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Abstract: Artificial intelligence (Al) is being increasingly used in high-stakes
working areas to augment experts in challenging decision-making situations.
The Al support is intended to reduce the cognitive load on experts, which
should ideally be reflected both in a greater sense of well-being when working
on demanding tasks and in joint performance exceeding that of both the
humans and Al alone. However, the extent and conditions of achievement
(such as the Al accuracy and explainability) of these intended effects have not
been systematically investigated. Therefore, we identified and reviewed 44
articles published since 2018 that have investigated the effects of Al-based
decision support systems on experts in controlled experimental settings. The
results suggest that, for optimal human-Al performance, which surpasses the
performance of either alone, both must operate at similar and high levels.
However, the effect on the psychological load remains unclear owing to limited
research.
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1 Introduction

In high-stakes working areas, such as finance, healthcare and law, artificial intelligence
(Al) applications are being increasingly used to assist professionals in making demanding
decisions (Lai et al., 2023; Zhou et al., 2023). For this, Al systems process and analyse all
available (unstructured) information and data for a specific decision situation — a task that
usually exceeds human information processing capabilities (Marois and Ivanoff, 2005) —
and provide the core results to humans in the form of predictions or recommendations
(Janiesch et al., 2021; Jarrahi, 2018; Murphy, 2012). Users of such Al-based decision
support systems (AI-DSS) can decide whether to follow the system’s advice. The human
decision-making authority is essential for legal, ethical and safety reasons in areas, where
the consequences of decisions can be devastating (Lai et al., 2023). This is because
although AI-DSS — which are mostly based on machine learning (ML) models (Zhang
et al., 2020; Chen et al., 2023) — can have impressively high predictive performance, the
correctness of their advice cannot be guaranteed owing to their probabilistic character
(Zhang et al., 2020). In other words, a residual uncertainty of their erroneousness always
prevails. Furthermore, ML models are only as accurate as the historical data used to train
them, and this data may contain, for example, input errors and biases (Vasconcelos et al.,
2018; Zhang et al., 2020). Thus, experts should evaluate the results of AI-DSS based on
critical thinking, intuition, domain knowledge, and experience and maintain control over
the decision-making process and associated actions (Hellebrandt et al., 2021; Spector and
Ma, 2019; Wilkens, 2020).

Ideally, this human-Al joint decision-making performance should exceed the
individual performance of both, the human and Al system alone (Zhang et al., 2020;
Bansal et al., 2021; Levy et al., 2021). However, according to Buginca et al. (2021) and
Liu et al. (2021), this aim is only partially achieved; both the groups referred to many
experimental studies in which the human-Al joint decision-making performance
significantly outperformed individual human performance, and only in rare cases
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exceeded that of Al alone (see, e.g., Bansal et al., 2021; Buginca et al., 2020, 2021;
Carton et al., 2020; Green and Chen, 2019a, 2019b; Lai et al., 2020; Lai and Tan, 2019;
Lin et al., 2020; Poursabzi-Sangdeh et al., 2021; Wang and Yin, 2021; Zhang et al.,
2020). Thus, although humans are influenced by AI-DSS, they occasionally face
difficulty establishing appropriate trust in Al-based systems and mistakenly reject correct
Al advice or follow incorrect Al advice (Liu, 2021). Due to Vasconcelos et al. (2023), the
latter type of error, known as ‘overtrust’, has mainly been observed in empirical studies
to date. Thus, the efficiency of human-Al cooperation depends strongly on AI-DSS
accuracy.

However, the applicability of these findings to the use of AI-DSS in high-stakes work
contexts is unclear. This is because almost all studies reported by Buginca et al. (2021)
and Liu et al. (2021) investigated the effects of AI-DSS in non-professional contexts or
used laypersons as interaction partners of AI-DSS. In professional contexts, however, as
already discussed, the experts are the intended users of AI-DSS and should have the
necessary domain knowledge and experience to critically scrutinise the Al advice.
According to current research results, the domain-specific knowledge, in human-Al
interaction, equips humans with ability to recognise and reject incorrect AI-DSS advice
(Gaube et al., 2021; Bayer et al., 2022; Dikmen and Burns, 2022). This is probably due to
experts having a better mental model of the decision situation than laypersons, and
therefore, being able to detect errors easily. Second, humans with a high level of
expertise also have higher professional identification (Beijaard et al., 2000) and more
confidence in their judgements than those with less expertise (Gaube et al., 2023), which
presumably causes them to question and reject the advice of Al systems more critically.
Therefore, we aimed to examine the findings of current research that specifically analyses
the influence of AI-DSS in professional decision-making situations with experts as users
based on the following questions: Do experts show appropriate trust in AI-DSS so that
they outperform themselves and the Al system through its assistance? Or do experts also
tend to overly rely on Al, which leads to human-Al performance depending strongly on
Al system accuracy? Alternatively, is there evidence of ‘“undertrust’, resulting in low
dependence on Al performance or advice?

In addition to the central influence of the accuracy of AI-DSS on user experience and
behaviour, many researchers are currently discussing the importance of the explainability
of AI-DSS (von de Merwe et al., 2022; Lai et al., 2023). They assume that the black-box
nature and associated lack of transparency of ML-based systems make it difficult for
users to know when they should and should not follow Al advice (Jussupow et al., 2021).
Therefore, they attempt to use Al methods, referred to in this context as explainable Al
(XAI) methods, to explain the functioning of ML-based applications and investigate user
reactions to these additional explanations (Arrieta et al., 2020). Previous studies with
laypersons as interaction partners of AI-DSS observed varying effects of additional
explanations. First, no effect on the human-Al interaction (see, e.g., Weerts et al., 2019;
Zhang et al., 2020), second, a more calibrated trust in the systems, reflecting improved
human-AI performance (see, e.g., Mercado et al., 2016; Stowers et al., 2020), and third, a
worse human-Al performance (see, e.g., Bansal et al., 2021), as users interpreted the
additional explanations as a general sign of competence and their presence alone
increased trust in the Al system (Buginca et al., 2021).

