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Abstract: For the projectiles with proximity-fused warheads used to destroy 
the target, the most vulnerable information is vital to destroy targets efficiently. 
So, it is important to quickly locate the most vulnerable position of the target in 
combat. An algorithm combining GPU parallel computing and numerical 
simulation is proposed. For a specific target, a slicing processing method is 
used to define the spatial position parameters, and the damage probability 
distribution in the space near the target is established to determine the most 
vulnerable position. In the example, the computation speed of the method is 
about 3.6 times higher than that of the CPU serial calculation method. It could 
quickly locate the most vulnerable position of a certain ballistic missile, 
namely, when the projectile was situated in the plane of 1/5 projectile length 
from the bottom of the target, the target would be damaged with the highest 
probability of 90%. 

Keywords: damage probability; vulnerable position; GPU parallel computing; 
numerical simulation. 

Reference to this paper should be made as follows: Lei, X., Tan, Y. and  
Zhu, L. (2024) ‘Method of target damage probability distribution simulation 
and evaluation based on GPU parallel computing’, Int. J. Information and 
Communication Technology, Vol. 25, No. 7, pp.37–56. 

Biographical notes: Xiaoyun Lei graduated from the Nanjing University of 
Science and Technology in 2021. She works in Jiangsu Open Univer-sity. Her 
research interests include intelligent ammunition technology and robotics. 

Yaping Tan graduated from Nanjing University of Science and Technology in 
2022 and now works at Jiangsu Open University. Her research interests include 
terminal effects and impact dynamics. 

 



   

 

   

   
 

   

   

 

   

   38 X. Lei et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Lihua Zhu graduated from Southeast University in 2016. She now works in 
Nanjing University of Science and Technology. Her research interests include 
robotics and remote sensing technology. 

 

1 Introduction 

For a target, the damage assessment is also called the vulnerability study. In the early 
research, the anti-damage ability of targets was explored through a large number of 
shooting tests (Starks, 1990; Guber et al., 1967). With the continuous development of 
computer technology, the simulation evaluation method of target vulnerability has 
developed into the main basic research method (Muuss et al., 1983; Wasmund, 2001). 
Domestic simulation evaluation methods began in the 1980s, mainly from two aspects of 
mathematics and image. The mathematical method is based on a large amount of known 
prior information. It generally simulates the entire process of ammunition acting on the 
target or analyses the actual drill and combat process, and executes the entire damage 
process from top to bottom. Due to the integration of a large amount of prior information, 
the calculation is very large, resulting in a serious delay in the acquisition of damage 
information. These kinds of methods are more suitable for the design stage of 
ammunition and protective armour, or post-war assessment. For example, Kong et al. 
proposed an evaluation method combining machine learning (Tekwa, 2023) and fuzzy 
hierarchical analysis (Tekwa, 2023; Zhang et al., 2021; Wang et al., 2020; Kong et al., 
2023; Deng et al., 2022). This method focuses on improving the accuracy of the detection 
of the key components of the target. The fuzzy hierarchical analysis is difficult to solve 
the problem of repeatability evaluation, and the real-time performance is hard to be 
guaranteed. Chen et al. proposed a method based on Bayesian network models that can 
make inferences about uncertain damage situations (Deng et al., 2022; Chen et al., 2022). 
Jian et al. (2018) proposed a method combining fuzzy reasoning and Monte Carlo, but 
due to the large complexity of the parameters of the model, there is also a problem of 
information lag. The image-based evaluation method can basically meet the requirements 
of actual damage effect measurement, but accurate image registration still requires 
manual intervention, and it is still difficult to achieve a real-time evaluation of moving 
targets (Li et al., 2024; Liu et al., 2024; Xu et al., 2024). Foreign simulation and 
evaluation methods for target vulnerability have reached a high level, such as LMP-3 in 
Sweden (Gyllenspetz and Zabel, 1981), VAREA and VAST in the United States  
(Shah and Mehtre, 2015), and SLAMS in Canada (Shewchenko, 2012). A relatively 
perfect damage information database has been formed, and the efficiency of information 
acquisition has been improved. 

