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Abstract: Edge computing provides a viable solution to the lack of computing 
power in smart mobile devices (SMDs) and has received much attention in the 
industry. However, transferring part of the computation tasks from SMDs to 
edge servers brings additional transmission energy and server computation 
energy. To reduce energy consumption, this article suggests an edge calculating 
resource scheduling approach relied on meta-heuristic improvement algorithm. 
Firstly, the resource scheduling system model is constructed, and the SMD 
selects the most suitable edge server (ES) to help itself to complete the 
computational tasks according to the computational resources of the ES. Then 
the total energy consumption objective function is suggested, and an enhanced 
particle swarm optimisation (EPSO) algorithm is used to address this objective 
function. The experimental outcome indicates that when the number of SMDs 
is 10, the energy consumption value of the suggested method is 9.25W, which 
is reduced by 10%–55% compared to the other four methods. 

Keywords: resource scheduling; metaheuristic optimisation algorithm; particle 
swarm optimisation algorithm; power law distribution function; genetic 
algorithm; smart mobile devices; SMDs; enhanced particle swarm optimisation; 
EPSO. 
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1 Introduction 

With the growth of IoT applications, the emergence of various smart mobile devices 
(SMDs) has led to an explosive growth in data size. Traditional cloud computing 
architectures face problems such as bandwidth bottlenecks, data transfer delays, and 
security when dealing with large amounts of data (Kumar and Goudar, 2012). To solve 
these problems, mobile edge computing (Mach and Becvar, 2017), as a new computing 
paradigm, decentralises computational power from the cloud calculating core to the edge 
side close to the user, so that the computational tasks are shifted to be processed on edge 
nodes close to the mobile devices. Under the distributed edge computing model, edge 
nodes can collaborate with each other to share computing resources and achieve global 
scheduling of resources, changing the drawbacks brought by the centralisation of 
resources in cloud computing centres (Lin et al., 2020). However, there are a series of 
new problems and challenges under the distributed edge computing scenario, and how to 
maximise the scheduling of edge computing resources to enhance the performance and 
efficiency of the overall system has become an urgent issue to be addressed. 

Liu et al. (2021a) proposed a service operation chain disposition and resource 
governance mechanism to deploy service function chains and control resources relied on 
a game theory method to achieve efficient completion of service function chain 
deployment in edge computing networks, but with high computational energy 
consumption. Huang et al. (2019) proposed a mobile edge computing offloading system 
for multi-user cooperation, where SMDs can not only unlade calculating tasks to edge 
nodes, but can also choose to offload to the other SMDs. There are also research works 
that optimise both latency and energy consumption, but increase the network load and 
latency (Zhang et al., 2018), so there is a need to find a balance between the two making 
the edge computing system achieve an optimal result. For example, Li et al. (2020) 
studied the problem of minimising the energy expenditure of all SMDs and their delays in 
an edge computing system with multiple devices, for which a computational optimisation 
algorithm based on a convex function is proposed and is able to minimise the energy 
expenditure of all SMDs. 

In most research works, the resource scheduling problem for edge computing can be 
transformed into an integer nonlinear planning problem, and the traditional mathematical 
optimisation algorithms are unable to gain the optimal solution in a rational time, while 
the metaheuristic optimisation methods have been broadly adopted in edge calculating 
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research by virtue of their powerful global optimisation capability and faster convergence 
speed (Liu et al., 2021b). Chakraborty and Mazumdar (2022) used genetic algorithm 
(GA) for the energy optimisation issue of edge calculating model consisting of SMD and 
ES, but due to the early maturity and high complexity of GA, it resulted in high energy 
consumption of the system. Liu et al. (2023) suggested an improvement approach relied 
on ant colony (ACO) approach to conjointly improve the work unlading determination 
and resource allotment issues in edge calculating to minimise the entire consumption of 
all mobile users while satisfying the delay constraint. Yadav et al. (2020) and others 
designed an energy-effective dynamic computational unlading and resource allocation 
mechanism and used a simulated annealing algorithm to solve the resource allocation 
issue for the goal of gaining a balance between energy consumption and latency. Owing 
to the features of particle swarm optimisation (PSO) algorithm, for example quick 
convergence speed and few setup parameters, researchers have applied it to edge 
computing resource scheduling to improve the system performance (Zhang et al., 2020). 
Alfakih et al. (2021) decomposed the probabilistic task offloading issue into multiple 
unrestrained subproblems, and used PSO to address each of them to gain the ideal 
solution. Chafi et al. (2023) offered an adaptive discrete PSO approach with GA, which 
introduces the crossover and mutation operations of GA into particle swarm algorithm, 
avoiding the premature convergence of the traditional PSO algorithm, and effectively 
reducing the data transmission time. 

