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Abstract: To address the shortcomings of the existing folk dance movement 
recognition techniques in terms of accuracy, real-time and generalisation 
ability, this paper proposes an innovative research method, i.e., combining the 
motion capture technology with the machine learning algorithm 3D 
convolutional neural network. This paper describes in detail the various aspects 
of the research method, including the acquisition of motion data, preprocessing, 
feature extraction and selection, and the construction and training of machine 
learning models. Meanwhile, we adopt a variety of high-precision sensors to 
accurately capture the details of the dancer’s movements, and conducts  
in-depth learning and analysis of the movement features by the 3D 
convolutional neural network in machine learning. Finally, the experimental 
results show that the method proposed significantly exceeds the traditional 
method in terms of the accuracy, robustness, and real-time performance of  
folk-dance movement recognition, which proves the effectiveness and 
superiority. 

Keywords: motion capture; machine learning; folk dance; motion recognition; 
deep learning. 
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1 Introduction 

In the wave of the digital era, folk dance recognition technology is gradually becoming a 
bridge connecting traditional culture and modern technology. Folk dance, with its unique 
style and expression, not only plays an important role in cultural inheritance, but also 
provides rich materials for modern artistic creation and performance (Xie, 2023). 
However, the automatic recognition of folk dances faces many challenges, including the 
high dimensionality and diversity of movements as well as subtle emotional expressions, 
which make the development of an automated recognition system complex and 
challenging. Therefore, the development of an efficient and accurate automated folk 
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dance movement recognition technology not only has important academic value, but also 
has a wide range of application potential. 

It is in this context that the combination of motion capture sensor technology and 
machine learning techniques provides new ideas to address these challenges. Motion 
capture sensor technology, as a breakthrough in modern computer graphics and  
human-computer interaction, has significantly changed the way we capture and analyse 
human movement. Through a series of high-precision sensors, this technology is able to 
monitor and record in real time the tiny movements of the dancer’s body parts, 
transforming the movements into quantifiable data (Shi, 2022). These sensors capture the 
dancer’s precise position and posture in space, including multi-dimensional information 
such as speed, direction and acceleration, providing an unprecedentedly detailed view of 
the digital recording of folk dance. At the same time, the development of machine 
learning technologies, especially in the field of deep learning, provides advanced 
algorithmic support for analysing these complex datasets. Deep learning models, with 
their powerful data processing and automatic feature extraction capabilities, can learn the 
intrinsic patterns and features of dance movements from motion capture data (Idris et al., 
2017). These models, through training, are able to recognise and classify different dance 
movements and even understand the nuances and emotional expressions between dance 
movements. 

With the development of technology, there are numerous domestic and international 
researches on motion capture, and motion capture technology is widely used in human 
movement. The Kinect V2 depth sensor launched by Microsoft has advanced motion 
capture technology, which is able to collect three kinds of data: RGB map, depth map and 
joint points of human skeleton (Yang et al., 2019). Therefore, in recent years, there have 
been numerous researches combining the Kinect depth sensor with motion recognition in 
the fields of medical treatment, public monitoring, automatic driving, entertainment, 
sports and cultural digital preservation, and so on. Hu et al. (2021) used the human bone 
tracking technology in Kinect in dance assisted training, and proposed a representation 
method of skeletal joint point angles based on fixed axes, which improves the stability of 
the data during the measurement of the joint point angles, and improved the human 
posture recognition method based on the angle of the joints on the basis of this method, 
and developed a dance assisted training system based on Kinect. Kitsikidis et al. (2015) 
used multiple Kinect sensors to capture dance movements for the first time in order to 
solve the occlusion and self-occlusion tracking problems. The fused skeletal data was 
divided into five different body parts and then transformed to allow view-invariant pose 
recognition, demonstrating the high recognition accuracy of the proposed method. 
Protopapadakis et al. (2017) also used Kinect sensors to capture six Greek folk dance 
movements and compared the classification results using four commonly used classifiers 
to classify the movements directly on the raw data. The effect of different human joints 
on the recognition rate was also investigated. 