At this point, the expert reactions to the additional explanations are unclear. However,
they can presumably better judge the plausibility of system explanations by comparing
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them with the familiar expert rules, and thus, demonstrate a higher level of appropriate
trust. The rules developed by the Al system, which become visible through the system
explanations, do not necessarily match those of experts, regardless of whether they are
correct. This can increase the mistrust of the experts in the Al system.

Therefore, this study was aimed at investigating the effects of AI-DSS and its
accuracy and explainability in professional decision-making situations, specifically on
experts. We are interested in the effects on:

1 the behaviour of experts in the form of changes in performance

2 the psychological load experienced by them in decision-making situations, e.g., their
mental effort.

This is because, in our modern working world, there is an increasing emphasis on
promoting not only performance but also considering the well-being of employees (Cai
et al., 2019; Finck et al., 2022; Langer et al., 2021; Singh et al., 2022). To achieve this
goal, we aim to systematically collect data on current experiments with experts as
AI-DSS interaction partners in professional decision situations and evaluate their
summarised results in relation to specific research questions (RQ):

RQ1 How does the provision of AI-DSS in work-related decision situations influence
the:

a  performance behaviour

b  psychological load experience of experts?

RQla Does human-Al collaboration improve the performance of experts in
work-related decision situations compared to firstly their individual
performance without AI-DSS and secondly the individual performance of
the AI-DSS without expert validation?

RQ1b How does human-Al collaboration improve psychological load
experienced by experts in work-related decision situations compared to
their psychological load experience without AI-DSS?

RQ2 How do individual characteristics of AI-DSS, especially its accuracy and
explainability, influence the psychological load experienced by and performance
behaviour of experts in work-related decision situations?

2 Methodology

A systematic literature review was conducted, wherein the results of existing studies on
the impact of AI-DSS in work-related decision situations on psychological load
experienced by and performance behaviour of users were summarised. This review
adheres to the guidelines of the preferred reporting items for systematic reviews and
meta-analyses (PRISMA) statement guidelines (Page et al., 2021). Following the
PRISMA flowchart, in this section, the methodological approach is described in three
steps:

1 identifying relevant studies

2 selecting studies
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3 analysing the included studies and synthesising the findings.

The first two steps are described in this section, and the third step is discussed in the
results section.

2.1 Identifying relevant studies

In this study, we identified and extracted scientific journal articles addressing the
relationship between the provision of AI-DSS in work-related decision scenarios and
psychological load experienced by experts and associated performance behaviour. For
this, we used five major electronic databases: Scopus, Web of Science, ACM Digital
Library, IEEE Xplore, and EBSCOhost (PsycINFO, PsycArticles, and PSYNDEX). To
achieve this, we first identified a set of keywords related to the RQs (Table 1).

Table 1 Search string

Composite independent variable

Context Dependent variable
Part 1 Part 1
‘artificial intelligence’ (decision NEAR/2 aid) ~ work* OR job* ‘user experience’ OR
OR ‘augmented OR (decision NEAR/2 OR employe* behavio* OR *load
intelligence’ OR assistan®*) OR (decision ~ OR profession* OR stress OR mental
‘intelligence NEAR/2 agent*) OR OR occupation*® OR psych* OR
augmentation’ OR ‘AT’ (decision NEAR/2 cognitiv OR perform*
OR ‘data driven” OR support®) OR (decision OR satis* OR
‘machine learning’ NEAR/2 system*) confiden*

Notes: Example strings used in the Web of Science. In other databases, the operators
were adapted as necessary, such as in Scopus: ‘W/2’ was used instead of
‘NEAR/2’. In all database searches, the four categories were linked with the
Boolean operator ‘AND’.

A literature review completed in April 2024 yielded 10,917 relevant articles after filtering
out papers not published in academic journals or proceedings, those not in English, and
those published before 2018 (Table 2). The decision to include only recent studies in the
review is based on the recent advances made in Al (Lai et al., 2023; Levy et al., 2021;
Nicodeme, 2020). These developments have presumably led to current expectations that
Al systems are significantly more powerful than non-Al-based applications (Almarashda
et al., 2022), and can provide significant relief (Hornung and Smolnik, 2022). These
expectations and attitudes influence human experience and behaviour in human-Al
interaction (Ajzen et al., 2018; Liu et al., 2023); therefore, current Al users probably
experience themselves differently when interacting with Al and behave differently than
they did years ago. The decision to focus specifically on studies from 2018 onwards is
based on a recent review by Lai et al. (2023). According to this review, research on
human decision-making in the context of Al has increased significantly since 2018, with
the advancements in Al technologies. Following the database search, we used the
snowball sampling system (Wohlin, 2014) to explore suitable articles. This search
yielded 57 articles. A total of 10,974 studies were identified, including 2,342 duplicate
studies. Ultimately, 8,632 studies were included.
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2.2 Study selection

The relevant studies were selected in two screening steps using the inclusion and
exclusion criteria listed in Table 2. First, titles, abstracts, and keywords were checked,
and unsuitable studies were eliminated. After thorough reading, the remaining studies
were classified into ‘include’, ‘exclude’, and ‘maybe’ categories. Two independent
reviewers conducted both the steps. The free Rayyan platform for systematic literature
reviews (https://www.rayyan.ai/) was used for this process. Thereafter, the reviewers
discussed the studies categorised under ‘maybe’ and ‘include’ by only one reviewer. In
cases of persistent disagreements, a third reviewer was consulted. Finally, a consensus
was reached in all cases.

Table 2 Inclusion and exclusion criteria for the review
Inclusion criteria Exclusion criteria
Soft Population ~ Experts who are tasked with Laypersons with no expertise in
factors and making work-related decisions the concerned task, which is often
problem reflected in a lack of
qualifications; people who do not
have to make decisions or those
whose decisions are not
professional; people who make
decisions in groups and not alone
Intervention RQ1  Provision of an AI-DSS RQ1  Provision of a fully
for decision making. automated Al-based
system or a conventional
DSS that are not based on
ML methods.