However, all of the above mentioned studies only investigate how to reduce the 
energy consumption of SMDs and network transmission, and seldom take the energy 
consumption of the ES side as an optimisation goal. Inspired by this, for the problem of 
optimising resource allocation and reducing device energy consumption, this paper 
proposes a meta-heuristic optimisation algorithm based edge computing resource 
scheduling method, which has the following significant innovations and contributions. 

1 An edge computing resource scheduling system model is constructed. the SMD can 
choose the most suitable ES to help it complete its calculating tasks in terms of the 
demands of its calculating tasks and the computing resources of ES. 

2 The model takes the reduction of server energy consumption as the optimisation 
objective, and takes ES storage, maximum energy consumption, etc. as constraints, 
and establishes an objective function of total energy consumption related to mobile 
device computation energy, data transmission energy and ES computation energy, 
which is solved by using the enhanced particle swarm optimisation (EPSO) 
algorithm. 

3 The PSO is improved by introducing a power-law distribution function relied on the 
linear decreasing weights of PSO to enhance the global seek capability in the early 
stage of PSO and focus more on the local search in the later stage. With this flexible 
weight adjustment, the improved method can effectively enhance the performance of 
the PSO algorithm. 

4 Intending to the PSO algorithm, which has the issue of uneven number of allocated 
servers when solving, the cross operation of GA is combined so that the EPSO can 
be better used in edge computing resource scheduling model. The experimental 
results imply that the offered method has lower average energy consumption and 
higher resource utilisation, proving the effectiveness and feasibility of the method. 
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2 Relevant technologies 

2.1 Edge computing technology 

Edge calculating related to a public platform that combines network, calculating, and 
other application mental abilities at the edge of the network close to the device or data 
source to offer edge intelligent services in close proximity to satisfy the critical needs of 
industry digitisation. Compared with the centralised processing of traditional cloud 
computing centres, edge computing technology is with low deployment cost, low 
network latency and high data security. 

The network system framework of edge calculating is indicated in Figure 1, the 
bottom layer is some SMDs, such as computers, smart phones, wearable devices, etc. 
which gather a large quantity of production and life data; while the middle layer generally 
deploys ES (such as workstations, communication base stations, etc.) and wireless access 
gateways, the terminal devices are accessed to the wireless network through the gateways 
of the layer, and the generated data are uploaded to the ES for processing; the top layer is 
the cloud computing platform, which can offload the data to the cloud computing 
platform for processing when ES is overloaded or can meet the delay requirements. The 
top layer is the cloud computing platform, which can offload the data to the cloud 
computing platform for processing when the ES is overloaded or can meet the delay 
requirements. 

Figure 1 Network system architecture for edge computing 
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Energy consumption is a common optimisation metric for edge computing systems. 
During transmission, the transmission delay ttrans of a single task is V/R and the energy 
consumption Ek is ttrans × pk, where R denotes the transmission distance, pk denotes the 
transmission power of the task. During the completion of a task on the server, the 
completion time te of a single task can be calculated from equation (1). 

k k
e

pro

V St
f
×=  (1) 

where Vk denotes the transmission rate, Sk denotes the transmission time, and fpro denotes 
the CPU cycle frequency of the ES. 
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2.2 Meta-heuristic optimisation algorithm 

In edge computing research, resource scheduling problems can be transformed into 
integer nonlinear planning problems, and meta-heuristic optimisation algorithms have 
greater advantages than traditional mathematical optimisation algorithms due to their 
global search and optimisation capabilities. Commonly used meta-heuristic optimisation 
algorithms include GA, PSO, ACO, etc. (Vinod Chandra and Anand, 2022). Among 
them, PSO has the characteristics of fast convergence speed and few setup parameters, 
which is the first option for addressing some practical engineering issues (Gad, 2022). 