Machine learning techniques play a central role in the exploration of folk dance 
movement recognition, especially the application of 3D convolutional neural networks. 
Kamnitsas et al. (2017) first proposed 3D CNNs architecture for movement recognition. 
3D convolutional networks are a direct extension of 2D convolutional networks, and 3D 
convolutional networks have one more dimension of capture time information than 2D 
convolutional networks. Ji et al. (2013) proposed a 3D CNNs architecture, which 
generates information from adjacent video frames in multiple channels and performs 
convolution and subsampling in each channel separately, and then obtains the final 
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feature representations by synthesising the information from each channel. Bargellesi  
et al. (2019) based on the former proposed a modern deep architecture of C3D 
(convolutional 3D) based on the former, which can be learned on large-scale datasets. Xu 
et al. (2018a) proposed an asymmetric three-dimensional convolutional neural network 
(3D-CNN) method for action recognition task, which is able to minimise the need to train 
two networks on RGB and optical flow fields training the two networks separately, which 
improves the computational efficiency. Duan et al. (2022) proposed PoseC3D, a 3D 
CNN-based skeleton recognition method, which can extract spatio-temporal features in 
human skeleton sequences more efficiently, is more robust to noise in skeleton 
sequences, and has better generalisation. These research results not only demonstrate the 
effectiveness and potential of motion capture and machine learning techniques in folk 
dance movement recognition, but also provide rich experience and data support for the 
development and application of related technologies in the future, and the accuracy and 
utility of folk dance movement recognition techniques will be improved even more. As a 
key technology for dance information retrieval and cultural inheritance, folk dance 
movement recognition plays a crucial role in building an intelligent dance teaching 
system, enhancing the interactive experience of folk dance, and promoting the innovative 
development of dance art. Although existing research has made some progress in folk 
dance movement recognition, the existing technology still faces a number of challenges 
when dealing with complex and changing folk dance movement data. In particular, there 
are obvious limitations of traditional methods in terms of the accurate capture of 
movement features and the ability of models to generalise to diverse dance styles. To 
address these challenges, this study proposes an innovative solution that combines motion 
capture techniques and machine learning algorithms to overcome the limitations of 
existing techniques. With this approach, we are not only able to automatically extract the 
spatio-temporal features of folk-dance movements, but also significantly improve the 
model’s recognition accuracy and adaptability to different dance movements. 

The contributions of the thesis are mainly in the following areas: 

1 This study innovatively applies 3D convolutional neural networks to folk dance 
action recognition, which not only enhances the model’s ability to capture  
spatio-temporal features of the action, but also improves the accuracy of the 
recognition. Compared with the traditional two-dimensional convolutional neural 
network, the three-dimensional network can process the video data more efficiently 
and capture the time-series features of the dance movements, thus realising more 
accurate movement recognition. 

2 By using a variety of high-precision sensors, this study realises the accurate capture 
of dancer movement details, and the fusion of these sensor data provides a more 
comprehensive and detailed input for movement recognition. This data fusion 
technique significantly improves the accuracy and robustness of motion capture, and 
lays a solid foundation for subsequent feature extraction and analysis. 

3 In this paper, we propose a complete end-to-end process covering action data 
acquisition, preprocessing, feature extraction and selection, up to the construction 
and training of machine learning models. The innovation of this process lies in its 
systematic and integrated nature, which ensures that every step from the raw data to 
the final recognition result is optimised, improving the efficiency and accuracy of the 
whole recognition system. 
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2 Relevant theoretical analysis 

2.1 Kinect sensor 

The Kinect sensor, developed by Microsoft, functions as a sophisticated motion-sensing 
apparatus, equipped with a suite of features including a high-definition colour camera, 
infrared transmission capabilities, and a depth-sensing camera, all of which facilitate  
real-time motion tracking and skeletal recognition, complemented by audio capture 
(Chen and Koskela, 2015). This has solidified the Kinect as a pivotal instrument in the 
domain of motion capture research. The paper utilises the Kinect v2.0, an enhanced 
successor released by Microsoft in June 2014. This upgraded model showcases 
significant performance improvements over the initial Kinect, offering refined motion 
detection and analysis capabilities (Lachat et al., 2015). Kinect V2 can be captured in real 
time to the human body’s 25 skeleton joints, and each of these joints is tracked, inferred, 
and tracked. Each skeletal joint point has three states: tracked, inferred, and not tracked. 
Skeletal points are connected by line segments, and the three-dimensional spatial 
information of the human body can be determined according to the establishment of the 
coordinate system, so that the relevant human skeleton model can be captured. Figure 1 
shows the human skeletal joint point model under Kinect V2. 

