rolling. Slabs can be made into hot-rolled strip coils through hot 
rolling, and if they meet the customer’s order requirements they can be directly delivered 
to the customer, if not, they will be delivered to the cold rolling stage for further 
processing. Steelmaking-continuous casting plays a role in the production process of steel 
manufacturing, which is an important stage in steel production and is also a bottleneck 
stage (Sun et al., 2021). Steelmaking-continuous casting is divided into batch planning 
and scheduling decisions (Tang et al., 2011). The cast batch planning (CBP) belongs to 
the steelmaking-continuous casting batch planning. The problem of CBP is to determine 
the optimal combination of charge production programs based on the charge steel grade, 
size, and delivery date approximation, taking into account the utilisation rate of resource 
allocation, production capacity, as well as process constraints. Therefore, under the 
market demand of multiple species, small batches, and on-time delivery, the preparation 
of a high-quality CBP can help steel enterprises ensure a quick response to customer 
demand at the same time, reduce enterprise production costs, and improve production 
efficiency. 

Figure 1 Diagram of steelmaking-continuous casting (see online version for colours) 
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The difficulty of the CBP problem is reflected in both modelling and optimisation. From 
the perspective of mathematical modelling, the steel production process is accompanied 
by high-temperature and high-pressure chemical and physical changes, accompanied by a  
huge energy conversion (Xu et al., 2021), and the optimisation of the CBP needs to 
comprehensively consider the customer’s needs, the rules for the implementation of the 
production process and the limitations of the capacity of the machine, to satisfy the 
dynamic balance of the logistics and time among the iron and steel production processes, 
and then make efficient use of energy and resources, however, the actual modelling 
process is difficult to comprehensively combine multiple performance indicators of the 
production process. 

From the optimisation aspect of the analysis, with the increase in the number of 
orders, the number of charges also increases accordingly. In the process of reorganisation 
of customer diversity order data from multiple varieties and small batches into large-scale 
production batches of the enterprise, the difficulty of solving the model grows 
exponentially with the increase in the number of production equipment and the increase 
in the number of orders, resulting in difficulty in solving the problem with high quality 
within the required time constraints. 

Recently, problems related to CBP problem have been widely explored by researchers 
using different approaches. Problem optimisation methods are mainly divided into  
three categories: Heuristic (Chang et al., 2000; Tang and Wang, 2008; Yi et al., 2012; 
Yang et al., 2014), intelligent algorithm (Yang et al., 2015; Tang and Luo, 2007; Xu and 
Wang, 2015; Xu et al., 2016; Wang et al., 2022) and optimisation method of operations 
research (Zhu et al., 2021) as shown in Table 1. However, the works of literature (Chang 
et al., 2000; Tang and Wang, 2008; Yi et al., 2012; Yang et al., 2014) only consider a part 
of indicators in actual production as optimisation objectives, which makes the problem 
optimisation incomplete and difficult to meet the actual production demand. Although the 
intelligent optimisation method (Yang et al., 2015; Tang and Luo, 2007; Xu and Wang, 
2015; Xu et al., 2016; Wang et al., 2022) has been able to take into account the 
mathematical model structure and the exponential growth of data in the optimisation 
problem of CBP, however, given various physical attributes of orders and the complexity 
of steelmaking-continuous casting production flow, it is difficult to make the knowledge 
reserve of the decision-making system complete or consistent, thus unable to meet the 
actual production demand (Liu et al., 2016). A mixed integer programming (MIP) model 
was established by comprehensively considering various optimisation objectives in the 
production process and was solved based on the augmented Lagrangian relaxation (ALR) 
algorithm (Zhu et al., 2021). The standard Lagrangian relaxation (LR) convergence rate 
can be improved by the quadratic term penalty violation constraint in the ALR 
framework. However, the introduction of the quadratic term under the ALR framework 
transforms the problem into a nonlinear one, which in turn leads to model indivisibility. 
A study (Bragin et al., 2018) shows that optimisation methods in the surrogate absolute-
value Lagrangian relaxation (SAVLR) framework can linearise the model exactly with 
few additional constraints. However, the error of the SAVLR function comparison to the 
quadratic function increases large with the level of constraint violation and does not 
capture the quadratic growth characteristics well. Based on the previous research work, 
the conclusion can be obtained, the steelmaking-continuous casting CBP problem due to 
its optimisation process of large scale, multiple objectives, multiple constraints, multiple 
coupling, and multiple stages characteristics, the existing CBP problem-solving method is 
difficult to overcome the problem of the complex process constraints, data size is huge, 
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the computational complexity of the problem is high. Therefore, it is the main research 
content of this paper to propose optimisation model algorithms that are more suitable for 
the complexity of the problem and to improve the efficiency and quality of the solution to 
be more suitable for the actual production requirements. Table 1 shows the classification 
of CBP problem descriptions. Where abbreviations are defined as, integer programming 
(IP), multiple travelling salesman problem (MTSP), travelling salesman problem (TSP), 
generalised vehicle routing problem (GVRP), quadratic integer programming (QIP), MIP. 

Table 1 Classification of CBP 

Papers Model Approach 
Chang et al. (2000) IP Heuristic 
Tang and Wang (2008) IP Two-stage heuristic 
Yi et al. (2012) MTSP Heuristic + K-opt Neighborhood Search + 

Estimation of Distribution 
Yang et al. (2014) TSP Heuristic + Cross Entropy 
Yang et al. (2015) GVRP Improved Dross Entropy + Reaching algorithm 
Tang and Luo (2007) QIP Iterated Local Search 
Xu and Wang (2015) MIP Improved Differential Evolution 
Xu et al. (2016) MIP Subpopulation-based Differential Evolution 
Wang et al. (2022) MIP Improved Non-dominated Sorting Genetic 

Algorithms + Local Search 
Zhu et al. (2021) QIP Augmented Lagrangian Relaxation Algorithm 

2 Problem description 

CBP is the bottleneck of batch planning in the SM-CC-HR section. In the continuous 
casting (CC) process, firstly, take over the steelmaking stage of the charge loaded with 
steel, and then, in the continuous casting machine on the steel casting, formed with a 
certain specification and quality of the slab, and finally, transported to the downstream 
production stage for rolling. Therefore, CBP is a key stage that connects the entire steel 
production process. The requirements of an intermediate contract (e.g., hot slab) or a final 
contract (e.g., hot strip) determine the attributes of the steel grade, specification, and 
delivery date of the molten steel in the charges, which in turn determines the attributes of 
the charges. CBP is the process of determining the optimal combination scheme for 
charges, using charges with given attributes as input conditions, taking into account 
continuous CC constraints and tundish capacity constraints, depending on the degree of 
approximation of the attributes. 