RQ2 Provision of an AI-DSS RQ2 Same criteria as for RQI;
for decision-making, no focus on the two
focussing on the system design criteria or their
design criteria of accuracy design is not considered
and explainability or to from a generally valid
their extent. perspective, but from a

technical perspective, for

example by comparing

results of different XAl

explanation methods, such

as LIME and SHAP.
Control RQ1 A control group thatisnot RQ1 No control group

provided with an AI-DSS
(e.g., rule-based DSS or
no DSS).

included; control group
that does not relate to the
system but to the
experience level of the
subjects

Notes: Al = artificial intelligence; DSS = decision support system; ML = machine
learning; LIME = local interpretable model-agnostic explanations;
SHAP = Shapley additive explanations.
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Inclusion and exclusion criteria for the review (continued)

Inclusion criteria

Exclusion criteria

Table 2
Soft Control
factors
Outcome
Hard Year of
factors  publication
Language
Publication
type

RQ2 A control group that is
provided with an AI-DSS
with a different design of
the system characteristics
than the intervention
group.

Psychological load experienced
by subjects (e.g., mental effort)
and associated performance
behaviour, which is measurable,
and thus, comparable

Published in 2018 or later
English

Journals; conference papers;
proceedings

RQ2 No control group
included; control group
that does not relate to the
system but to the
experience level of the

subjects

Subject attitudes towards an
AI-DSS, e.g., whether they rate it
as trustworthy; qualitative
individual statements about the
experience of psychological load
and related behaviours of
professionals during tasks, which
are difficult to compare

Published before 2018

Other languages, for, e.g.,
Spanish, Chinese, Korean, etc.

Book chapters; magazine articles;
reports; theses; dissertation

Notes: Al = artificial intelligence; DSS = decision support system; ML = machine
learning; LIME = local interpretable model-agnostic explanations;
SHAP = Shapley additive explanations.

Figure 1 Flow diagram of the screening process

Records identified from database

‘Web of Science (N=2464)
ACM Digital Library (N=2359)
IEEE Xplore (N=1830)
EBSCOhost (N=173)

Scopus (N=4091)

Articles found in other sources
(N=70)

Identification

Screening

| Included | |

!

Full text articles assessed for eligibility
(N=182)

Full idenified articles
(N=10987)
Duplicates articles removed
L (N=2342)
Title and abstract screened
(N=8645)
L Articles excluded
(N=8463)

)

Studies included in review
(N=44)

Articles excluded
(N=138)

* no working context (n=45)

« wrong study design (n=40)

* subjects were laypeople (n=28)

* wrong independent variable (n=15)

* wrong dependent variable (n=6)

« results are already reported in another
included study (n=3)

+ only the study design is presented, not
the results (n=1)
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Descriptive analysis of the included studies

Table 3
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Descriptive analysis of the included studies (continued)

Table 3
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Descriptive analysis of the included studies (continued)

Table 3
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Descriptive analysis of the included studies (continued)

Table 3
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Descriptive analysis of the included studies (continued)

Table 3
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The selection process is illustrated in Figure 1. Initially, 8,645 studies were screened
based on title, abstract and keywords, with 8,463 excluded as irrelevant. Subsequently,
the remaining 182 articles were reviewed in terms of full text, resulting in 138 studies
being excluded from further analysis. Among these was a paper by Li et al. (2021), which
lists 38 studies on the impact of AI-DSS on radiologists in the detection of thoracic
pathologies. A total of 13 of these 38 studies (Bai et al., 2020; Dorr et al., 2020; Kim
et al., 2020; Koo et al., 2021; Kozuka et al., 2020; Liu et al., 2019; Martini et al., 2021;
Nam et al., 2021; Rajpurkar et al., 2020; Singh et al., 2021; Sung et al., 2021; Yang et al.,
2021; Zhang et al., 2023) met our inclusion and exclusion criteria and were included in
our analysis (see Figure 1, ‘articles found in other sources’). Finally, 44 peer-reviewed
journal articles were included.

3 Results

3.1 Descriptive analysis of the included studies

The majority (n = 40) of the 44 studies examined the use of AI-DSS in a medical work
context; thus, the participants in the identified studies were mostly physicians (n = 36). In
total, 2,034 professionals participated in the 44 experiments, with an average cohort size
of M = 46 individuals (SD = 95). The large standard deviation indicates the considerable
variation in sample size, with subjects ranging from N = 2 (Kindler et al., 2023; Kozuka
et al., 2020; Liu et al., 2019; Singh et al., 2021; Zhang et al., 2023) to N = 416 (Lacroux
and Martin-Lacroux, 2022; see Table 3).

A total of 39 studies examined the general effect of AI-DSS in work-related decision
scenarios on their users and answered RQ1 (Table 3). They compared the experience and
behaviour of subjects when performing a (simulated) work task with and without an
AI-DSS. Under control conditions (without Al-based support), the subjects received no
technical support in most cases; only in a few individual cases was some other form of
technical support provided, e.g., by conventional software systems (Didimo et al., 2018;
Lee et al., 2020). Most of the included studies used a within-subject design (n = 38),
wherein the order of the experimental conditions (with vs. without Al support) was
randomly assigned.

Twelve studies included in this review examined the effects of the individual
characteristics of AI-DSS and answered the RQ2. Eleven of the nine studies used a
within-subjects design wherein the participants were randomly exposed to all conditions
(Table 3).

3.2 Results for RQI: effects of the provision of AI-DSS in work-related decision
situations on

3.2.1 Performance of experts compared to their individual performance without
AI-DSS

Of the 39 studies that examined the general influence of AI-DSS usage in work-related
decision-making scenarios, all but one (Cai et al., 2019) explored how Al affects the task
performance of users. Most of these studies investigated this by examining whether
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AI-DSS usage improves the accuracy of decisions made during task processing (n = 16)
and/or decreases the time required to complete the tasks (n = 14; see Table 4).