Figure 1 Human skeletal joint point model 
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The skeletal joint point model provides a detailed representation of a dancer’s movements 
by tracking specific joints. This precision allows for accurate capture of complex dance 
movements, essential for effective recognition. Currently, positional information such as 
skeletal 3D coordinate points and poses of the human body can be represented using the 
relevant API functions in the Kinect SDK, while Kinect V2 can recognise 25 human 
skeletal point information. When performing the matching between the captured action 
and the database action joint points, the nodes of the reproduction model are different due 
to the different force of each joint point. Consequently, to enhance the alignment 
accuracy of joint points and minimise the model’s reconstruction discrepancies, this study 
adopts the hip joint of the dance trainer as a reference anchor in spatial metrics. Utilising 
this reference, the spatial disparity for each joint point is quantified, delineated by the 
subsequent equations [equations (1) and (2)]: 

( )2

1

Ω Ω
N

j j
i τ ji

j

σd
=

= −  (1) 

( )2

1

N

j i
i

Md j N
=

= −  (2) 

where σj denotes the standard deviation of each joint point in the model under the overall 
action; M and ji denote the position of joint point j in the action and the position of frame 
i in the human action data, respectively; Ω j

i  and Ω j
τ  denote the key position of joint 

point j under frame i and frame τ, respectively. 
The Kinect device harnesses the principle of stereo triangulation to measure the depth 

of objects within its field of view. An object, denoted as P, is situated at a  
three-dimensional coordinate (X, Y, Z) in the global reference system. The term ‘baseline’ 
refers to the spatial gap, B, between the epicentres of the dual lenses, while the XZ plane 
corresponds to the level where the optical planes intersect, aligning the X-axis with the 
baseline and positioning the Y-axis orthogonal to the optical axis. The depth, Z, is 
ascertained by leveraging the parallax observed between the two cameras, assuming their 
optical axes are parallel – a technique conventionally termed as triangulation. This 
process is mathematically articulated through equations (3), (4) and (5). 

( )2 1

) (B dZ
X X

×=
−

 (3) 

1X X Z d= ×  (4) 

1  Y Y Z d= ×  (5) 

Identifying the body parts and joint points requires the use of a classifier that contains 
many depth-informed features as shown in equation (6), using which the body parts can 
be determined. 

( , )
( ) ( )θ I I

I I

u vf I x d x d x
d x d x

   = + − +   
   

 (6) 
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where x represents the pixel value at each point, dI(x) represents the depth value 
corresponding to the pixel value at point x in Figure 1, θ = (u, v) is a parameter that 
contains u and v, both representing offset vectors, and 1/dI(x) is an offset regularisation 
representing the difference between the u and v depth offsets. These features are related 
to the 3D shape, allowing them to be used as features for machine learning classifiers 
capable of recognising body parts and joint points. 

2.2 Convolutional neural networks 

Convolutional neural networks (CNN) have their origins in multilayer perceptrons, and 
their development can be traced back to Yann LeCun’s LeNet-5 model inspired by the 
cat’s visual cortex. In 2012, AlexNet’s breakthrough victory in the ImageNet competition 
marked the rise of CNNs. Conventional convolutional neural networks are typically built 
up from an input layer, a convolutional layer, a pooling layer, a fully-connected layer, 
and an output layers built by connecting them in a hierarchical manner (Duan et al., 
2022). 

A convolutional layer is instrumental in the feature extraction process of input data, 
encompassing an array of convolutional kernels, alternatively referred to as filters. These 
kernels traverse the input matrix, detecting patterns and creating feature maps that 
capture the underlying structure within the data. Commonly, the convolutional kernel is a 
feature extractor, each convolutional kernel generally corresponds to a class of features, 
such as the vertical texture in the picture, and each element in a convolutional kernel has 
a weight and a bias value (Yao et al., 2019). When working, the convolution kernel 
moves according to a predetermined step (stride), performs matrix dot product operations 
on the swept region, and superimposes the bias values, and the mathematical expression 
of the convolution layer is shown in equation (7): 

( )1
Mj

l l l l
j iji i jx f x ω b−

∈
= ∗ +  (7) 

where l
ijω  and l

jb  denote the weight and bias corresponding to the convolutional filter at 

position (i, j), respectively; 1
i
lx −  denotes the feature mapping of the previous layer; l

jx  
denotes the feature mapping of the current layer; and Mj denotes the set of feature 
mappings. 