PSO simulates the process of discovery of food location through exploration and 
cooperation between flocks of birds in nature, where each particle maintains velocity 

1 2( , ..., )D
i i iv v v v=  and position 1 2( , ..., ),D

i i ix x x x=  in a D-dimensional seek space, where 
i denotes the amount of the particle. The velocity vector of a particle determines the 
direction and rate of motion of the particle, which changes the position information of the 
particle, while the position vector represents the position of the particle in the seek space, 
which can estimate the current fitness value of the particle. 

The PSO algorithm also requires each particle to maintain a position vector of 
historical optimal adaptation values pBesti, and a global optimal position gBesti. During 
the evolutionary process, the equations for updating the velocity and position information 
of the ith particle are shown in equation (2) and equation (3), respectively. 

( ) ( )1 1 2 2+ +d d d d d
ii i i iv uv a r pBest x a r gbest x= − −  (2) 

+d d d
i i ix x v=  (3) 

where u is the inertia weight, which commonly takes the value in the range [0, 1]. a1 and 
a2 are acceleration factors, while r1 and r2 are random numbers generated in the interval 
[0,1]. 

Although PSO has the features of quick convergence speed and few parameters, it is 
also with the issues of easy to fall into the local optimum and low improvement accuracy, 
so the simple PSO algorithm can not be directly used in the optimisation of the edge 
computing problem, this article will enhance the PSO algorithm, for the goal of 
improving the optimisation performance of the PSO algorithm. 

3 Edge computing resource scheduling modelling 

3.1 System model 

Considering the complexity of the edge network deployment situation, the existing single 
server resource scheduling method cannot satisfy today’s huge and complex network 
system, this paper designs a multi-server edge computing resource scheduling model, as 
implied in Figure 2. 

 

 



   

 

   

   
 

   

   

 

   

    A meta-heuristic optimisation algorithm based method for scheduling edge 93    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 2 Edge computing resource scheduling model (see online version for colours) 
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Assuming that there are M SMDs and N ESs in the edge computing network, these M 
SMDs need to deal with multiple computation tasks, and each task has a different amount 
of data, so each device can send its own computation data and receive the computation 
results from the ESs through the upstream and downstream channels through the 
algorithm. The scheduling optimisation algorithm determines the most suitable server and 
resource allocation scheme for each device to offload, based on the hardware of the 
SMDs and the different devices among the servers, as well as the computational task 
requirements of the program and the relevant constraints, so as to consume the least 
amount of computational energy of the SMDs, the transmission energy, and the 
computational energy of the ES, provided that the constraints are satisfied. 

3.2 Optimised modelling of system energy consumption 

For the goal of achieving the correction of erroneous movements in continuous sports 
dance, the acquired images are first pre-processed and the template combination 
equations for binocular stereo vision imaging of the images are calculated. 

The total energy consumption of SMDs and multiple ESs is composed of three 
aspects: the local computational energy consumption L

mE  of each SMD, the 
computational energy expenditure iB

mE  produced through its offloaded edge servers (ESs) 
Bi to process the computational data uploaded by SMDs, and the transmittance energy 
expenditure iB

mμ  produced through the process of transmitting the computational tasks to 
Bi, as shown below. 
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( )
1

+ +i i
M L

m mm
B B
mφ E μE

=
=  (4) 

The local calculative energy expenditure L
mE  of each SMD is ,L L

m mP t⋅  where L
mP  denotes 

the computational power of a single SMD and L
mt  denotes the working hours of a single 

SMD. Assuming that each device needs to handle K computational tasks, the formula for 
calculating the working hours of SMDs can be obtained as follows. 

1

mρ K m
iL

m

i
m

G
t

h
==  β

 (5) 

where m
iG  denotes the amount of data to be processed by the jth computational task of the 

mth SMD, β denotes the complexity of all computational data, ρm denotes the ratio of the 
amount of local computational tasks to the total amount of computations of the mth SMD, 
and hm denotes the computational speed of the mth SMD. 

The maximum amount of energy that each SMD can use for the calculation is denoted 
by max .LE  Therefore, the energy consumed through all SMDs in processing the data needs 
to satisfy the following equation. 