The objective of optimisation of CBP is considered in the following aspects. Firstly, 
the attributes of each charge are not consistent, however, the CC production process 
places certain restrictions on the attributes of the charges that make up the same cast, the 
violation of which will result in the inability to group casts or high additional costs. 
Secondly, the steel of all charges in the same cast will be injected into the tundish  
(the vessel that holds the steel on the continuous casting machine) when it is grouped, and 
the tundish has a certain service life, and whether or not it reaches its service life it needs 
to carry out regular maintenance on its high-temperature-resistant layer, which will incur 
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a high cost (Ma et al., 2015), so to save costs, the optimisation process needs to consider 
not exceeding the tundish’s service life and increase the utilisation rate of the tundish as 
much as possible. Finally, to increase customer satisfaction, all charges in the pre-
selection pool are scheduled for production as much as possible. In summary, the CBP is 
optimised using the following performance indicators as objective functions: minimising 
the penalty for differences in charge attributes (steel grade, width, and delivery date) 
within the same cast, minimising the difference between the tundish lifespan and the 
number of charges produced by the tundish, and minimising the penalty due to charges 
not being selected, respectively. In addition, the optimisation process needs to satisfy the 
following production process constraints: 

1 Steel grades of adjacent charges are required to be the same or similar in each CBP. 
Interlocking billets are produced in the continuous casting of charges of different 
steel grades. Interlocking billets are awarded to charges with low steel grades, and 
the additional cost of substituting good for bad is caused. 

2 The charges in the same cast should have similar delivery times. The delivery time is 
one of the attributes of the charge, which is determined by the delivery time of the 
slab in the charge, and is the identification of urgent orders. Excessive differences in 
the delivery times of the charges in the same cast will lead to early or late deliveries 
of the charges in the same cast, which reduces customer satisfaction. 

3 The charges in the same CBP shall have the same thickness. When processing 
charges with different thicknesses, the continuous casting machine must be stopped 
for several hours to adjust the equipment, and restarting the machine will incur 
additional costs (Long et al., 2018). To avoid the additional cost of adjustments, steel 
mills generally produce the same thickness of charges on consecutive days. In this 
paper, it is assumed that all charges to be group-cast have the same thickness 
attribute. 

4 The charges should be arranged in a non-increasing order of width in the continuous-
casting process. In addition, the frequency and range of jumps between charges are 
limited by production regulations. During the continuous casting process, the width 
of the slabs in the charges is adjusted only from wide to narrow due to production 
technology requirements. The width of adjacent slabs can only be adjusted once, to 
one of two discrete values of 50 mm or 100 mm. 

5 The number of charges in a tundish must not exceed the lifespan of the tundish. The 
lifespan of a tundish is the maximum number of charges it can hold, and the length 
of the lifespan is affected by the grade composition of the molten steel it holds. 
When multiple charges are included in the CBP, multiple tundishes are used to meet 
the production demand. However, due to the high cost of replacing tundishes, it is 
necessary to maximise the capacity utilisation of the lifespan to reduce production 
costs. 

6 Actual production quantities meet machine capacity constraints. In the production 
target, the following requirements for the next production cycle are given: the range 
of the number of charges, the range of the number of refining charges, the range of 
the weight of the hot roll materials in the hot rolling process, and the range of the 
total weight of slabs to be processed by the downstream units. The above ranges 
should be met by the charge properties in the charge batch planning. 
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The mathematical model of the CBP optimisation problem is as follows, and all symbol 
definitions for this model are presented as follow. 

N  Number of charges 

,i j  Job number of charges, { } { }1,2, . 1,2, , .i N j N= … = …   

iG , jG  Steel grades of charges i  and j  

,i jW W  Cast widths of charges i  and j  

,i jD D  Rolling due dates of charges i  and j  

TL  Tundish lifespan 
G
ijp  Penalty caused by steel grade jumps under steel grade compatibility conditions of 

charges i  and j  ( 3i jG G− ≤ ). When the steel grade is not compatible 

( 3i jG G− > ), G
ijp = ∞  

W
ijp  Penalty caused by casting width jumps of charges i  and j  

D
ijp  Penalty caused by jumps in rolling due dates of charges i  and j  

TL
jp  Penalty caused by the difference between the tundish lifespan of the jth tundish 

and the total number of charges in the cast 
US
ip  Penalty caused by the ith charge is not selected for the cast batch planning 

kϕ  Weighting coefficients. { }1, 1,2, ,5kk
kϕ = = …∑  

[ ],chr chrL H  Lower and upper limits of the number of charges required in the production 
protocols 

[ ],RH RHL H  Lower and upper limits on the number of refining charges required in the 
production protocols 

,pre preL H⎡ ⎤⎣ ⎦  Lower and upper limits for the weight of the hot roll materials required by the 
production protocols 

,f fL H⎡ ⎤⎣ ⎦  Lower and upper limits for the total mass of downstream slabs required in 
production protocols 

rh
iQ  Refining mark of charge i  

pre
iQ  The weight of hot roll materials in charge i  

f
iQ  The slab weight required by the downstream production process f  in charge i  

F  Total number of downstream processes 

f  Downstream process index, { }1, 2, , .f F= …  

Decision variables 

ijx  A binary variable, which is equal to 1 if charge i  is assigned to produce with j , 
otherwise 0 

jjx  A binary variable, which is equal to 1 if the charge j  selected as a charge centre 
of the cast batch planning, otherwise 0 
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1 Minimising penalties caused by steel grade jumps in adjacent charges within the 
same cast. 

1 1

N N
G G

i j ij ij
i j

Z min G G p x
= =

= − ⋅ ⋅∑∑  (1) 

2 Minimising penalties caused by casting width jumps in adjacent charges. 

1 1

N N
W W

i j ij ij
i j

Z min W W p x
= =

= − ⋅ ⋅∑∑  (2) 

3 Minimising penalties caused by jumps in rolling due dates in adjacent charges. 

1 1

N N
D D

i j ij ij
i j

Z min D D p x
= =

= − ⋅ ⋅∑∑  (3) 

4 Minimise the difference between the tundish lifespan and the number of charges (the 
charges included in the cast). 

1 1

N N
TL TL

j jj ij
j i

Z min p TL x x
= =

⎛ ⎞= ⋅ ⋅ −⎜ ⎟
⎝ ⎠

∑ ∑  (4) 

5 Minimising penalties caused by unchecked charges. 

1 1

1
N N

US US
i ij

i j

Z min p x
= =

⎛ ⎞
= ⋅ −⎜ ⎟

⎝ ⎠
∑ ∑  (5) 

The objective function is weighted and constraints are added to get the following form: 

 min Z  
1 2 3 4 5with  G W D TL USZ Z Z Z Z Zϕ ϕ ϕ ϕ ϕ= ⋅ + ⋅ + ⋅ + ⋅ + ⋅  (6) 

Subject to (s.t.): 