The outputs from convolutional layers, known as feature maps, are typically directed 
to a pooling layer for the purpose of feature selection and dimensionality reduction 
through a process termed downsampling. This operation is parameter-free; thus, it does 
not contribute to the model’s training parameters but is instrumental in mitigating 
overfitting. The pooling operation shares similarities with the convolutional kernel 
scanning process; its output dimensions are determined by factors such as the size of the 
pooling area, the stride, and the padding. Prevalent pooling techniques include maximum 
pooling, which selects the largest value within the pooling window, mean pooling, which 
averages the values, and stochastic pooling, which randomly samples a subset of the 
window. To introduce nonlinearity and enhance the model’s capacity for complex 
mappings, an activation function is often interposed between the convolutional and 
pooling layers. Standard activation functions include sigmoid, tanh, and ReLU. The 
sigmoid function, for instance, produces outputs within the interval [0, 1], effectively 
normalising the neuron outputs, and is defined by equation (8). 
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1 x

sigmoid x
e−

=
+

 (8) 

The output value of tanh is in the range of [1, 1], specifically, the output value is 1 when 
the positive number is larger and –1 when the negative number is larger. The calculation 
of tanh is shown in equation (9): 

tanh( )
x x

x x

e ex
e e

−

−

−=
+

 (9) 

When the input value is less than 0, the output value of ReLU is 0 and the derivative 
value is also 0. This will lead to the neuron not being able to perform parameter update 
and the phenomenon of gradient vanishing. The calculation of ReLU is shown in 
equation (10): 

( ) max(0, )ReLU x x=  (10) 

Currently, within the architecture of neural networks, average pooling and maximum 
pooling are prevalent techniques employed for the pooling operations. These methods are 
commonly utilised to reduce the spatial dimensions of the feature maps, thereby 
facilitating the construction of efficient network models. According to equation (11), the 
average pooling operation takes the average value corresponding to the pooled region; the 
maximum pooling operation takes the maximum value corresponding to the pooled 
region, and its mathematical expression is shown in equation (12). 

,

max
, ,, Ω,

1
Ω u v

u v i ji ju v
pooling a

∈
=   (11) 

,
, , ,

, Ω
 max , Ω

u v

average
u v i j u v

i j
pooling a i j

∈
= ∈  (12) 

where ai,j is the activation value of the pooled region; i, j are the index representations; 
,Ωu v  is the corresponding pooled region on the feature map. 
The fully connected layer in a convolutional neural network is generally two or three 

layers connected together and placed before the output layer, the main role is to tile the 
high-dimensional multi-channel data into one-dimensional vectors to facilitate 
subsequent calculations, also known as the dense layer in some deep learning 
frameworks. 

The last layer in the output layer convolutional neural network. In the recognition 
task, the number of neurons in this layer corresponds to the ethnic dance recognition and 
is followed by a softmax activation function to compute the discriminative probability 
distribution of the input image in each category. After the softmax activation function 
processing maps the network model’s scores for the input data into the (0, 1) interval, the 
output of the softmax activation function is the network model’s discriminative 
probability for the input samples in each category. The expression of the softmax 
activation function is equation (13): 

1

i
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i m z
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 (13) 
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where zi is the score of the network model for category i and ai is the predicted 
probability value of the input on category i. The maximum probability value of 
determines the category of the result and the sum of all is one. The maximum probability 
value of ai determines the category of the prediction result and the sum of all ai is 1. The 
network model can calculate the loss value for this training by using the probability 
distribution of the output and the true labels of the input samples during the training 
process. 

2.3 Three-dimensional convolutional neural networks 

In contrast to conventional deep learning approaches, 3D CNNs transcend the limitation 
of processing solely 2D single-frame images. They possess the capability to capture 
features from both the spatial and temporal domains, enabling the extraction of motion 
cues across sequential frames. This paper leverages 3D CNNs to discern the skeletal data 
of quintessential folk dance movements, which, being single-channel, offers reduced 
computational demands and enhanced model recognition efficacy (Shotton et al., 2013). 
The framework of the 3D CNNs model employed in this study is depicted in Figure 2. 
The model comprises four convolutional layers, interspersed with two max-pooling 
downsampling layers that utilise a 3 × 3 × 3 kernel, followed by two fully connected 
layers, culminating in a softmax layer dedicated to classification. This architectural 
design is tailored to optimise the feature extraction and classification accuracy for the 
task at hand. 