( )2
max

mρ K m L
L m ii

k h G E≤ β  (6) 

Similar to the computational energy expenditure of the SMD locally, the computational 
energy expenditure of the ES is calculated by the product of its power P and computation 
time .B

mt  Since the mth SMD will keep the ρmK-bar computational tasks to be computed at 
the local device, the computational tasks that Bi needs to process are from subscripts 
ρmK+1 to K. 

( )2

+1
i

i i
m

B B
KB

m ρ K i
m

i
E hk G

=
=  β  (7) 

where iBk  is a constant relevant with the ES chip framework, iBh  denotes the ES’ 

computational speed, and max
iBE  is used to denote the maximum energy expenditure 

restrict of the ith ES, thus, the maximum energy expenditure required by each ES to 
process the computational tasks has to satisfy the following equation. 

( )( )2
max1 +1

i i
i i

m

BM m
jm i ρ K

K B
B Bk h G E

= =
≤  β  (8) 

where iBM  denotes the number of SMDs that offload computational tasks to Bi. 
Assuming that the communication links between different servers do not interfere 

with each other, the data transmittance energy expenditure i
m
Bμ  produced through the mth 

SMD in sending data to Bi is computed as bellow. 

( )+ +i I T T
m m m U CL L
B C

Lμ P λ k P t P t=  (9) 
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where I
LP  denotes the idle power, T

Lk  denotes the enhancement factor of the conveyed 
data, T

mP  denotes the power of the transmitted data, C
LP  denotes the power of the 

downloaded data, and L denotes the relevant parameters. λm denotes the ratio of the 
bandwidth engaged in the mth SMD in the transmittance channel, and the value ranges 
from [0, 1]. i

U
Bt  is the time required for uploading the data. 

Most applications on SMDs are with related latency demands, and the maximum 
accomplishment time consists of the following aspects. The first aspect is that the time 

L
mt  calculated locally by the SMD, as shown in equation (5). On the other hand, it is the 

time for SMD to offload part of the data to Bi to complete the computation .iBt  Since 
these two aspects of the computation are carried out simultaneously, the final 
accomplishment time of the computation task requires to satisfy the following formula. 

{ } maxmax , i
L
m Bt t L≤  (10) 

where Lmax denotes the maximum completion time of SMD processing data. The time iBt  
required for Bi to complete the calculation task transferred from the mth SMD is 
calculated as shown in equation (11), which includes the data uploading time ,iB

Ut  the 

data downloading time ,iB
Ut  and the time iB

mt  for the server to process the calculation task 
from the SMD. 

+ +i i i
i

B B B
B mU Dt t t t=  (11) 

4 Edge computing resource scheduling method based on meta-heuristic 
optimisation algorithm 

4.1 Establishment of the objective function 

Based on the resource scheduling model established in the previous section, the total 
energy consumption objective function with various performance constraints is 
established, and the optimised PSO is used to quickly obtain the optimal solution that 
satisfies the constraints and has lower energy consumption. Firstly, a power-law 
distribution function is introduced on the basis of linearly decreasing weights of PSO to 
improve the performance of PSO. Then the combination of GA crossover operation 
compensates the shortcoming of PSO algorithm in optimising integer discrete variables, 
which makes EPSO more suitable for solving energy consumption optimisation issues. 
The flow of EPSO optimised edge computing resource scheduling is indicated in  
Figure 3. 
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Figure 3 Architecture of EPSO for optimising edge computing resource scheduling (see online 
version for colours) 
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The improvement goal in this chapter is to minimise the sum of the computational energy 
expenditure of the whole devices, the computational task transfer energy expenditure, and 
the computational energy expenditure of all servers, while satisfying various constraints, 
such as latency constraints, server storage constraints, and so on. To optimise the entire 
energy expenditure and various constraints at the same time, all the constraints are 
converted into a penalty operation, the smaller the value of the penalty function, the 
better the optimisation result, so the optimisation objective of the final algorithm is to 
minimise the whole energy expenditure and the value of the penalty operation, and the 
objective operation is established as follows. 

{ }+
x

Min φ φ Nε′ =  (12) 

where ε stands for the sum of whole penalty operation values, N is a natural number with 
a large value, φ represents the penalty operation’s weight, x stands for the approach of the 
issue. ε is computed as bellow. 