{ }
1

1,  1,2, , .
N

ij
j

x i N
=

≤ = …∑  (7) 

{ }
1

2 ,  1,2, , .
N

ij
i

x TL j N
=

≤ ≤ = …∑  (8) 

1

N

jj
j

x M
=

=∑  (9) 

1 1

N N

chr ij chr
i j

L x H
= =

≤ ≤∑∑  (10) 

1 1

N N
rh

RH i ij RH
i j

L Q x H
= =

≤ ⋅ ≤∑∑  (11) 
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1 1

N N
pre

pre i ij pre
i j

L Q x H
= =

≤ ⋅ ≤∑∑  (12) 

1 1

, 
N N

f
f i ij f

i j

L Q x H f F
= =

≤ ⋅ ≤ ∈∑∑  (13) 

{ } { } { } { }0,1 , 0,1 ,  1, 2, , . 1, 2, , .ij jjx x i N j N∈ ∈ = … = …  (14) 

Constraint (7) guarantees that each charge is assigned to at most one cast plan. Constraint 
(8) tundish capacity constraint which means that the number of charges processing on 
tundish cannot exceed the tundish lifespan. Constraints (9) ensure that the total number of 
casts should be equal to the number of available casts in the given planning. Constraints 
(10)–(13) indicate that the number of selected charges, the number of refining charges, 
the weight of the hot roll materials, and the total weight of slabs processed in the 
downstream production line are within the limits specified for production. Constraint (14) 
indicates the range of values of the decision variable. 

3 Solution methodology 

3.1 Improved surrogate absolute-value Lagrangian relaxation model 

The study of improved surrogate absolute-value Lagrangian relaxation (ISAVLR) 
function model framework has been proposed by Liu et al. (2021), in this method, a 
piecewise linear function ( )F x  is introduced by the convergence factor r  to replace the 
absolute value penalty function by Bragin et al. (2018). Because the quadratic 
approximation difference of the (SAVLR) function cannot capture the quadratic growth 
characteristics of the quadratic function well when the multiplier is far from the optimal 
value and the degree of constraint violation is large, the absolute value function cannot 
impose a large enough penalty in the early stage of optimisation. Where the convergence 
factor r  is used to construct an ISAVLR function, which introduces an absolute-value 
penalty term through the convergence factor r . The absolute-value term penalises the 
violation and thus improves the speed of convergence and the lower bound of the 
conventional Lagrangian relaxation (LR). The ( )F x  piecewise function is as follows: 

( ) ( ) ( )0, 4 3 , 4 3F x max x x≡ − − −⎡ ⎤⎣ ⎦  (15) 

The CBP problem is optimised based on the ISAVLR framework by a set of Lagrangian 
multipliers { }, 1, 2, , .iu i N= …  relax constraint (7), and by introducing convergence factor 
r  and piecewise function ( )F x , the above problem model can be transformed into the 
following form: 

( ) ( ) ( ) ISAVLR iLR Z u min Z B= +  (16) 

1 2B B B= +  (17) 

1
1 1

1
N N

i ij
i j

B u x
= =

⎛ ⎞
= ⋅ −⎜ ⎟

⎝ ⎠
∑ ∑  (18) 
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2
1 1

1
N N

ij
i j

B r F x
= =

⎛ ⎞
= ⋅ −⎜ ⎟

⎝ ⎠
∑ ∑  (19) 

s.t.(8)–(14). { } { }1,2, , . 1, 2, , .i N j N= … = …  

( )

4
1 1 1 1

5
1 1

1 1 1 1

1

1 1

N N N N
TL

ij ij j jj ij
i j j i

N N
US

ISAVLR i i ij
i j

N M N M

i ij ij
i j i j

P x p TL x x

Z u min p x

u x r F x

ϕ

ϕ

= = = =

= =

= = = =

⎧ ⎫⎛ ⎞⋅ + ⋅ ⋅ ⋅ −⎪ ⎪⎜ ⎟
⎝ ⎠⎪ ⎪

⎪ ⎪⎛ ⎞⎪ ⎪= = + ⋅ ⋅ −⎜ ⎟⎨ ⎬
⎝ ⎠⎪ ⎪

⎪ ⎪⎛ ⎞ ⎛ ⎞⎪ ⎪+ ⋅ − + ⋅ −⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∑∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑

 (20) 

s.t. (8)–(14). { } { }1,2, , . 1, 2, , .i N j N= … = …  

Let 1 2 3
G W D

ij i j ij i j ij i j ijP G G p W W p D D pϕ ϕ ϕ= ⋅ − ⋅ + ⋅ − ⋅ + ⋅ − ⋅ , formula (18) can be 

expressed as (20). 

3.2 Dual problem 

Since constraint (7) is relaxed, the optimal solution of the ISAVLR problem is not 
necessarily the optimal solution of the original problem. To get closer to the optimal 
solution of the original problem, the solution of the relaxation problem is replaced by the 
dual solution of the dual problem. It can be expressed as (21): 

( ) ( ) ( ) max minD
ISAVLR i ISAVLR iLD Z u Z u=  (21) 

s.t. (8)–(14). { } { }1,2, , . 1, 2, , .i N j N= … = …  

Let '   
5

TL US
ij ij j iP P p pϕ= − − ⋅ , formula (21) can be expressed as (22): 

( )
( )

4
1

'

1 1

1 1

5
1 1

 
1

N
TL
j jj

j

N N

ij i ij
i jD

ISAVLR i N N

ij
i j

N N
US
i i

i i

TL p x

P u x

Z u max min
r F X

p u

ϕ

ϕ

=

= =

= =

= =

⎧ ⎫⋅ ⋅ ⋅⎪ ⎪
⎪ ⎪
⎪ ⎪

+ + ⋅⎪ ⎪
⎪ ⎪= ⎨ ⎬

⎛ ⎞⎪ ⎪+ ⋅ −⎜ ⎟⎪ ⎪
⎝ ⎠⎪ ⎪

⎪ ⎪
+ ⋅ −⎪ ⎪

⎩ ⎭

∑

∑∑

∑ ∑

∑ ∑

 (22) 

s.t. (8)–(14). { } { }1,2, , . 1, 2, , .i N j N= … = …  

To solve the optimisation model of CBP more efficiently, formula (22) was transformed 
into a form containing a subproblem. Each subproblem represents an optimal value of 
CBP with charge j as the clustering centre for the optimal solution. The conversion form 
is as formula (23). 
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( ) ( ) 5
1 1 1

max min
N N N

D US
ISAVLR i j ij jj i i

j i i

Z u v x x p uϕ
= = =

⎧ ⎫⎪ ⎪= ⋅ + ⋅ −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑  (23) 

s.t. (8)–(14). { } { }1,2, , . 1, 2, , .i N j N= … = …  

3.3 Dynamic programming to solve subproblems 

Based on constraints (9) and { } { }0,1 , 1,2, , .jjx j N∈ = …  Formula (23) can be 
decomposed into M  subproblems with a single cast as the optimal value for solving, and 
each cast is based on the charge j  as the clustering centre and the form of subproblems 
is as follows: 