Of the 16 studies that examined the impact of AI-DSS on the task accuracy of users,
12 reported a recognisable improvement (see Table 4). However, only seven studies
indicated a significant difference (Bai et al., 2020; Didimo et al., 2018; Finck et al., 2022;
Nam et al., 2021; Rajpurkar et al., 2020; Rudie et al., 2021; Zhou et al., 2021). The
remaining five studies did not report significance values (Kavya et al., 2021; Laursen
et al., 2023; Yang et al., 2021; Yoon et al., 2023; Zhang et al., 2023). This is probably
owing to the often very small sample sizes, which ranged from N = 2 (Zhang et al., 2023)
to N =36 (Yoon et al., 2023). Therefore, to understand the influence of the Al support in
work-related decision-making scenarios better, we calculated the effect sizes of the
changes in task accuracy using Cohen’s d for all studies (see Table 5) except one by Zhou
et al. (2021), because no specific accuracy values was reported therein. According to
Cohen (1988), a d-value between 0.2 and below 0.5 is considered a small effect, a
d-value between 0.5 and below 0.8 is considered a medium effect, and a d-value above
0.8 is considered a large effect.

Of the remaining 15 studies, three showed a strong effect of AI-DSS on the task
performance of users (see Table 5). The largest effect was identified by Laursen et al.
(2023), with d = 4.45. In their experiment, physicians searched a patient record for
haemorrhages within a given time, first without and then with AI support. The Al
highlighted relevant text passages with high sensitivity (93.7%) and specificity (98.1%),
and participants were informed of the system performance beforehand. However, as there
was no washout period between conditions, practice effects cannot be ruled out. Didimo
et al. (2018), who used a different study design from that of Laursen et al. (2023), with a
between-subject approach, also demonstrated a strong effect of Al assistance. For
example, tax authority employees improved their task performance in one of the two task
sets from 63.09% to 98.83%, corresponding to d = 3.27. The authors did not mention
whether the participants were informed about the Al performance beforehand, and no
specific data on the system performance were provided, other than that indicating that it
was a high-performing system. In the study by Yoon et al. (2023), for which we
calculated the third strongest effect, the Al alone achieved a 96.3% task accuracy, which
was 4.5% higher than the baseline performance of the N = 36 ophthalmologists. With Al
support, their performance increased to 95.2%.

Four studies demonstrated a moderate performance improvement through the use of
Al assistance (see Table 5). Notably, in three of these studies (Bai et al., 2020; Rajpurkar
et al., 2020; Rudie et al., 2021), similar to the results of Yoon et al. (2021), the Al
performance surpassed that of human experts. However, in the study of Rudie et al.
(2021), this was only the case in a subset of radiology residents, where a significant
performance increase from 30% to 55% was noted. Among senior radiologists, their own
performance (69%) was higher than that of the Al (61%), and no significant effect was
observed, with their task accuracy only improving slightly to 72%. As opposed to the
other three studies, Zhang et al. (2023) did not report separate Al performance. However,
it is important to note that this study involved only two participants and used a
between-subject design, making it unclear whether the observed differences were owing
to the system or individual competency variations.

For the study by Yang et al. (2021), we calculated an effect size of d = 0.33,
indicating a small effect. The task performance was already high without the Al system
for the three radiologists at 94.1%, and with Al support (91.4% individual Al
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performance), it increased slightly to 95.1%. It is worth noting that the within-subject
design did not include a washout period.

In the remaining seven studies, three investigations (Jussupow et al., 2021; Kiani
et al., 2020; Lacroux and Martin-Lacroux, 2022) demonstrated that when the standalone
performance of the Al was lower than that of the human participants, the Al assistance
according to Cohen’s d had no significant impact on the average performance of experts.
This was consistent with findings from the sample of experienced radiologists in Rudie
et al. (2021). However, it is notable that, despite the lack of a statistically measurable
effect, the task performance in two of these cases actually declined owing to Al support,
which had an accuracy of 50% in both instances. For example, Lacroux and
Martin-Lacroux (2022) examined the effects of an AI-DSS on personnel selection, which
was intended to assist in selecting the most suitable candidate for a position. They found
that expert performance declined with Al support, as the accuracy of their hiring
decisions decreased from 64.2% to 56.1%. It is also interesting to note that, in the studies
by Kavya et al. (2021) and Jacobs et al. (2021), the standalone performance of the Al
significantly exceeded that of the human participants, yet in both cases, the human
performance did not improve substantially with Al assistance. In the case of Jacobs et al.
(2021), this could be attributed to the nature of the experimental task, where participants
were asked to make medical treatment decisions regarding antidepressants — a field in
which opinions on the correct course of treatment often vary significantly. Finally, the
study by Finck et al. (2022) highlighted that the effect of Al support largely depends on
the potential for improvement. In this case, human performance without Al was already
at 96.6% and increased to 99.1% with Al assistance, resulting in an effect size of
d=0.18.

Of the 14 studies examining the impact of AI-DSS on the task processing time of
users, 11 reported a noticeable improvement. However, only six studies indicated a
statistically significant difference. The remaining five studies did not report significance
values, likely owing to the often very small sample sizes, as mentioned above (see
Table 4). Three studies found no increase in performance in terms of efficiency, i.e., the
time required for completing tasks (Kiefer et al., 2022; Lee et al., 2020; Shah et al,,
2023). Notably, these studies investigated AI-DSS with extensive functionalities and
interfaces. We calculated the effect sizes of the changes with and without Al using
Cohen’s d to gain a deeper understanding of the impact of Al support on task processing
time in work-related decision-making scenarios. This calculation was possible for nine
studies (see Table 6), as five studies did not report the necessary mean values and
standard deviations (Henkel et al., 2022; Kiefer et al., 2020; Lee et al., 2022; Liu et al.,
2019; Zhang et al., 2023). Of the nine studies for which we calculated effect sizes, four
showed a large effect according to Cohen (1988), two showed a medium effect, one
showed a small effect, and two showed no effect (see Table 6). It is important to note
that, with one exception (Calisto et al., 2022), all studies that used a within-subject design
(see Table 3) included a washout period, such as four weeks (Finck et al., 2022), making
practice effects for time reduction unlikely.
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Overview of the impact of AI-DSS use on the task performance of experts, listed by
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Detailed overview of the effects of AI-DSS usage on task accuracy of experts, listed

by effect size

Table 5
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Effectiveness of Al-based decision support systems in work environment