Figure 2 3D convolutional neural network framework (see online version for colours) 
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To effectively seize the dynamic elements across a sequence of frames, the feature 
computation encompasses both spatial and temporal extents. The formulation for the 
value within the jth feature map of the ith layer, at a specific cell indexed by the 
coordinates (x, y, z), is articulated in equation (14) as depicted below. 

1 1 1
( )( )( )
( 1)

0 0 0

i i il m n
xyz x l y m z nlmn

ijij ijr i r
r l m n

V f b ω v
− − −

+ + +
−

= = =

 
= +  

 
  (14) 

where the time dimension of the 3D convolutional kernel is ni and the weight value of the 
convolutional kernel for the location (l, m, n) connected to the rth feature map is .lmn

ijrω  
The ReLU serves as a prevalent activation function within deep learning 

architectures. It maintains the input feature value in its original form for outputs where 
the value exceeds zero, while mapping negative inputs to zero. This characteristic 
introduces a form of thresholding that promotes sparsity in model parameters, mitigating 
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the likelihood of overfitting (Xing and Zhu, 2021). Moreover, the simplicity of the ReLU 
derivative calculation aids in accelerating the training process. As the derivative of the 
ReLU function is consistently 1 for positive inputs, it effectively combats the vanishing 
gradient issue. The mathematical expression for the ReLU activation function is given by 
equation (15). 

0, 0
( ) max(0, )

, 0
x

f x x
x x

≤
= =  >

 (15) 

Pooling, alternatively termed downsampling, involves a unique consideration for video 
data along the temporal axis beyond traditional 2D image processing. This operation 
effectively condenses the feature map, thereby diminishing the data’s spatial and 
volumetric extent, which in turn lessens computational load and facilitates more tractable 
training, potentially enhancing model accuracy (Song et al., 2018). The process of 
maximum pooling is articulated through the formulation presented in equation (16). 

1 2 3
, , , ,

0 ,0 ,0
maxx y z x s i y t j z r k

i s j s k s
V μ × + × + × +

≤ ≤ ≤ ≤ ≤ ≤
=  (16) 

where µ symbolises the input vector within a three-dimensional space, while V represents 
the resultant output post-pooling operation, with s, t and r indicating the sampling 
intervals along their respective dimensions. The softmax function, commonly deployed in 
the final layer of classification models, transforms an n-dimensional input vector x into a 
probability distribution. This transformation ensures that the probability of the correct 
class approaches 1, the probabilities of incorrect classes approach 0, and the sum of 
probabilities across all classes equals unity. 

3 Ethnic dance movement recognition based on motion capture sensor and 
machine learning 

3.1 Folk dance characteristics 

The typical movement dataset of minority dances includes five types of folk dances, each 
type of dance contains four different movements, totalling 20 movements. We present 
RGB graphs of selected minority dance movement sequences, and each subsequent 
movement will be represented by a set of consecutive skeleton sequences. The ethnic 
minority dance categories studied include: 

1 Dai dance: the Dai dance, emblematic of the Dai ethnicity in the southwestern 
regions, predominantly draws its choreography from mimicking the natural 
behaviours of indigenous fauna. Characterised by a signature pose known as the 
‘three bends’, this dance form involves dancers gracefully inclining their upper 
bodies to one side while partially squatting, creating an inverted ‘S’ silhouette across 
their head, chest, waist, and limbs. The Dai dance is distinguished by its fluidity and 
minimal reliance on leaping motions. 
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Figure 3 Typical movements of Dai dance (see online version for colours) 

 

2 Tibetan dance: Tibetan dance, a hallmark of Tibetan cultural expression, is deeply 
rooted in the highland terrain. The dance’s vigour is predominantly channelled 
through the lower body, with dancers articulating an aesthetic appeal through the 
rhythmic bending and straightening of their joints. In Tibetan dance, the body’s focal 
point leans forward, with arms often left to dangle naturally. Female dancers exhibit 
an air of elegance and poise, while their male counterparts project strength and 
robustness. The dance encapsulates the artistic soul of the Tibetan people, offering a 
glimpse into their rich historical tapestry. 