( ) ( )
( )

( ) ( )

'
4

1

1

 , ,
max 0, 4 7 , 4 1

N
TL
j ij i ij

i
j j ij N

ij ij
i

TL p P u x
LD v x y min

r x x

ϕ
=

=

⎧ ⎫⋅ ⋅ + + ⋅⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪⎡ ⎤+ ⋅ − − +⎣ ⎦⎪ ⎪⎩ ⎭

∑

∑
 

{ }1,2, , .j N= …  (24) 

s.t. (8), (10)–(14). { }1, 2, , .i N= …  

According to the linearisation method on page 150 of Boyd and Vandenberghe  
(2004), the auxiliary target variable y is introduced to linearise the function 

( ) ( )1
0, 4 7 , 4 1 , N

ij iji
max x x

=
⎡ ⎤− − +⎣ ⎦∑  1, 2, .j N= …  (y is the least upper bound of piecework 

linear function), and the subproblem is transformed into: 

( ) ( ) ( )'
4

1

 , ,
N

TL
j j ij j ij i ij

i

LD v x y min TL p P u x r yϕ
=

⎧ ⎫= ⋅ ⋅ + + ⋅ + ⋅⎨ ⎬
⎩ ⎭

∑  

{ }1,2, , .j N= …  (25) 

s.t. (8), (10)–(14) { }1,2, , .i N= …  and: 

0 y≤  (26) 

{ }4 7 , 1, 2, , .ijx y i N− ≤ = …  (27) 

{ }4 1 , 1, 2, , .ijx y i N− + ≤ = …  (28) 

,TL
jp TL  and 4ϕ  are constants in formula (25), and the decision variable ijx , the variable 

y  and the objective function jv  are the unknowns to be solved. The model of jLD  is to 
satisfy the objective function ( ){ },j ijmin v x y  and all of its constraints: (8), (10)–(14), 
(26)–(28), where constraint (8) is the machine capability constraint. Therefore the jLD  
can be abstracted to be solved as a 0-1 knapsack problem. And solve the problem based 
on a dynamic programming algorithm. 
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N  charges are combined into M  casts, and the tundish lifespan is TL . The charges 
combined into each cast will result in penalties due to differences in physical properties 
(steel grade, width, delivery time, etc.). Therefore, the objective optimisation decision 
can be expressed as, under the premise of not exceeding the lifespan of tundish, the 
decision to assign which charges to cast will minimise the penalty brought by the 
different physical properties of these charges. However, different from the traditional 
backward dynamic programming algorithm, there is an additional penalty term r y⋅  in 
formula (25), where y  is a function based on the value of the variable ijx , so y  can be 
used as a coefficient and r  as a penalty term in the objective function. According to 
constraints (8), (26)–(28) it follows that { }0 | when  1ijy x= = , and { }1| when  0ijy x= = . 

Based on backward dynamic programming (Ibaraki, 1987) the service lifespan of a 
tundish is divided into 1 2 2 1,{ , , , , |d D d

sum sum sum sum sum sum sumTL TL TL TL TL TL TL… … − = … = −  
1 1 }.d D D

sum sum sumTL TL TL δ− −= … = − =  ( D
sumTL TL= ) capacity stages. ( ), d

sumt i TL  is the ideal 
target penalty generated in the optimisation process when the capacity stage number is 

d
sumTL  for the first i  charges. [ ]g i  is the service lifespan of tundish consumed by charge 

i . '
ijP  is the penalty caused by assigning the i  charge for production in the cast with j  

as the clustering center. '' '
ij ijP P= − . T  denotes the set of charge attribute difference 

penalties for clustering into a cast. T ′  denotes the set of charge attribute difference 
penalties that are not clustered into a cast. R  denotes the set of additional penalties 
associated with charges that are not clustered into a cast. a  and a′  denote the element 
position indexes, for example, in the set T , ajt  denotes the optimal objective value of the 
ath position with j  as the clustering center. β  denotes the state parameter, which is 
used during iteration to update convergence factor r. The recursive equations based on 
backward dynamic programming and the optimisation order are given in Table 2. 

Table 2 Backward dynamic programming optimisation rules (see online version for colours) 

 

Based on the above description, this paper designs a subproblem optimisation method 
based on the inner heuristic method. 

In the inner heuristic algorithm, the subproblem feasible solution is solved and 
optimised. Based on equation (25) it is known that the subproblem objective function is 
composed of three parts. The first part is the constant term { }4

TL
jTL pϕ ⋅ ⋅ . The second 

part is the penalty due to the attribute differences during the charge clustering process in 
each cast, to facilitate the expression in the algorithm, let the part be expressed as 
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( ){ }'
1

N
ij ij i iji

t P u x
=

= + ⋅ . The third part is the additional penalty { }r y⋅  for unselected 
charges. The inner heuristic first abstracts the second part of the subproblem as a 
knapsack problem, for which the dynamic programming method is used to solve, and 
based on the results obtained it can compute the sets T , T ′  and R . And arrange the 
elements of the three sets in increasing order. ( ) ( ){ }1 1, , , , aj nja j n jT t t t t+ −= … , it denotes the 
set of charge attribute difference penalties for clustering into a cast. 

( ) ( ){ }' '1 1
, , , , a j n ja j n j

T t t t t ′−′ +
= …′ , it denotes the set of charge attribute difference penalties 

that are not clustered into a cast. ( ) ( )( ) ( )( ) ( ){ }' '1 1
, , , , a j n ja j n j

R r y x r y x r y x r y x
+ ′−′= ⋅ ⋅ … ⋅ ⋅ , 

it denotes the set of additional penalties associated with charges that are not clustered into 
a cast. Finally, if the sum of the charge attribute difference penalty clustered into the cast 
and the additional penalty not clustered into the cast is less than the charge attribute 
difference penalty not clustered into the cast, the current solution is optimal, otherwise, it 
is adjusted. The pseudo-code of the inner heuristic algorithm is shown in Figure 2. 