To sum up, this paper proposes a simple damage assessment simulation method based 
on GPU parallel computing in order to achieve the real-time solution of the optimal 
detonating azimuth, distance and other combat information of warhead, and to solve the 
problem of time delay in the vulnerability assessment (Zhang et al., 2017; Fu et al., 2016) 
based on mathematical method. Firstly, the three-dimensional equivalent model and 
damage element information database of the target are designed. Then, a multi-threaded 
parallel computing software framework is constructed for the intersection calculation of 
projectile and target and the identification of effective damage element. The intersection 
algorithm is motivated by the principle of intersection between vector and surface 
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element. At the same time, the damage criterion of kill element penetrating target based 
on THOR theory is established. Since there are a large number of the same computational 
processes in the intersection calculation, we introduced the SPMD model (referring to the 
Single program multiple data flow model), and used the principle of multi-threaded 
parallel computing to create a kernel function to parallelise the cyclic intersection 
calculation, so as to accelerate the computation process. At last, according to a slicing 
processing of the spatial position information near the target, the spatial damage 
probability of the target in different spatial positions is simulated and computed with 
multithreaded parallel computing method, which can be used to quickly locate the most 
vulnerable position information of the target. It can provide important target intelligence 
support for the campaign actions. 

2 Calculation method for target damage probability distribution in  
three-dimensional space 

For the establishment of a damage probability model in the target space, it will be 
calculated by the damage assessment method and numerical simulation. The probability 
model will vary with the differences between the vulnerable parts of different targets in 
performance and location, and it may not have strong spatial distribution regularity in 
space. Therefore, the spatial damage probability for a specific target was analysed, and a 
database could be established for multiple targets to access the spatial damage probability 
model in the form of a database. For a target in the air, as shown in Figure 1, the space 
near the target was divided into layers by the cross section of the target passing through 
the geometric centre, and the influence law of the projectile-target orientation on the 
damage probability of the target was studied. The attitude of the projectile had a certain 
influence on the formation of the damage field, but in this study, the spherical damage 
field formed by natural fragments was considered, and the influence of attitude was 
temporarily ignored. In the figure is the position vector of the projectile and target; For 
the definition of the orientation of the projectile relative to the target centre on the 
sectional plane, when viewed from the head of the target, the orientation was 0° in the 
vertical direction and 90°–360° (0°) in the clockwise direction respectively. Aiming at the 
sectional plane, the variation law of the damage probability of several sliced planes 
within a certain projectile-target distance was explored, and the spatial damage 
probability distribution model of the target was established. 

2.1 Intersection calculation and effective damage element judgment method 

In this study, the number of effective fragments suffered by the target was calculated and 
counted by GPU parallel numerical calculation, and then the damage of each component 
was calculated. Finally, the overall damage probability of the target was solved according 
to the complete failure damage tree. According to the static fragment field information of 
the projectile calculated by AUTODYN simulation, the information including the mass, 
volume, velocity vector, and position vector of the damage element at the time of 
explosion was derived in an XLS format. The target was modelled using 3D software 
(such as UG and ProE, etc.), and the target model was exported in the form of an STL file 
in the ASCII code format. The STL file contained the geometric information of the target, 
that is, the vertex coordinates and the external normal vector of the triangular surface 
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element (SE), which was an ideal file format for calculating the intersection between the 
fragment and the target. 

Figure 1 Diagram of division of space around the target (see online version for colours) 
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Given the attitude of the projectile and the target upon intersection, the damage 
probability of each component of the target was related to the following parameters: the 
projectile-target position vector, the target velocity vector, and the projectile velocity 
vector. 

( ), ,t mP p l V V=  (1) 