Figure 4 Typical movements of Tibetan dance (see online version for colours) 

 

 

 



   

 

   

   
 

   

   

 

   

    Ethnic dance movement recognition 91    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

3 Viennese dance: the Viennese dance has the stylised sense of standing upright, with 
movements characterised by the head, neck, shoulders, chest, waist and feet. The 
Wei dance is distinguished by its posture, characterised by an upright stance that 
elevates the head and straightens the chest, conveying an impression of nobility and 
pride, as well as an open and upright demeanour. The movements of the Wei dance 
are beautifully styled and changeable, and with the dancers’ eyes, neck movement, 
finger snapping and finger snapping, etc., it shows the enthusiasm and joyfulness of 
the Wei dance. 

Figure 5 Typical movements of Uyghur dance (see online version for colours) 

 

4 Mongolian dance: Mongolian dance is characterised by a large range of movements 
and a fast rhythm. Key to the Mongolian dance are expressive shoulder shrugs, wrist 
rotations, and fluid arm gestures. Dancers are expected to embody a warm, 
courageous, and free-spirited persona, with hand movements that are supple and in 
sync with the music’s cadence, thereby showcasing the bravery characteristic of the 
Mongolian people. The dance also serves as a medium to convey the vast prairie 
landscapes, cultural practices, and the essence of the Mongolian people. 

Figure 6 Typical movements of Mongolian dance (see online version for colours) 

 

5 Miao dance: in this paper, we focus on the Miao Jinji dance, a cultural heritage from 
the Qiandongnan area of Guizhou Province. The Jinji, revered as a totemic symbol 
by the Miao, is celebrated and used as a medium to honor their ancestors through this 
dance. Performers adhere to the rhythm of the Lusheng, an indigenous instrument, 
moving in an anticlockwise manner. They transition between movements in time 
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with varying beats, maintaining a natural swing of the upper limbs and feet while 
keeping their knees in a slight bend, embodying the dance’s traditional essence. 

Figure 7 Typical movements of Miao dance (see online version for colours) 

 

3.2 Ethnic dance recognition model 

This paper presents an innovative folk dance movement recognition framework that 
integrates motion capture techniques and machine learning algorithms, as shown in 
Figure 8. The methodological basis adopted in this study lies in the fact that, at the initial 
stage, a publicly available folk-dance dataset is used to train a 3D-CNN model aimed at 
accurately tuning the network weights so that the network is able to capture and 
characterise complex dance movement features. Further, we apply this pre-trained 
network to a new scenario of ethnic dance movement recognition, utilising it as a feature 
extraction tool to deeply mine dance data captured from sensors. 

The folk dance action recognition process of this method is carefully designed into 
four main sessions: firstly, the pre-training session of 3D-CNN model, which is trained 
with rich dance action samples; followed by the feature extraction session, in which the 
pre-trained model is used to extract key features from the action data; and then the 
classifier training session, in which the classifier is trained based on the extracted features 
to achieve accurate recognition of diverse folk dance movements; and finally the 
movement category probability prediction session, in which unknown dance movement 
samples are recognised and their categories are predicted (Xu et al., 2018b). This series 
of organised steps ensures the efficiency and accuracy of this method in automated folk 
dance movement classification and recognition. 

Figure 8 Model framework diagram (see online version for colours) 
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4 Experiments and results 

This study has amassed a dataset, ETHDance, comprising a collection of 600 instances of 
ethnic dance movement skeleton data. It encompasses five distinct ethnic dance forms, 
with each form featuring four distinct motion categories, culminating in a total of  
20 unique motion categories. For each specific motion, 30 samples have been 
meticulously gathered. The labelling of the movements is reflected by a specific file 
naming, the file is named in the format of a00_s00_e00, where a indicates the movement 
serial number, s indicates the character subject, and e indicates the number of times the 
movement was performed, and a01_s01_e01, for example, indicates the movement data 
of the 1st person performing the 1st movement for the 1st time. 