Detailed overview of the effects of AI-DSS usage on task accuracy of experts, listed

by effect size (continued)

Table 5
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Detailed overview of the effects of AI-DSS usage on task accuracy of experts, listed

by effect size (continued)

Table 5
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Detailed overview of the effects of AI-DSS usage on task accuracy of experts, listed

by effect size (continued)

Table 5
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Detailed overview of the effects of AI-DSS usage on task accuracy of experts, listed

by effect size (continued)

Table 5
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Detailed overview of the effects of AI-DSS usage on task accuracy of experts, listed

by effect size (continued)

Table 5
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Detailed overview of the effects of AI-DSS usage on the task processing time of

experts, listed by effect size

Table 6
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Detailed overview of the effects of AI-DSS usage on the task processing time of

experts, listed by effect size (continued)

Table 6
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3.2.2 Experts’ Al-performance compared to the individual performance of
AI-DSS without expert validation

Of the 38 studies that address the influence of Al support on expert performance, in only
ten studies, the expert performance with and without AI-DSS and individual performance
of the AI-DSS were reported. This allowed a comparison of all three values across
various studies (see Table 5), and the following trends were observed:

1 when the individual performances of humans and Al were comparable and relatively
high, their combined performance outperformed that of each individual actor (Bai
et al., 2020; Kiani et al., 2020; Yang et al., 2021)

2 when the experts performance was significantly below the Al performance, the
human-Al interaction continued to boost human performance without outperforming
the individual Al actor performance (Kavya et al., 2021; Rajpurkar et al., 2020;
Rudie et al., 2021; Yoon et al., 2023)

3 when the Al performance was below human performance at a moderate level, the
human-AlI performance result was below individual human performance (Jussupow
et al., 2021; Lacroux and Martin-Lacroux, 2022).

3.2.3 Experts’ psychological load experience in terms of workload

Of the included studies, three examined the impact of an AI-DSS on the workloads
experienced by experts during decision making (Cai et al., 2019; Duchevet et al., 2022;
Lee et al., 2020). The authors asked their participants to rate their perceived mental effort,
frustration (Cai et al., 2019; Lee et al., 2020), and cognitive workload (Duchevet et al.,
2022) immediately after completing the experimental tasks (with vs. without Al support)
using standardized questions. Both Cai et al. (2019) and Lee et al. (2020) observed that
participants supported by an AI-DSS perceived significantly less mental effort during
task completion than those supported by a traditional information system. However,
neither study found any significant differences in perceived frustration. Duchevet et al.
(2022) also found no significant difference in the cognitive workload reported by
participants between the experimental and control conditions (with and without Al
support). However, the authors reported that in the debriefings, experts indicated that the
Al support freed up cognitive resources to focus on things that were important to them.

3.2.4 Experts’ psychological load experience in terms of decision confidence
and perceived safety

All three studies that evaluated the effect of AI-DSS on decision confidence found that
individual confidence of experts in their decisions was similar with and without Al
support (Finck et al., 2022; Shah et al., 2023; Zhou et al., 2021), despite two studies
simultaneously reporting that experts made significantly better decisions (Finck et al.,
2022; Zhou et al., 2021). Consistent with these findings, Duchevet et al. (2022) found
that safety perception of pilots during simulated operations was approximately the same
with and without Al support.
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3.3 Results for RQ2: role of accuracy and explainability of AI-DSS on load
experienced by and performance behaviour of experts in decision-making
situations

3.3.1 Role of system accuracy for experts’ task performance

Contrary to what may be initially assumed, none of the included studies (Table 7)
examined the effects of different accuracy levels of Al-based systems on user experience
and behaviour in Al-based situations. Instead, these studies fundamentally examined user
responses to correct versus incorrect AI-DSS system advice in decision-making
situations.

All five studies confirmed that the correctness of a system advice significantly
influenced a user task performance. Specifically, all the studies showed that the decision
quality of experts was significantly lower when they received incorrect advice than when
they received correct advice. This significant deterioration in their performance owing to
incorrect advice was also evident when compared with the baseline condition (no Al
system support) (Table 7). However, the negative impacts of incorrect Al advice
compared to no Al advice varied in magnitude across the studies. Our calculations
showed that, according to Cohen (1988), the values ranged from no effect (d = —0.16,
Jacobs et al., 2021) to a small effect (d = —0.35, Lacroux and Martin-Lacroux, 2022;
d=-0.43, Jussupow et al., 2021) to a medium effect (d =—-0.76, Kiani et al., 2020).

By contrast, the comparison between no advice and correct advice showed no
significant differences in most studies. Only one of the four studies (Table 7) reported a
significant improvement in performance with correct advice compared with no advice. In
their study, Kiani et al. (2020) differed somewhat in their study design, particularly in the
distribution of correct and incorrect advice. In the within-subjects design, the subjects
received correct and incorrect advice on approximately 84 and 16 % of the Al-assisted
decisions to be made, respectively. Jussupow et al. (2021) and Jacobs et al. (2021) also
used a within-subject design in their work; however, the subjects in Jussupow et al.’s
(2021) research received correct advice in only 50% of the Al-assisted cases, and in
Jacobs et al.’s (2021) work they received correct advice in approximately 67% (eight out
of 12) of the cases. Lacroux and Martin-Lacroux (2022) used a between-subject design,
and their subjects solved only one case; whereas, the subjects in the study by Kiani et al.
(2020) solved 160 cases (80 with and 80 without Al support).