{ }( ) 1 25

1
+max 0, ( ) ( )y y

qpp
ε h x h x

=
=  (13) 

where y1 and y2 are exponential invariant values, fp(x) is the penalty operation for flexible 
values, p = 1, 2, …, 5, fq denote the penalty function for equality constraints. 

( )2
1 max( ) mρ K m L

L m ji
f x k h G E= − β  (14) 

( )({ }2
2 max1 +1
( ) iB

i i
m

M K m
im i ρ K

B
B Bf x k f G E

= =
= −  β  (15) 

{ }3 max1 +1
( ) iB

m

M K m
jm i ρ K

f x G A
= =

= −  β  (16) 

{ }4 max1 +1
( ) i

m

BM K m
jm i ρ K

f x ζG I
= =

= −   (17) 

{ }5 max( ) max , i
L
m Bf x t t L= −  (18) 

Equations (14) to equation (18) are various types of penalty functions transformed by the 
maximum energy expenditure constraints of SMDs, maximum energy expenditure 
constraints of servers, CPU computation cycle constraints of servers, storage constraints 
of servers, latency constraints, and bandwidth constraints, respectively, with Amax being 
the maximum amount of ES’s CPU cycles, Imax being the maximum memory storage 
space of the ES, and ζ denoting the ES’s memory space. 

4.2 Improvement of particle swarm optimisation algorithm 

Intending to the issue that traditional PSO algorithms tend to fall into local optimality and 
have limited search performance, this paper combines the linear decreasing weights 
(Mazahery et al., 2013) and the power law distribution function (Mitzenmacher, 2004) to 
calculate the inertia weights in PSO algorithms, which is firstly used to control the 
overall trend of the inertia weights and then combined with the power law distribution 
function to adjust the specific weights of each particle. A power law distribution function 
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is then used to adjust the specific weights of each particle. In this way, we can balance 
the effect of global seek and local seek, and improve the performance of PSO algorithm. 
The steps in detail are as bellow. 

1 Initialisation, setting the maximum and minimum inertia weights umax and umin, and 
the maximum amount of iterations itermax. 

2 Linear decreasing weight calculation, in each iteration, the current base inertia 
weight ubase is calculated according to the linear decreasing method. 

( ) ( )max max min max/baseu u u u iter iter= − − ∗  (19) 

3 The power law distribution function is calculated and for each particle, its weight 
factor ufactor is calculated according to the fitness ordering and the power law 
distribution function. 

( )/factor sizeu rank swarm p∧=  (20) 

4 To update the position of the particles, multiply ubase and ufactor to get the inertia 
weight u of each particle as shown in equation (21), and then substitute u into 
equation (2) with the acceleration constants a1 and a2 to update the present position 
xi(t + 1) of the particles. 

( ) ( )( ) ( )max max min max/ / sizeu u u iter iter rank swu arm p∧− − ∗= ∗  (21) 

where rank is the rank of the particle in the population, swarmsize is the size of the 
population, p is a positive real number, and plays a critical role in the power-law 
distribution function, affecting the weight factor ufactor of each particle. 

4.3 Edge computing resource scheduling based on EPSO algorithm 

The solution x of EPSO algorithm represents the current resource allocation of all SMDS, 
which is composed of four parameters related to SMD: calculating speed hm, power 
expenditure of downloaded data ,T

mP  calculating data offloading percentage ρm, 
remaining network bandwidth ratio λm and uninstalled server location Bm. Assume that 
the number of SMDS is M, the length of x is 5M, and M shitter percentage µm is stored, 
the parameter bm is stored in the last M positions. The encoding mode of the final 
individual code x is as bellow. 

( )1 2 1 1 11, , , , , , , , , , , ,T T
M M M MMx h h h P P μ μ λ λ b b=      (22) 

Each particle maintains a velocity v, which represents the range of resource allocation 
changes. The length of v is 4M, and different velocity values corresponding to the first 
four parameters of each SMD are stored respectively. The variable x output of the final 
algorithm is the resource allocation method and server allocation scheme with the lowest 
energy consumption. 