2.1.1 Intersection calculation algorithm 
With the known projectile-target intersection information, it was necessary to transform 
the projectile and the target into the same coordinate system for damage calculation when 
calculating the number of effective damage fragments. In the simulation calculation of 
AUTODYN, the information of the projectile system in the static fragmentation field 
could be obtained, and the relative velocity with the projectile needed to be synthesised 
before the damage assessment to obtain the dynamic damage field of the projectile. The 
following coordinate system was defined: the ground coordinate system was used to 
determine various ballistic parameters of the projectile and the target, such as the 
positions of the target and the projectile at the intersection point, velocity, and attitude 
angle. The ground coordinate system (g) is represented by O-xgygzg. The projectile body 
coordinate system (m) was used to describe the scattering characteristics of fragments, 
expressed by O-xmymzm. The target coordinate system (t) was used to describe the 
radiation characteristics and distribution position of various physical fields of the target, 
as well as the position and distribution of the key parts of the target. Assuming that the 
geodetic coordinate system coincided with the projectile coordinate system, then the 
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projectile was transformed from the projectile coordinate system to the geodetic 
coordinate system and the target was transformed from the target coordinate system to 
the geodetic coordinate system. According to the above two transformations, the target 
could be transformed into the projectile coordinate system, and similarly, the projectile 
could be transformed into the target system. The direction of the velocity vector Vm of the 
projectile in the ground coordinate system could be determined by two angles: the yaw 
angle and trajectory angle of the projectile. The trajectory angle θm is the included angle 
between the longitudinal axis of the projectile and the horizontal plane (assuming that the 
velocity of the projectile is consistent with the longitudinal axis of the projectile), and the 
yaw angle φm is the included angle between the projection of the longitudinal axis of the 
projectile on the horizontal plane and the O-xg axis. With known θm and φm, the three 
components of the projectile velocity in the ground coordinate system could be 
determined by the following coordinate transformation, and the coordinate transformation 
matrix is Mxg. 

cos cos sin cos sin
sin cos cos sin sin

sin 0 cos

m m m m m

xg m m m m m

m m

φ θ φ φ θ
M φ θ φ φ θ

θ θ

− 
 =  
 − 

 (2) 

Then, the three components of the projectile velocity in the ground coordinate system are 
as follows: 

0
0

mxg m

myg xg

mzg

V V
V M
V

   
   =   
     

 (3) 

Similarly, with the known heading angle φt and trajectory angle θt of the target, the 
component of the target velocity vector (Vt, 0, 0) in the ground coordinate system is the 
same as the above formula. 

For the convenience of research, the following assumptions were made in the process 
of coordinate system transformation: 

a The angle of attack, sideslip angle, and roll angle of the projectile are zero, that is, 
the longitudinal axis of the projectile is consistent with the velocity direction of the 
projectile. 

b The angle of attack, sideslip angle, and roll angle of the target are zero, that is, the 
longitudinal axis of the target is consistent with its velocity direction. 

After the projectile explodes, the scattering velocity vector of its fragment field will 
change under the influence of the projectile’s transport velocity vector. Let the transport 
velocity vector of the fragment be v1, and the initial velocity vector of a fragment after 
static explosion of the projectile be v0. The dynamic scattering angle and dynamic initial 
velocity vp0 of the fragment could be calculated by the following formula: 

0 0

0 0 1

sinarctan
sin
v φφ

v φ v
=

+
 (4) 

2 2
0 0 10 1 2 cospv v v v v φ= + +  (5) 
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Figure 2 Composition of velocities of fragment 

 

The projectile-target intersection is a dynamic intersection process, that is, the projectile 
continues to move along its own trajectory while the fragments fly to the target. 
Therefore, the intersection result is calculated by relative motion during the period from 
the formation of fragments to hitting the target, that is, the target is transformed into the 
projectile coordinate system, and the intersection result of fragments relative to the target 
is calculated under the projectile system, assuming that the target moves in a straight line 
at a uniform velocity in this short period. 

When the damage element flies to the target at a resultant velocity, its velocity 
actually attenuates continuously in the air. Generally, the following drag formula is 
adopted: 

2
0

x

p

C Aρx
m

p pv v e
−

=  (6) 

where vp0 is the initial fragment velocity (m/s), vp is the attenuated fragment velocity 
(m/s), x is the fragment flight distance (m), ρ is the air density (kg/m3), mp is the fragment 
mass (kg), A is the average windward area (m2), and cx is the fragment resistance 
coefficient, which is related to the fragment shape and velocity. The average windward 
area A of the fragment is associated with the fragment mass and shape, generally 
expressed by equation (7). Therein, K is the fragment shape coefficient (m2/kg2/3). 

2
3Km pA =  (7) 

Table 1 Empirical values of cx and K of typical steel fragments 

Fragment shape Spherical shape Square shape Long strip shape Irregular shape 
cx 0.97 1.56 1.3 1.5 
K (10–3m2/kg2/3) 3.07 3.09 3.3–3.8 4.5–5 

The drag coefficient cx and shape coefficient K of fragments are mainly obtained by 
experiments. Table 1 lists the values of drag coefficient cx and shape coefficient K of 
various steel fragments. Among them, influenced by the shape change, the shape 
coefficient K of rhombic, elongated, and irregular shapes is a range. 