Figure 2 Pseudo-code of the inner heuristic algorithm 

Inner heuristic 
Initialization: 

1.Set 𝑖=1, 𝑗=1, 𝑎=1, 𝑎′ = 1, 𝑟=10, 𝛽 = 1.1, 𝑇𝐿𝑠𝑢𝑚𝑑 = 1, 𝑇 = 𝑛𝑢𝑙𝑙, 𝑇′ = 𝑛𝑢𝑙𝑙, 𝑅 = 𝑛𝑢𝑙𝑙 
2. Total number of charges 𝑁 
3. Service lifespan of a tundish 𝑇𝐿𝑠𝑢𝑚𝐷  

For 𝑗=1 to 𝑁 
/* Solve the solution of subproblem */ 
For 𝑇𝐿𝑠𝑢𝑚1 = 1 to 𝑇𝐿𝑠𝑢𝑚𝐷  

For 𝑖=1 to 𝑁 
Obtain the value of the objective value function 𝑡𝑖𝑗  
Obtain the decision variable 𝑥𝑖𝑗  

End For 
End For 
/* Optimization subproblem feasible solution */ 
Update the following set according to  {𝑡𝑖𝑗 } and {𝑥𝑖𝑗 } 𝑇 = {𝑡𝑎𝑗 , 𝑡(𝑎+1)𝑗 , … , 𝑡(𝑛−1)𝑗 , 𝑡𝑛𝑗 } /* charge clustering penalty increasing order set for 

grouping into cast */ 𝑇′ = {𝑡𝑎′ 𝑗 , 𝑡(𝑎+1)′ 𝑗 , … , 𝑡(𝑛−1)′ 𝑗 , 𝑡𝑛′ 𝑗 }  /* charge clustering penalty incremental order set for 
ungrouped cast */ 𝑅 = {𝑟 ∙ 𝑦൫𝑥𝑎′ 𝑗 ൯, 𝑟 ∙ 𝑦൫𝑥(𝑎+1)′ 𝑗 ൯ … , 𝑟 ∙ 𝑦൫𝑥(𝑛−1)′ 𝑗 ൯, 𝑟 ∙ 𝑦൫𝑥𝑛′ 𝑗 ൯} /* Additional penalty 
increment set for charges not grouped into cast */ 
While ∑ 𝑡𝑎𝑗𝑎∈𝑛 + 𝑟 ∙ ∑ 𝑦(𝑥𝑎′ 𝑗 )𝑎′ ∈𝑛′ ≥ ∑ 𝑡𝑎′ 𝑗𝑎′ ∈𝑛′  Do 𝑡𝑛𝑗 ← 𝑡𝑎′ 𝑗   𝑟 ← 𝑟𝛽   

Update 𝑇, 𝑇′ , 𝑅, {𝑡𝑖𝑗 } , {𝑥𝑖𝑗 } 
End While 𝑣𝑗 ൫𝑥𝑖𝑗 , 𝑦൯ ← 𝜑4 ∙ 𝑇𝐿 ∙ 𝑝𝑗𝑇𝐿 + ∑ 𝑡𝑎𝑗𝑎∈𝑛 + 𝑟 ∙ ∑ 𝑦൫𝑥𝑎′ 𝑗 ൯𝑎′ ∈𝑛′  

End For 
Output {𝑣𝑗 }, {𝑥𝑖𝑗 }  
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In the process of solving the subproblem of CBP based on backward dynamic 
programming, the tundish life of the cast is divided into D

sumTL  stages. In the optimisation 
process of each stage, it is necessary to judge the number of charges from 1 to jN  ( jN  is 
the total number of charges when the clustering center charge j  is not included. Whether 

jN N∈ ) is combined into CBP with charge j  as the clustering center to meet the 
optimal value under the constraint of not exceeding tundish life. So, it is worth noting 
that the complexity of the optimisation process is ( )( )2

jO N . 

3.4 Construction of feasible solutions to the original problem 

The Lagrangian dual function ( )D
ISAVLR iZ u  is a non-differentiable, piecewise linear 

concave function. At the same time, this function has a large scale in the process of CBP 
optimisation, so it is difficult to optimise ( )D

ISAVLR iZ u  function efficiently (Sun et al., 
2022a). Therefore, this paper develops a heuristic optimisation method and proposes a 
controlled direction of the gradient iterative strategy based on the ISAVLR framework, 
which is combined with the local search (LS) (Lorena and Senne, 2003) algorithm in the 
optimisation process. The controlled subgradient iteration direction (Bragin et al., 2014; 
Sun et al., 2022b) can effectively avoid the problem of zigzagging caused by the obtuse 
angle of the adjacent two iteration directions during the iteration process of the 
Lagrangian relaxation subproblem, which greatly improves the solution speed. The LS 
algorithm can further select the appropriate charge as the clustering center to ensure the 
optimal objective function of the subproblem. Figure 3 shows the optimisation sequence 
diagram. 

The outer heuristic algorithm is described in three stages. In the outer heuristic-I, the 
approximate optimised solution and the best dual value are obtained by iterating  
the Lagrangian multipliers. The relationship between the objective function values  
of the original problem, the dual problem, and the relaxation problem obtained based on 
the ISAVLR framework is ( ) ( )D

ISAVLR i ISAVLR iZ Z u Z u> > . The core idea of the proposed 
method is to keep converging to the original problem objective by iterating the best dual 
values, and finally, the original problem objective function value is approximated by the 
best dual value when the stopping condition is satisfied. An iterative strategy with a 
controlled gradient direction is used for Lagrangian multiplier updating. The Lagrangian 
multipliers obtained from each iteration are fed into the inner heuristic, which solves the 
objective function and decision variables of the subproblem based on the known 
multipliers and feeds them into the outer heuristic to compute the best dual values. The 
stopping conditions are as follows. 

( ) ( )1
1|| ||m m

i iu u ε+ − <  (29) 

( ) ( )1
2|| ||m m

ij ijx x ε+ − <  (30) 

The iteration can be stopped when one of the conditions of equation (29) or (30) is 
satisfied. The pseudo-code of the outer heuristic-I is as Figure 4. 
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Figure 3 Optimisation sequence diagram (see online version for colours) 

 

In outer heuristic-II, the feasible solutions that violate the constraints being relaxed are 
adjusted. To reduce the difficulty of solving the model, the charge allocation constraint 
(7) is relaxed during the optimisation process of the ISAVLR framework and the original 
problem model is transformed into a CBP model with a separable structure. Therefore, 
the feasible solution output by outer heuristic-I may not satisfy the constraint (7). The 
outer heuristic-II is mainly used to adjust the feasible solutions that violate the constraints 
(7); the feasible solutions of the outer heuristic-I output are further optimised. The 
pseudo-code of the outer heuristic-II algorithm is shown in Figure 5. 
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Figure 4 Pseudo-code of the outer heuristic-I algorithm 

Outer heuristic-I 
Initialization:

1. Set 𝑚=1, 𝑥(0)=0, 𝑢(0)=0, 𝛽 = 1.6, 𝛾 = 1.2 , 𝛿 = 0.6 
2. Total number of charges 𝑁 

While the stop criterion is not satisfied Do 
/* Whether the surrogate optimality condition is satisfied */ 
If 𝑍𝐼𝑆𝐴𝑉𝐿𝑅𝐷 ൫𝑢(𝑚), 𝑥(𝑚)൯ < 𝑍𝐼𝑆𝐴𝑉𝐿𝑅𝐷 ൫𝑢(𝑚), 𝑥(𝑚−1)൯ Do 