After x is encoded, edge computing resources are scheduled. First, the particle is 
initialised, randomly generating a floating point number in the different value ranges of 
five parameters, corresponding to the values of hm ∈ [0, hmax], max[0, ],T

mP P∈  µm ∈  
[0, 1], λm ∈ [0, 1], and bm ∈ [1, B. After initialisation, λm is converted to the true 
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bandwidth ratio b
mτ  based on the server subscript b to which each SMD is assigned, as 

shown below. 
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 (23) 

where MB is the amount of SMDS allocated to server b. 
After conversion, using the idea of power law distribution function, the population 

was first sorted according to the fitness value and stratified. After initialisation, the 
population is sorted from smallest to largest according to the value of the objective 
function, and then each QS particle is divided into a layer in order, in which the first QS 
particles are divided into the first layer Q1, and the last QS particles are divided into the 
last layer QN. 

Then, the individual updating operation is carried out. Assuming that the jth particles 
xij, 1 and 1N Si Q j Q< <   located in the i layer, the two particles 1 1 2 2, ,andk l k lx x  with 
a higher level will be selected as the template for the evolution of xij at first, where k1 and 
k2 are randomly generated within the range [1, QS]. l1 and l2 are generated randomly in 
the range of [1, i), and the update operation is required after the selection of l1< l2 
evolution template, and the final optimisation result ,

k
i jx  is output. 

( ) ( )1 1 2 2, ,1 2 , ,,+ + , [0, 4 )k k k k k k
i i j i j i jl k lkv ux a x x φa x x k M= − − ∈  (24) 

, ,+ [0, 4 )k k k
i j i i jx v x k M= ∈  (25) 

where u represents dynamic weight. As shown in equation (21), subscripts 0 to 4M-1 in x 
and v store four continuous variable optimisation parameters hm, ,T

mP  µm and λm of SMD. 
As for the positional parameter bm, it is an integer variable. If the update operation is 
carried out according to the above method, the update result is a floating point number 
rather than an integer. If the update result is rounded by rounding, the final server 
allocation result set and a server cannot play a role in reducing energy consumption. 
Therefore, for the update of bm, the cross operation of two evolutionary template 

1 1 2 2, ,andk l k lx x  is carried out by referring to the cross operation of GA, and the 
corresponding parameter position is assigned to xij, so as to complete the update. 

5 Experimental results and analyses 

To evaluate the effects of the experiment, GA (Chakraborty and Mazumdar, 2022), ACO 
(Liu et al., 2023) and PSO, which are commonly used in edge computing resource 
scheduling methods, are selected respectively. 2021), GAPSO (Chafi et al., 2023) and the 
proposed method EPSO were compared. The simulation experiment in this paper is 
implemented using Python 3.7 under the environment of Windows 10 operating system 
with 16 GB memory, Inter Core i5-4460 processor and 3.2 GHz frequency, and simulates 
ES and SMD by creating a virtual machine. Simulation using the publicly available real 
dataset MNIST, which contains 60,000 training data and 10,000 test data. The dataset 
size is power-law distribution, and each device has a dataset range of 500 to 5,000. In this 
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paper, the dataset is divided into training set and test set in the ratio of 7:3. The 
simulation parameters of this experiment are indicated in Table 1. 
Table 1 Parameters of the simulation experiment 

Parameter Value  Parameter Value 
Total system bandwidth 20 MHZ  CPU frequency of ES 10 GHz 
Noise power –120 dBm  Systematic training rounds 100 
Transmission power 20 dBm  Batch size 128 
CPU frequency of SMD 2 GHz  Training learning rate 0.01 

The data in Table 2 are the comparison of ES average energy consumption value (AEV), 
average penalty value (APV) and feasible solution probability (FSP) of the five methods 
running independently for 100 times under different number of SMDS (Aslanpour et al., 
2020). Each method stops improvement when the objective function evaluation reaches 
2,000 times, and FSP is used to indicate that each method gets a feasible solution value of 
0 in 100 independent runs. 
Table 2 Improvement outcome of five methods with various numbers of SMDs 

Number of SMDs Indicator GA ACO PSO GAPSO EPSO 
M = 5 AEV 4.5521 4.8357 4.4726 4.2591 4.1327 