In the process of fragment-target intersection, whether the fragment hits the target can 
be determined by judging whether the velocity vector of the damage element intersects 
with the surface element of the target component. In case of intersection, it means that the 
damage element hits the target component. By using the geometric characteristic data of 
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the target component and the coordinate transformation theory of analytic geometry, the 
intersection of the vector and the surface element can be judged, and then the coordinates 
of the geometric intersection point, impact angle, and other data can be obtained. The 
penetration equation can be used to judge whether the damage element can penetrate the 
target component and obtain the residual mass and velocity of the damage element. On 
this basis, whether the motion of the damage element ends is decided and whether the 
penetration damage succeeds is judged. 

The basic algorithm for the intersection judgment is as follows: 
Algorithm: Intersection judgment 

It is known that: The STL file of the target takes a triangle as the basic unit; 
 The coordinate system of both projectile and target has been transformed 

to the same coordinate system; 
 The three vertices of the triangular surface elements that constitute the 

target are A, B, and C respectively, the unit normal vector is n, the unit 
vector of the fragment velocity vector is m, and the initial position point of 
the fragment is P0; 

Step 1: The included angle between two vectors is calculated as θ = acos 
(mn/(|m||n|)) 

Step 2: The intersection point between the straight line and plane is:  
Cross_P = m(nA – nP0)/mn + P0 

Step 3: Whether the intersection point Cross_P is inside the triangular surface 
element or the sideline is judged: 

 

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

_
1

, , , ,

, , , ,

, , , ,

AC

AB

AP

AC AC AB AB AC AB AC AB

AB AB AC AP AC AB AB AP

AC AC AB AP AC AB AC AP

n C A
n B A
n Cross P A

tmp
n n n n n n n n

u n n n n n n n n tmp

v n n n n n n n n tmp

= −
 = −
 = −

 =

 −  


 = − ⋅  


 = − ⋅  

 

 If: (u < 0 || u > 1) || (v < 0 || v > 1) is true, the condition is not satisfied  
(|| indicates logic OR); 

 If: (u + v < = 1) is true, the condition is satisfied, and the distance d 
between the fragment position and intersection point and the target 
angle λ in this case can be calculated accordingly. 

  d = ||Cross_P – P0|| 
  λ = (π – θ) 

The above intersection method is used to calculate the intersection information of a single 
fragment and a surface element. When the whole damage field intersects with all surface 
elements of the whole target, the calculation amount is amazing. In this study, therefore, 
the idea of parallel computing was followed, and rapid resolving was performed through 
the GPU parallel computing method (Hong et al., 2019; Huang and Xie, 2021; Ma et al., 
2022). 

The fragments (0, 2 … M) of the damage field, each component of the target, and the 
triangular surface element of each component are numbered, and the component number 
corresponds to the position (row, column) of the component in the damage tree, and the 
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surface element number contained in the component is 0, …, N. The damage field is 
digitised into an M’8 matrix, and the attribute parameters of each damage element are the 
row elements of the matrix, including the coordinate component value, velocity vector 
component value, volume, and mass of the damage element. The STL file of each 
component of the target can be read and then digitised into an N’12 matrix, and each row 
contains the geometric information of a triangular surface element, including the normal 
vector component value of the surface element and the coordinate component values of 
three vertices. 

GPU accelerated parallel computing was performed using NVIDIA’s CUDA C 
programming technology, which could greatly improve the repeated computing 
efficiency. The CUDA application program can directly call the bottom-layer CUDA 
driver to call GPU hardware for parallel computing. If the commonly used serial 
calculation algorithm is adopted, the code of the geometric intersection calculation part is 
as follows. It can be seen that the whole iterative loop computing process will be repeated  
(N + 1)’ (M+1)’ (T + 1) times, where T + 1 is the number of components included in the 
target. And there is no dependence between each iterative computing and the next-round 
computing. Therefore, the tasks or data can be divided and loops can be parallelised. 