Save 𝑥(𝑚) 
Else 𝑥(𝑚) ← 𝑥(𝑚−1)  
End If 
For 𝑖=1 to 𝑁 ℎ(𝑚)൫𝑢(𝑚)൯ ← ∑ 𝑥𝑖𝑗(𝑚) − 1𝑁𝑗 =1   /* Calculate the subgradient */ 𝜉(𝑚 ) ← 𝑚𝑎𝑥 ൝0, −𝛽 ൭𝑑෠(𝑚 )ቀ𝑢𝑖(𝑚 −1)ቁ𝑇∙𝑑෠(𝑚 )ቀ𝑢𝑖(𝑚 −1)ቁ𝑑෠(𝑚 )ቀ𝑢𝑖(𝑚 )ቁ𝑇∙𝑑෠(𝑚 )ቀ𝑢𝑖(𝑚 )ቁ ൱ൡ  𝑑መ(𝑚) ቀ𝑢𝑖(𝑚)ቁ ← ℎ(𝑚) ቀ𝑢𝑖(𝑚)ቁ + 𝜉(𝑚 ) ∙ 𝑑መ(𝑚−1) ቀ𝑢𝑖(𝑚−1)ቁ /* Modified subgradient */ 𝜌 ← 1 − 1𝑚 𝛿   𝛼(𝑚) ← 1 − 1𝛾𝑚 𝜌   𝑠(𝑚 ) ← 𝛼(𝑚 ) 𝑠(𝑚 −1)∙𝑑෠(𝑚 )ቀ𝑢𝑖(𝑚 −1)ቁ𝑇 ∙𝑑෠(𝑚 )ቀ𝑢𝑖(𝑚 −1)ቁ𝑑෠(𝑚 )ቀ𝑢𝑖(𝑚 )ቁ𝑇 ∙𝑑෠(𝑚 )ቀ𝑢𝑖(𝑚 )ቁ  /* Calculate step size */ 𝑢𝑖 (𝑚+1) ← 𝑚𝑎𝑥 {0, 𝑢𝑖 (𝑚 ) + 𝑠(𝑚 ) ∙ 𝑑መ(𝑚 ) ቀ𝑢𝑖(𝑚)ቁ} /* Updating the multipliers */ 
End For 𝑣𝑗(𝑚+1) ← {𝑣𝑗 ൫𝑢(𝑚+1)൯},𝑥(𝑚+1) ← {𝑥𝑖𝑗(𝑚+1)} /* Inner heuristic for solving subproblems */ 𝑢(𝑚+1) ← {𝑢𝑖 (𝑚+1)}  
Calculate 𝑍𝐼𝑆𝐴𝑉𝐿𝑅𝐷 ൫𝑢(𝑚), 𝑥(𝑚)൯ according to Eq. (23) 𝑚 ← 𝑚 + 1

End While 
Output  𝑥(𝑚), 𝑢(𝑚)  

Figure 5 Pseudo-code of the outer heuristic-II algorithm 

Outer heuristic-II 
Initialization: 

1. Total number of charges 𝑁 
For 𝑖=1 to 𝑁 

While ∑ 𝑥𝑖𝑗(𝑚)𝑁𝑗 =1 ≥ 1 Do 𝑡̂𝑖𝑗 ̃ ← 𝑚𝑖𝑛𝑗 =1,2,…,𝑁 𝑡𝑖𝑗   𝑥𝑖𝑗̃(𝑚 ) ← 1  {𝑥𝑖𝑗(𝑚 )| 𝑗 ≠ 𝑗̃} ← {0}  

Update 𝑥(𝑚) ← {𝑥𝑖𝑗(𝑚)}  
End While 

End For 
Output  𝑥(𝑚)  
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In outer heuristic-III, a local search (LS) algorithm is used to adjust the clustering centers 
for each CBP to further optimise the objective function value. The feasible solution for 
the outer heuristic-II output presents the charge numbers in the CBP, and the selection of 
which charge to use as the clustering center still needs to be further optimised, as the 
value of the objective function is directly affected by the selection of the clustering 
center. The proposed method is implemented by enumerating the charges in each CBP, 
the function value of each charge as a clustering center is calculated, and finally, the 
charge that can achieve the smallest function value is selected as the most clustering 
center in the cast. The symbols of outer heuristic-III are defined as well as the flow as 
follows. The number of casts is M . The total number of charges in cast j  is 

, { | 1,2, , }j jX X j M= … . The index of the clustering center in cast j  is { }, j j jc c X∈ ; 
The other charges in cast j  are indexed by { },  , j ji i X i c∈ ≠ . The value of the objective 
function solved with jc  as the clustering center in cast j  is ˆ

jj
j kck X

z t
∈

= . The pseudo-
code of the outer heuristic-III algorithm is shown in Figure 6. The flowchart of the 
overall algorithm is shown in Figure 7. 

Figure 6 Pseudo-code of the outer heuristic-III algorithm 

Outer heuristic-III 
Initialization: 

1. Total number of casts 𝑀 
2. The set of charge quantities contained in all casts {𝑋𝑗 |𝑗 = 1,2, … , 𝑀} 

For 𝑗 = 1 to 𝑀 
For 𝑖 = 1 to 𝑋𝑗  𝑧𝑖 = ∑ 𝑡̂𝑘𝑖𝑘∈𝑋𝑗   

If 𝑧𝑖 < 𝑧𝑗  Do 𝑧𝑗 ← 𝑧𝑖   𝑐𝑗 ← 𝑖  
Else 𝑧𝑗 ← 𝑧𝑗   𝑐𝑗 ← 𝑐𝑗   
End If 

End For 
End For 
Update 𝑥 ← {𝑥𝑖𝑗 } 
Solving for 𝑍𝐼𝑆𝐴𝑉𝐿𝑅𝐷 (𝑢, 𝑥) according to Eq. (23) 
Output  𝑍𝐼𝑆𝐴𝑉𝐿𝑅𝐷 , 𝑥  

4 Computational results 

To test the optimisation performance of CBP based on the ISAVLR, and to test the 
characteristics of its solutions, a simulation experiment is carried out on a random data 
example of a large steel mill. 
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Figure 7 Flowchart of the overall algorithm (see online version for colours) 

 

4.1 Parameter setting 

To analyse the computational performance of the algorithm proposed in this paper in 
solving the optimisation process of CBP, this paper is based on the LR, SAVLR, and 
ISAVLR. The proposed algorithms are evaluated for the following performance indexes: 
duality gaps (%), running times, and iteration numbers. Where the duality gaps 
calculation method is ( ) 100%UB LB

LBG −= × , UB  is the upper bound calculated based on the 

feasible solution in the original problem ( )ISAVLR iZ u , LB is the lower bound calculated 

based on the approximate feasible solution in the dual problem ( )D
ISAVLR iZ u . The 

parameters are as follows: 1 1 3,eε = −  2 1 5, 1.02, 1.05, 0.25.eε β γ δ= − = = =  The 
specific values of penalty parameters are given in Table 3. 