The experiments for this study were conducted extensively using several public 
datasets, including the UTKinect dataset, MSRAction3D dataset, and the in-house ethnic 
dance movement dataset. Both the UTKinect and MSRAction3D datasets were captured 
using Kinect depth sensors, providing a comprehensive set of 20 joint movement data 
points that align with the structure of the dance movement data presented in this paper. 
The UTKinect dataset features 10 action categories with 200 samples, while the 
MSRAction3D offers a broader range with 20 action categories and 567 samples. Our 
dataset, ETHDance, comprises 20 categories of dance actions with 600 samples in total. 
The methodology presented in this paper achieved an 81% recognition rate on the 
UTKinect dataset, 91% on the MSRAction3D dataset, and an impressive 95% on the 
ETHDance dataset. These results not only substantiate the efficacy of our approach 
across various action recognition datasets but also reflect the robustness and rationality of 
the dataset we have curated. The consistent high performance across different datasets 
underscores the generalisability and reliability of the proposed 3D CNNs model. 
Table 1 Model comparison results 

Classification model ACC 
3D-CNN-JM 88.33% 
Shallow 3D CNN 93.33% 
Efficient 3D CNN 91.67% 
Our 3D-CNN 95% 

To substantiate the efficacy of the 3D CNNs approach outlined in this paper, comparative 
experiments were conducted with other established algorithms on the ethnic dance 
movement dataset presented here, including 3D-CNN-JM (Wang et al., 2019), shallow 
3D CNN (Singh et al., 2020) and efficient 3D CNN (Wang et al., 2023).  
Our-3D-CNN has an accuracy of 95%, while shallow-3D-CNN, efficient-3D-CNN and 
3D-CNN-JM have accuracy rates of 93.33%, 91.67% and 88.33%, respectively. 
Therefore, compared with shallow-3D-CNN, the accuracy of our-3D-CNN is improved 
by 1.67%; compared with efficient-3D-CNN, our-3D-CNN is improved by 1.67%; 
compared with efficient-3D-CNN, efficient-3D-CNN is improved by 1.67%.  
Our-3D-CNN improves the accuracy by 3.33% compared to efficient-3D-CNN, and  
our-3D-CNN improves the accuracy by 1.67% compared to 3D-CNN-JM. CNN improves 
the accuracy by 6.67%. As detailed in Table 1, a comparative analysis of the 
experimental outcomes from other methodologies within the scope of this paper’s ethnic 
dance movement dataset reveals that they too exhibit commendable recognition 
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capabilities. These findings collectively validate the sound construction of our dataset and 
the robustness of the recognition model proposed in this study. 

Furthermore, to mitigate the issue of overfitting, this paper employs the dropout 
technique with varying ratios. Experiments were conducted using ratios of 0.2, 0.4, 0.5, 
0.6, and 0.8 on the dataset presented in this paper, with validation results depicted in 
Figure 9. Each condition was iterated 100 times to assess the impact of different Dropout 
ratios on test set recognition accuracy. The results indicated that the test set accuracy was 
marginally higher with dropout ratios of 0.4 and 0.5, particularly after 50 iterations. 
Among these, a dropout ratio of 0.5 yielded a slightly better recognition accuracy 
compared to the 0.4 ratio. Consequently, all subsequent experiments utilised a dropout 
ratio of 0.5, which demonstrated optimal performance in terms of recognition accuracy. 

Figure 9 Dropout ratio experiment (see online version for colours) 

 

5 Conclusions 

In this study, we successfully constructed an end-to-end process from data acquisition to 
recognition by combining advanced motion capture technology with machine learning 
algorithms, providing a new approach for automatic recognition of folk dance 
movements. Using the ethnic dance skeleton data collected by the Kinect depth sensor, 
we carefully curated a dataset that is free from background and illumination interference, 
and processed it by our optimised 3D CNNs to achieve accurate recognition of dance 
movements. Experimental results show that our method exhibits excellent recognition 
performance on different datasets, validating the effectiveness and generalisability of our 
method. We draw the following conclusions: 

1 Effectiveness of technology integration: this study demonstrates that the effective 
combination of motion capture technology and 3D CNNs in folk dance movement 
recognition can accurately capture the spatio-temporal features of the dance and 
significantly improve the accuracy and robustness of the recognition. 
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2 Importance of the dataset: the construction of the ETHDance dataset provides rich 
samples of folk dance movements for this study, and its high quality and diversity 
are the key factors to achieve high recognition rates. 

3 Superiority of the model: through comparison experiments with other algorithms, our 
3D CNNs model demonstrates higher recognition accuracy on the folk dance 
movement dataset, proving the superiority of the model design. 

4 Algorithm’s anti overfitting ability: the introduction of dropout technology 
effectively improves the model’s generalisation ability, and the experimental results 
show that an appropriate dropout ratio can further improve the model’s recognition 
accuracy. 
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