3.3.2 Role of system accuracy for experts’ decision confidence

Jacobs et al. (2021) and Gaube et al. (2021) examined the effect of the correctness of a
system advice on the confidence of physicians in their decisions. However, these studies
observed different effects. Gaube et al. (2021) observed that all participants, including
both high- and low-level experts, were significantly more confident in their diagnoses
when the advice was accurate. By contrast, Jacobs et al. (2021) found no significant
effect of the correctness of advice on physicians’ confidence in medical treatment
decisions among conditions without system support, correct Al-based advice, and
incorrect Al-based advice.
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3.3.3 Role of system explanations for experts’ task performance

Six of the included studies focused on the effect of system explanations on users’ task
performance (Gaube et al., 2023; Hwang et al., 2022; Jacobs et al., 2021; Lee and Chew,
2023; Pushparaj et al., 2023; Yoon et al., 2023). To this end, four studies compared
whether users react differently to AI-DSS when they receive, in addition to the system
advice, its visual, textual, or auditory explanation. Pushparaj et al. (2023) found that
experts could make faster decisions owing to additional explanations, with a large effect
of d = 0.81. Gaube et al. (2023) and Hwang et al. (2022) observed that system
explanations significantly increased the task performance of novices and non-task experts
but did not affect that of experts. For instance, Gaube et al. (2023) found that non-task
experts (physicians with internal or emergency medicine training) made better diagnostic
decisions in reviewing radiographs when they received Al-based advice with visual
annotations compared to when they did not receive such annotations; however, no
significant effect was observed on the diagnostic accuracy of the radiology experts.
Notably, the subjects’ performance was considerably high throughout the experiment and
only significantly lower in one case under both experimental conditions (with and
without visual explanations). Interestingly, the annotations in this difficult case also
appeared to affect the experts positively. The authors, therefore, assume that ceiling
effects overlapped the effects in easier cases. Building on this, Yoon et al. (2023) noted
that system explanations significantly improved performance for both non-experts and
task experts. Interestingly, the performance enhancement effect was notably greater
among non-experts compared to task experts.

Lee and Chew (2023) compared the effect of two different explanatory approaches.
First, the widely used feature-based explanations, which “denotes how much each input
feature contributes to a model’s output for a given data point” [Bhatt et al., (2020), p.1]
and are also used in the studies mentioned above and, second, counterfactual
explanations.

The latter are ‘what-if® explanations describing how inputs can be modified to
achieve an Al outcome. The study showed that counterfactual explanations provided
better support than salient feature explanations. Under this condition, the subjects made
significantly more correct and fewer incorrect decisions. This is mainly because the
experts in this condition showed less overtrust and rejected wrong Al outputs in 19%
more cases than with salient-feature explanations. However, experts in the counterfactual
condition were also 10% less likely to agree with the correct Al advice compared to the
condition with salient feature explanations. This tendency towards critical thinking is also
reflected in the processing time, which is on average 21 seconds longer for the system
with counterfactual explanations compared to the one with salient feature analysis in a
decision-making task. In their work, Jacobs et al. (2021) also compared whether experts
react differently to correct and incorrect Al advice when given different types of
explanations. Specifically, they compared the effect of feature-based and heuristic-based
explanations. In this case, the results showed no significant differences in performance
behaviour between the different explanatory approaches or the control condition without
additional system explanations.



Effectiveness of Al-based decision support systems in work environment 41

3.3.4 Role of system explanations for experts’ decision confidence

Gaube et al. (2023), Panigutti et al. (2022) and Sivaraman et al. (2023) identified no
differences in the assessment of the decision confidence of subjects with and without
additional explanations of the system output. Jacobs et al. (2021) and Lee and Chew
(2023) observed that different types of system explanations also had no differential effect
on decision confidence.

3.3.5 Role of system explanations for experts’ workload

Pushparaj et al. (2023), observed no difference in the self-perceived workload of the
experts when they incorporated a system without or with additional explanations.
However, the physiological data showed that the cognitive load was significantly higher
in the condition with the additional explanations. Lee and Chew (2023) observed that the
subjects perceived experimental tasks completed with an AI-DSS with feature-based
explanations as less effortful (p < 0.01) and less frustrating (p < 0.01) than the tasks
completed with an AI-DSS with counterfactuals explanations.

4 Discussion

In high-stakes work areas, employees often face high cognitive challenges, such as
information overflow, complexity, and time and performance pressure, in their tasks
(Walczok and Bipp, 2023). Physicians are required to make diagnoses or create treatment
plans under enormous time pressure; bankers are required to create an optimum
investment portfolio from various investment options for their clients. To assist their
employees in such demanding decision-making situations, more and more organizations
are planning to implement AI-DSS (Gartner, 2023; Naikar et al., 2023). With its support,
decision-makers should feel relieved (e.g., less exhausted) during the decision-making
process (Cai et al., 2019; Langer et al., 2021) and simultaneously act more effectively or
efficiently, e.g., by making correct decisions more often (Finck et al., 2022; Langer et al.,
2021). Ideally, the added value of human-Al decision-making is also demonstrated by the
fact that the joint decision-making performance surpasses not only that of human experts
but also the Al system alone (Bansal et al., 2021; Levy et al., 2021; Zhang et al., 2020).

To examine whether all these desired goals of using AI-DSS in the work context are
achievable (RQ1) and which role accuracy and explainability of AI-DSS play in this
context (RQ2), a systematic literature review was conducted. Thus identified 44
experimental studies investigated the effect of AI-DSS as a whole or the individual
system characteristics on the psychological load experience and behaviour of experts in
work-related decision-making situations.

4.1 Results examination

Notably, very few scholars have investigated the effects of Al support on the
psychological load (RQ1b). For example, only three groups (Cai et al., 2019; Duchevet
et al., 2022; Lee et al., 2020) examined whether AI-DSS usage reduces the perceived
workload of experts in decision-making processes. Two of these three studies provided
positive indications in this direction (Cai et al., 2019; Lee et al., 2020). However, the
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limited number of studies makes it difficult to draw general conclusions regarding RQ1b.
Therefore, further investigation is required to address this question. In contrast, the
question of whether and to what extent collaboration between humans and Al in
work-related decision-making significantly enhances expert performance compared to
their performance without an AI DSS has been frequently studied, allowing us to answer
this aspect of RQla (see Subsection 3.2). First, the results show that AI support
significantly reduces the processing time of experts, provided that the system does not
have a complex interface. However, it is conceivable that positive effects may also occur
with more extensive interfaces after a longer interaction phase, which should be
investigated further in future studies (see Table 4). Second, in terms of the influence of
Al on the accuracy with which users perform tasks, we found that a wide range of effects
are possible. In some studies, Al significantly enhanced the performance of experts,
while in others, the improvement was moderate or slight. In certain cases, Al had no
impact on task performance, and in some instances, it even led to a decline in
performance (see Table 5). The way in which AI-DSS affects expert performance appears
to depend mainly on two factors. Firstly, the basic performance of the human experts
without Al support and, secondly, the performance of the Al system itself.