Table 3 The value of parameters 

TL 
G
ijp  W

ijp  D
ijp  TL

jp  US
ip  ϕk r 

20 15 12 20 15 100 0.2 10 

The above algorithm implementation process is in the same simulation environment 
optimisation effect, several algorithms are implemented in Matlab R2022b and installed 
Intel Core i5-1135 2.4GHz CPU, Windows 11 operating system (64 bit) of the PC 
running. 
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4.2 Problem instances 

In this paper, 20 groups of case data are used for simulation, and each 4 groups of data is 
a batch. In each batch, the number of charges of each group of data is the same, which is 
{100,150,200,250,300}. To test under different conditions of LR, SAVLR, and ISAVLR 
algorithm in duality gaps, running times, and iteration numbers performance indicators, 
each group of charge steel grade in data quantisation parameters by randomly selected 
from the set {5,6,7,8,9,10,11,12,13,14,15}. Table 4 shows the optimisation results and 
average values of duality gaps, running times, and iteration numbers based on three 
different algorithms when the number of different charges and the number of the same 
charges correspond to different randomly selected steel grades. 

Table 4 Computational results 

Duality gaps (%) Running times (s) Iteration numbers 

No. 

Number 
of 
charges 

Steel 
grade LR SAVLR ISAVLR LR SAVLR ISAVLR LR SAVLR ISAVLR 

1 100 5 1.71 1.46 1.17 13.95 10.64 8.35 86.00 73.00 68.00 
2 100 6 2.13 1.65 1.42 16.47 11.93 10.17 67.00 61.00 52.00 
3 100 8 2.60 2.12 1.73 21.73 15.98 12.04 75.00 58.00 49.00 
4 100 10 2.84 2.30 1.96 40.69 24.73 14.21 63.00 44.00 24.00 
Average 2.32 1.88 1.57 23.21 15.83 11.19 72.75 59.00 48.25 
5 150 6 2.24 2.03 1.82 56.35 40.86 26.73 118.00 106.00 86.00 
6 150 5 1.94 1.76 1.73 43.81 27.81 24.59 142.00 115.00 83.00 
7 150 4 1.68 1.52 1.23 49.53 28.53 22.08 174.00 133.00 113.00 
8 150 9 2.68 1.94 1.67 66.79 49.48 30.32 169.00 127.00 107.00 
Average 2.14 1.81 1.61 54.12 36.67 25.93 150.75 120.25 97.25 
9 200 10 3.24 2.53 2.14 82.53 54.7 40.39 157.00 114.00 94.00 
10 200 12 3.41 3.06 2.56 71.42 51.92 41.27 143.00 111.00 91.00 
11 200 13 3.47 3.09 2.14 78.13 58.47 43.04 176.00 132.00 109.00 
12 200 4 2.08 1.76 1.56 65.52 45.36 32.93 229.00 183.00 153.00 
Average 3.05 2.61 2.10 74.40 52.61 39.41 176.25 135.00 111.75 
13 250 6 2.50 1.94 1.72 84.76 64.29 55.2 208.00 167.00 137.00 
14 250 7 2.64 2.23 2.01 94.89 69.75 59.38 201.00 159.00 129.00 
15 250 8 3.05 2.45 2.27 105.87 75.34 63.42 195.00 161.00 131.00 
16 250 10 3.78 3.3 2.96 119.46 76.86 65.74 194.00 159.00 129.00 
Average 2.99 2.48 2.24 101.25 71.56 60.94 199.50 161.50 131.52 
17 300 12 3.86 3.32 2.67 144.63 114.58 83.03 267.00 206.00 174.00 
18 300 15 4.36 3.51 3.24 176.47 126.29 93.46 202.00 148.00 116.00 
19 300 14 4.32 3.66 2.86 128.52 99.31 87.25 238.00 182.00 152.00 
20 300 13 3.93 2.83 2.50 126.21 96.74 84.86 245.00 208.00 159.00 
Average 4.12 3.33 2.82 143.96 109.23 87.15 238.00 186.00 150.25 
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As shown in Figures 8–10, it can be seen that with the increase in the number of charges, 
the duality gaps, running times, and iteration numbers all show an overall upward trend 
under the action of the three algorithms. Meanwhile, ISAVLR is superior to SAVLR and 
LR in duality gaps, running times, and iteration numbers. 

1 The average value of duality gaps in {100,150,200,250,300} group is ISAVLR: 
{1.57%, 1.61%, 2.1%, 2.24%, 2.82%}, SAVLR: {1.88%, 1.81%, 2.61%, 2.48%, 
3.33%}, LR: {2.32%, 2.14%, 3.05%, 2.99%, 4.12%}, based on the average data, it 
can be concluded that the duality gaps generated by ISAVLR in the optimisation 
process is the smallest, indicating that the optimisation quality of this algorithm is 
the best among the three algorithms. 

2 The average running time in {100,150,200,250,300} group is ISAVLR: {11.19, 
25.93, 39.41, 60.94, 87.15}, SAVLR: {15.83, 36.67, 52.61, 71.56, 109.23}, LR: 
{23.21, 54.12, 74.40, 101.25, 143.96}. 

3 The average number of iterations in {100,150,200,250,300} group is ISAVLR: 
{48.25, 97.25, 111.75, 131.52, 150.25}, SAVLR: {59.00, 120.25, 135.00, 161.50, 
186.00}, LR: {72.75, 150.75, 176.25, 199.50, 238.00}. 

Figure 8 Comparison of duality gaps (%) (see online version for colours) 

 

Figure 9 Comparison of running times (see online version for colours) 
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Figure 10 Comparison of iteration numbers (see online version for colours) 

 
Based on the results in (2) and (3), it can be seen that among the three algorithms, 
ISAVLR is the smallest in terms of the running time and iteration numbers, indicating 
that the optimisation efficiency of ISAVLR is the best among the three algorithms. 

5 Conclusion 

In this paper, a heuristic optimisation method proposes a controlled direction of the 
gradient iterative strategy based on the ISAVLR framework for the optimisation problem 
of CBP. On this basis, the constraint condition “each charge can only be combined into 
one cast” is relaxed, and a piecewise linear function is introduced to accelerate the 
convergence rate. The objective function is decomposed into subproblems with a single 
cast as the optimisation unit, and the backward dynamic programming algorithm is used 
to solve the subproblems. Finally, the experimental results show that the proposed 
optimisation method can guarantee optimisation efficiency as well as optimisation 
quality. 