APV 0 0 0 0 0 
FSP 100 100 100 100 100 

M = 10 AEV 11.9253 13.6951 10.8197 9.8152 8.6288 
APV 1.28 2.49 0.72 0 0 
FSP 48 35 72 89 100 

M = 15 AEV 19.7425 23.1589 18.9112 15.6286 13.1473 
APV 2.53 4.36 1.19 0.08 0 
FSP 35 13 65 77 100 

From Table 2, the energy consumption improvement outcome of EPSO is better than 
another four methods, and the feasible solution probability of EPSO can reach 100% 
under all different SMD quantities. When the amount of SMDS is 5, each method can 
find possible approaches. The AEV of GAPSO is close to that of EPSO, but EPSO has 
the lowest energy consumption optimisation result. When the number of SMDS 
increases, such as M = 10 and M = 15, the possible approaches’ probabilities of GA and 
ACO are both lower than 50%, implying that they are no longer applicable in the 
improvement model with a large amount of SMDS. The feasible solution probabilities of 
PSO and GAPSO are lower than 90%, while the possible approaches’ probabilities of 
EPSO are still 100%. 

Figure 4 implies the distribution of energy consumption optimisation results for 100 
independent runs of the five methods when the number of SMDS is 10. As can be seen 
from the figure, the energy consumption of EPSO is 9.25 W, which is reduced by 53%, 
42%, 39% and 17% respectively compared with the other four methods. The optimisation 
results are the best and the distribution is the most concentrated, indicating that the 
performance of EPSO is stable, and the average and median energy consumption are 
lower than that of the other four algorithms. The outcome of PSO and GAPSO were 
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similar. However, the distribution of optimisation outcome of GA and ACO algorithms is 
poor, and the distribution range of optimisation outcome of ACO in different numbers of 
mobile devices is larger than that of other algorithms, which indicates that the 
optimisation results of ACO are unstable. 

Figure 4 Comparison of optimised distribution results for different methods (see online version 
for colours) 

 

Figure 5 Comparison of resource utilisation rates of different methods (see online version  
for colours) 

 

The comparison of resource utilisation of ES under different request tasks is shown in 
Figure 5. When the number of task requests is 200, the resource utilisation of GA, ACO, 
PSO, GAPSO and EPSO are 58%, 40%, 67%, 69% and 78%, respectively. Since ACO 
allocates ES resources based on the sequential search of incoming request tasks, it will 
lead to strong randomness and irregularity of ES resource utilisation. Like ACO, GA will 
also cause the imbalance of ES resource utilisation, but the resource utilisation rate of GA 
is better than ACO in most cases. Since PSO can perform task scheduling and ES 
resource management, PSO can achieve high resource utilisation while maintaining 
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relatively stable fluctuation amplitude. Although EPSO algorithm’s fluctuation range is 
second only to GAPSO algorithm, its resource utilisation rate is the highest compared 
with other algorithms. To sum up, EPSO can efficiently and adaptively allocate 
computing resources of ES, and effectively optimise resource utilisation of ES. 

6 Conclusions 

Due to issues such as slow CPU operation speed and limited battery capacity, SMD itself 
is unable to handle applications with high computing demands, necessitating the use of 
edge computing technology to alleviate the hardware requirements on mobile devices. 
However, offloading certain computational tasks from SMD to ES results in additional 
power consumption. To address these challenges, this paper designs an edge computing 
resource scheduling method based on meta-heuristic optimisation algorithms, offering the 
following advantages. 

1 Establish edge computing resource scheduling system model, and model SMD 
calculation energy consumption, transmission energy consumption and ES 
calculation energy consumption according to different equipment conditions among 
servers. 

2 The objective function of total energy consumption optimisation of the system was 
established, and the computational speed and data transmission power consumption 
were taken as constraint conditions. Since the total energy consumption optimisation 
problem was a complex nonlinear programming problem, PSO was adopted for 
optimisation. 

3 A power law distribution function is introduced to optimise the PSO algorithm, 
which gradually decreases according to the nonlinear law of the power law function, 
thus enhancing the global and local search capabilities of PSO. 

4 Intending to the issue that PSO cannot achieve better energy consumption 
optimisation results when solving the objective function, the proposed method 
combines the crossover operation of GA to make up for the shortcoming of PSO 
algorithm in optimising integer discrete variables. It is also proved through 
comparative experiments that the suggested method obtains solutions with lower 
energy consumption than other methods. 

In the future research, this article will design novel seek patterns for use in methods to 
deal with large-scale issues, enhancing the capability of methods to arrive at attainable 
solutions when the amount of SMDs and ESs is high. 
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