First, the individual human performance logically determines the (potential)
transformative power of an AI-DSS. If the human performance is already high because
there is no or only a slight discrepancy between the expert resources and cognitive
demands of the decision situation, for example, as observed in the study by Finck et al.
(2022), the efficiency of the Al system is limited. Therefore, it is not surprising that
Rudie et al. (2021), Calisto et al. (2022) and Didimo et al. (2018), who provided
participants with tasks of varying difficulty, observed that the effect of AI support
increased significantly with increasing decision complexity. Second, for AI-DSS to have
a performance-enhancing effect on experts in the workplace, it appears crucial that the
system performs at least as well as the human experts on their own. However, the
individual performance of the Al should ideally surpass that of the human experts to
achieve moderate or significant improvements in the performance of experts. Based on
this information, it could be concluded that an ideal scenario for implementing Al occurs
when the average human performance on a task is moderate, offering substantial room for
improvement, and the Al introduced operates at a significantly higher performance level.
However, in everyday work, the goal of introducing an AI-DSS is not merely to surpass
individual human performance, but also to outperform the AI system on its own.
Otherwise, from a decision-theoretic perspective, it would only be rational to delegate the
task entirely to the Al (Bansal et al., 2021). Therefore, in the second part of RQla, we
explored whether and to what extent the combined performance of humans and Al
exceeds that of the Al alone. To address this part of RQla, we could only identify ten
studies that reported on the individual performance of both the Al system and the human
expert, as well as their combined performance. Unfortunately, these studies did not
explicitly examine whether a significant difference exists between the individual
performance of the Al and the combined performance of humans and Al. Therefore, the
data did not allow for a definite answer to this sub-question, but it did enable us to make
the following observations: As discussed previously, when the Al system maintained
high performance while the human performance was significantly lower or moderate, the
collective performance remained higher than the human performance alone but lagged
behind the performance of the Al system (Kavya et al., 2021; Rajpurkar et al., 2020;
Rudie et al., 2021). However, when humans and Al systems had approximately
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comparable individual performances, their interaction resulted in a performance that
exceeded that of both the human and system (Bai et al., 2020; Kiani et al., 2020; Yang
et al., 2021). This observation supports the assumption of Bansal et al. (2021) in which
complementary performance is based on comparable individual performance. However,
in an exploratory analysis of studies with laypersons, for a similar performance
relationship between human and machine, the joint performance did not exceed both
individual performances, but merely improved that of the human (see, e.g., Green and
Chen, 2019a, 2019b). This can be attributed to the fact that, in the expert studies in our
review, the performance of humans and Al was not only comparable, but also generally
high, in contrast to the studies that included laypersons. Thus, the participants in these
studies were probably better able to judge when the advice of an Al was correct or
incorrect owing to their high level of expertise, as evidenced by their higher performance
scores. Detailed research by Gaube et al. (2021) on how humans deal with correct and
incorrect Al advice support this assumption. The study showed that less experienced and
competent experts have more difficulty identifying and overriding incorrect Al advice
than their more experienced or competent colleagues. However, even the latter group still
tends to over-rely on Al systems, albeit to a lesser degree (Jacobs et al., 2021; Jussupow
et al., 2021; Kiani et al., 2020; Lacroux and Martin-Lacroux, 2022). Thus, in relation to
RQ?2, it can be concluded that the accuracy of an AI-DSS significantly influences the
performance of experts in work-related decision-making situations (see Subsection 3.3).
Whether the automation bias (Lee and See, 2004; Skitka et al., 1999) will persist with
prolonged use of the system or users will learn to evaluate the performance of the Al
more accurately over time remains an open question. In addition, the question of the
effects of this system property on the psychological load of the system users remains
unanswered. Current research is focused on helping users to better understand when to
trust and not trust Al system advice. One of the most popular approaches is to provide
additional system explanations to make the inherently opaque systems more
understandable to the users, and therefore, easier to judge (Lai et al., 2023). For this
purpose, two types of explanations are typically developed in practice using XAl
methods: decision and model explanations. Decision explanations should help users to
understand individual data-related decisions more precisely, which is referred to as data
explainability. Model explanations are intended to help to understand the model
interdependencies. This involves the general functional relationships between the input
and output variables (Kraus et al., 2021). The identified studies exclusively investigated
the performance-improving effect of decision explanations on experts. They consistently
showed that they are helpful for novices (or non-task experts). For senior experts, the few
identified studies did not show such clear results (Gaube et al., 2023; Hwang et al., 2022;
Yoon et al., 2023); hence, we cannot answer this part of RQ2, and further research is
required. Specifically, it would be interesting to investigate further the assumption that
experienced experts also benefit from explanations, but only in more complex cases in
which their heuristics are no longer sufficient and additional explanations become
necessary. It will also be worthwhile to explore how different explanatory approaches
affect experts in future studies, as the number of studies on this topic remains very
limited. In addition, future studies should analyse the impact of model explanations. This
is because, according to qualitative research, users intend to understand the local,
case-specific reasons for the model decisions and the fundamental and global properties
of the model, such as its known strengths and limitations, as well as overarching design
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goals, that is, what it should be optimised for (Nourani et al., 2022; Riveiro and Thill,
2022). According to Riveiro and Thill (2022), a significant number of users also request
explanations only when the system behaves differently from their perspective. Therefore,
in the work context, investigating whether users react differently to systems that
continuously display explanations compared with systems that only provide explanations
on request will be interesting.