Acknowledgements 

This work was partly supported by the Natural Science Foundation of Hebei Province of 
China (F2023501006), National Natural Science Foundation of China (92367106). 

References 
Boyd, S. and Vandenberghe, L. (2004) Convex Optimization, Cambridge University Press, 

Cambridge, UK. 
Bragin, M.A., Luh, P.B., Yan, B. and Sun, X.R. (2018) ‘A scalable solution methodology for 

mixed-integer linear programming problems arising in automation’, IEEE Transaction on 
Automation Science and Engineering, Vol. 16, No. 2, pp.1–11. 

Bragin, M.A., Luh, P.B., Yan, J.H., Yu, N. and Stern, G.A. (2014) ‘Convergence of the surrogate 
lagrangian relaxation method’, Journal of Optimization Theory and Applications, Vol. 164, 
No. 1, pp.173–201. 



   

 

   

   
 

   

   

 

   

    Research on steelmaking-continuous casting cast batch planning 57    
 

    
 

   

   
 

   

   

 

   

       
 

Chang, S.Y., Chang, M-R. and Hong, Y. (2000) ‘A lot grouping algorithm for a continuous slab 
caster in an integrated steel mill’, Production Planning and Control, Vol. 11, No. 4,  
pp.363–368. 

Ibaraki, T. (1987) ‘Enumerative approaches to combinatorial optimization-part II’, Annals of 
Operations Research, Vol. 11, Nos. 1–4, pp.345–602. 

Liu, A.B., Luh, P.B., Yan, B. and Bragin, M.A. (2021) ‘A novel integer linear programming 
formulation for job-shop scheduling problems’, IEEE Robotics and Automation Letters,  
Vol. 6, No. 3, pp.5937–5944. 

Liu, X.J., Ni, Z.H. and Qiu, X.L. (2016) ‘Application of ant colony optimization algorithm in 
integrated process planning and scheduling’, International Journal of Advanced 
Manufacturing Technology, Vol. 84, No. 4, pp.393–404. 

Long, J.Y., Sun, Z.Z., Chen, H.B. and Hong, Y. (2018) ‘Variable neighbourhood search for 
integrated determination of charge batching and casting start time in steel plants’, Journal of 
Intelligent and Fuzzy Systems, Vol. 34, No. 2018, pp.3821–3832. 

Lorena, L.A.N. and Senne, E.L.F. (2003) ‘Local search heuristics for capacitated p-median 
problems’, Networks and Spatial Economics, Vol. 3, No. 4, pp.407–419. 

Ma, T.M., Luo, X.C. and Chai, T.Y. (2015) ‘Multi-objective tundish planning model and hybrid 
optimization algorithm’, Journal of Systems Engineering, Vol. 30, No. 4, pp.451–456. 

Sun, L.L. and Mao, K. (2022a) ‘An efficient and effective approach for the scheduling of 
steelmaking-continuous casting process with multi different refining routes’, IEEE Robotics 
and Automation Letters, Vol. 7, No. 4, pp.10454–10461. 

Sun, L.L., Lu, T.Y., Li, Z., Li, Y., Yu, Y.Q. and Liu, J.Y. (2022b) ‘Research on steelmaking-
continuous casting production scheduling problem with uncertain processing time based on 
lagrangian relaxation framework’, International Journal of Automation and Control, Vol. 16, 
No. 1, pp.87–107. 

Sun, L.L., Sha, S.Y., Qu, Q.X., Ying, Y., Yu, M. and Wang, J. (2021) ‘A survey of integrated 
optimization method of batch planning and production scheduling for steelmaking-continuous 
casting process under uncertainties based on Lagrangian relaxation framework’, Control and 
Decision, Vol. 36, No. 8, pp.1973–1803. 

Tang, L.X. and Luo, J.X. (2007) ‘A new ILS algorithm for cast planning problem in steel industry’, 
ISIJ International, Vol. 47, No. 3, pp.443–452. 

Tang, L.X. and Wang, G.S. (2008) ‘Decision support system for the batching problems of 
steelmaking and continuous-casting production’, Omega, Vol. 36, No. 6, pp.976–991. 

Tang, L.X., Wang, G.S., Liu, J.Y. and Liu, J.Y. (2011) ‘A combination of lagrangian relaxation and 
column generation for order batching in steelmaking and continuous-casting production’, 
Naval Research Logistics, Vol. 58, No. 4, pp.370–388. 

Wang, Y.Z., Zheng, Z., Zhu, M.M., Zhang, K.T. and Gao, X.Q. (2022) ‘An integrated production 
batch planning approach for steelmaking-continuous casting with cast batching plan as the 
core’, Computers and Industrial Engineering, Vol. 173, pp.976–991. 

Xu, W.J. and Wang, G.S. (2015) ‘An improved differential evolution for batching problem in 
steelmaking production’, IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 
pp.377–384. 

Xu, W.J., Zou, F. and Tang, L.X. (2016) ‘A subpopulation-based differential evolution algorithm 
for scheduling with batching decisions in steelmaking-continuous casting production’, IEEE 
Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, pp.2784–2790.  

Xu, Z.J., Zheng, Z. and Gao, X.Q. (2021) ‘Operation optimization of the steel manufacturing 
process: a brief review’, International Journal of Minerals, Metallurgy and Materials, Vol. 
28, No. 8, pp.1274–1287. 

Yang, F., Li, Q.Q. and Wang, G.R. (2015) ‘Hybrid improved algorithm for cast planning problem 
with flexible width’, Control and Decision, Vol. 30, No. 2, pp.348–352. 



   

 

   

   
 

   

   

 

   

   58 C. Li and L. Sun    
 

    
 

   

   
 

   

   

 

   

       
 

Yang, F., Li, Q.Q., Liu, S. and Wang, G.R. (2014) ‘Hybrid heuristic-cross entropy algorithm for 
cast planning problem’, Computer Integrated Manufacturing Systems, Vol. 20, No. 9, 
pp.2241–2247. 

Yi, J., Jia, S.J., Du, B. and Liu, Q. (2019) ‘Multi-objective model and optimization algorithm based 
on column generation for continuous casting production planning’, Journal of Iron and Steel 
Research International, Vol. 26, No. 3, pp.242–250. 

Yi, J., Tan, S.B., Li, W.G. and Du, B. (2012) ‘Hybrid optimization algorithm for solving combining 
tundish MTSP model on continuous casting plan’, Journal of Northeastern University, Vol. 
33, No. 9, pp.1235–1239. 

Zhu, W.Y., Li, Y.P., Sun, L.L., Hou, T.B., Bai, S., Yuan, B.L. and Zhao, L.G. (2021) ‘Research on 
batch planning method of steelmaking-continuous casting tundish’, 3rd International 
Conference on Industrial Artificial Intelligence, Shenyang, China. 

 