4.2 Limitations and general implications for future research

Our study had certain limitations. Most of the identified studies investigate the
effectiveness of AI-DSS in the medical field (see Table 4). Consequently, the findings
obtained can primarily be applied to medical cases. To test the applicability of the results
to different professional contexts, the effects of AI-DSS on users in wider professional
settings, such as finance, should be investigated. For a specific area in the medical field,
which was not regarded in our study owing to our broad application focus, we
recommend the use of specialised medical databases such as PubMed. In addition, we
may have missed relevant studies owing to our search strategy. We focused on
publications from 2018 onwards, as Al technologies have recently reached a new level of
maturity owing to significant technical advances (Lai et al., 2023; Levy et al., 2021;
Nicodeme, 2020) and are currently perceived as advanced and powerful (Almarashda
et al., 2022). This perception may strongly influence human reaction towards AI-DSS
(Liu et al., 2023). However, relevant research may also have been published before this
period and is missing from our overview. Therefore, our findings reflect the most recent
research. Third, our screening strategy focused exclusively on controlled experimental
studies. This decision is based on the conviction that this methodological gold standard is
best suited to identify causal relationships (Sharma et al., 2020). Compared to alternative
approaches, such as a pre-post design, it allows for effective control of confounding
variables. However, controlled experiments are usually conducted in simulated
environments rather than in reality, as was the case in most of the included studies. Thus,
users may behave differently in such environments than in natural situations. For
example, in the included studies, although user performance improved significantly with
Al support, users did not feel more confident in their decisions (Finck et al., 2022; Zhou
et al.,, 2021). This finding may indicate that in simulated environments users are more
willing to trust a system because they are not confronted with the consequences of the
real world, even if they do not feel confident. The open question is whether they would
show this behaviour in a real situation. Therefore, in future, a more controlled field
research should be conducted to better understand the human-Al interactions. The results
of our study provide an excellent basis for this. Fourth, the 44 included studies often had
small sample sizes. This is presumably due to the difficulties in recruiting experts as
study participants, owing to which some researchers did not report significance values.
Consequently, interpreting the findings of these studies requires a careful approach, as we
have adopted in our analysis. In the future, it will be desirable to conduct a larger number
of studies with larger expert samples and consistent research designs to enable meta-
analyses. In particular, experiments using a within-subject design should incorporate
standardised washout periods if a between-subject design is not feasible, which would be
the preferred approach. In addition, all studies should more clearly document whether
participants were provided with information about the performance of the Al. It would
also be highly beneficial for studies to report Al performance metrics, such as accuracy.
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Furthermore, future studies should focus on more complex, multi-categorical problems
rather than limiting themselves to binary decisions (e.g., diseased vs. not diseased). In
this context, it would also be interesting to investigate how homogeneous user groups
respond to Al systems with varying levels of accuracy. In addition, investigating whether
users change their reaction to Al advice over time if they receive performance feedback
during the experiment will be interesting in the future. This aspect has not been addressed
in the studies considered thus far. Furthermore, we hope that future reviews will examine
the effectiveness of other system design characteristics, such as cognitive forcing
approaches (Buginca et al., 2021; Jussupow et al., 2021; Langer et al., 2021) or
uncertainty communication measures (He et al., 2023; Prabhudesai et al., 2023), which
are also intended to promote constructive engagement with Al recommendations.

4.3 Practical implications

In addition to the need for further research, specific recommendations for using AI-DSS
in professional practice can be derived from the summarised and discussed study results.
First, organisations planning to use AI-DSS should carefully analyse and understand the
potential implementation context of the tool. Specifically, clarifying whether the tasks
supported by the technical system are perceived as sufficiently demanding and complex
by employees is essential. This is because technical assistance can only offer tangible
added value if there is a mismatch between existing mental requirements for the
decision-making process and the existing resources of the decision-makers (Langer et al.,
2021). However, it is noteworthy that even small performance improvements of several
percentage points can be considered significant, especially in critical areas such as
medicine. Moreover, our results also suggest that, in areas where performance is already
high, collaboration between humans and Al is particularly promising, as they appear to
complement one another synergistically and outperform their individual capabilities —
provided that the Al performs at a comparable level to that of a human. However, if the
system is significantly below human performance, the performance may deteriorate
owing to the technical support. This is because, as the review results show, both experts,
and particularly novices and non-experts, tend to initially overtrust AI-DSS.
Organisations should, therefore, also take additional measures when designing their
systems to help develop a more appropriate level of trust in Al systems. System
explanations have already proven to be an effective mean of achieving this for the target
group of novices and non-experts. However, research in this area is still in its infancy;
thus, we strongly recommend that organisations conduct internal user tests on the effect
of various explanatory approaches or other transparency measures, such as uncertainty
communication or cognitive forcing strategies. In addition, organisations should also
ensure that general usability design criteria, such as simplicity, are adhered to when
designing interfaces (Lee et al., 2007). Otherwise, there is a risk seen that users will be
cognitively overwhelmed by extensive explanations, and the intended relief effects of Al
support can be cancelled out (Pushparaj et al., 2023). In summary, systems should be
developed, implemented, and evaluated according to the human-centred design approach
(ISO International Organization for Standardization, 2019). This ensures that the specific
needs of future users are at the centre of attention and that the human-Al interaction is
successful.
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5 Conclusions

The extensive literature review shows that current research on AI-DSS mainly
investigates the effects of these technologies on expert performance, often with a focus
on the medical domain. The combined results of the studies suggest that human-Al
interaction in work-related decision situations can significantly improve expert
performance, compared with the average performance of both: their own and system
alone. Whether this happens in individual cases depends largely on the level of individual
human and system performance and their interaction. First, the added value of human-Al
interaction is limited if, for example, the performance of the individual expert is already
significantly high. Second, the results show that experts are dependent on the
performance level of the Al system, as they also have difficulties recognising incorrect
Al advice. Notably, this applies more strongly to inexperienced and less capable experts.
The results suggest that superior human-Al performance, surpassing that of a single
entity, requires relatively high and complementary individual performance from both.
However, given the limited number of studies reporting all three accuracy values and the
small sample sizes, further research is needed to draw general conclusions about the
required levels of system and human accuracy and their ratio to each other. This also
applies to the role of system explainability. Previous research has shown that
explanations of individual system decisions help novices make appropriate decisions.
However, the influence on experienced experts is still unclear and the effect of global
explanations remains unexplored. The summarised study findings originate mainly from
simulated experiments, underlining the need to verify external validity through future
research in real work contexts.
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