Figure 3 Part of code for intersection calculation in serial computing method 

for t=0:T
//Load the geometry information matrix of the first part
Data_surface=Surfaces.DIRS(t).name;
//intersection judgment
for m=0:M
    l=Line(m,:);%%The row number is the fragment number

//N+1 is the number of facet elements of the current part
    for n=0:N
        p=Plane(n,:);

    //Surface element j of k part intersect with  fragment i
        [flag,theta,distance,point]=sub_intersection(p,l);
        If flag~=0
            EffectAct(end+1,:)=[mn flag theta distance point];
        end
    end
end
。。。//Process

    //Intersection result
geo_jiaohui=[ geo_jiaohui;temp2];
end

 

In CUDA, the loop is parallelised by creating kernel functions. At this time, the loop 
control variable will no longer represent the number of loops, but a variable used to 
represent the currently allowed threads. CUDA provides a special variable – thread index 
(thread ID) to identify each thread, which can be used as a subscript to access the array. 
Each thread performs the operation of intersection judgment, with the same code but 
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different data, that is, the SPMD (Single program multiple data stream) model in CUDA 
is adopted. 

Figure 5 Schematic design of thread block layout 

thread0~15，thread block0 thread16~31，thread block0

thread32~47，thread block0 thread48~63，thread block0

thread64~79，thread block0 thread80~95，thread block0

thread96~111，thread block0 thread112~127，thread block0

thread128~143，thread block0 thread144~159，thread block0

thread160~175，thread block0 thread176~191，thread block0

thread192~207，thread block0 thread208~223，thread block0

thread224~239，thread block0 thread240~255，thread block0

thread0~15，thread block1 thread16~31，thread block1

thread32~47，thread block1 thread48~63，thread block1

thread64~79，thread block1 thread80~95，thread block1

thread96~111，thread block1 thread112~127，thread block1

thread128~143，thread block1 thread144~159，thread block1

thread160~175，thread block1 thread176~191，thread block1

thread192~207，thread block1 thread208~223，thread block1

thread224~239，thread block1 thread240~255，thread block1

thread224~239，thread blocki thread240~255，thread blocki
 

As shown in the following figure, the surface element matrix (marked as a) and the 
fragment field velocity vector matrix (marked as b) are both two-dimensional arrays. In 
order to maximise the equipment utilisation, each thread block has 256 threads, and  
32 threads (or integer multiples thereof) form a thread bundle, so a thread block has eight 
thread bundles. In addition, we suggest that the array span should be an integer multiple 
of the thread bundle size, if the array is not filled, and if judgment statement is used to 
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omit the calculation of the filled part in the calculation. We choose a rectangular layout, 
as shown in the figure, to read the data once, to access the memory continuously in the 
form of rows, and then to perform the next intersection calculation. For a and b matrices, 
preprocessing is needed to design the layout to meet the requirements of computing 
efficiency, and GPU parallel computing sacrifices the memory for a high computing 
speed. The rows a and b are complemented to 32 elements, the columns to an integer 
multiple of 8, and the sizes of the two matrices become M’32 and N’32. Moreover, 
leng_blocks = max{M’, N’}’ (T + 1), then the layout design code is: 

dim3 threads_rect(32, 8);
dim3 blocks_rect(1,leng_blocks/8);
Therefore, the indexes of the array in two dimensions are:
idx (blockIdx.x*blockDim.x) threadIdx.x;
idy (blockIdx.y*blockDim.y) threadIdx.y;

= +
= +

 

BlockIdx.x is an index of thread blocks in a thread grid in the x direction. In this study, 
the x dimension index is always 0; BlockIdx.y is the index in the y direction, which is 
within 0-leng_blocks in this study; blockDim.x = 32, blockDim.y = 8, and threadIdx.x = 
0~31; threadIdx.y = 0-7. In the array, idy corresponds to the row number and idx 
corresponds to the column number. There is no need to worry about the number of 
threads to open. Even if there are 64 million threads to process 64 million array elements, 
and each array element is a single-precision floating-point number, then each element 
occupies 4 bytes, totalling about 256 MB of data storage space. Now basically all GPUs 
support this size of space. 

After the layout is designed, the intersection algorithm of the kernel function can be 
designed. The memory of two matrices is allocated on GPU, and the intersection results 
are also stored in the matrices and returned to CPU. Each row of the returned matrix 
includes eight elements (fragment number, component number, surface element number, 
intersection marks, target angle, projectile-target distance upon intersection, and 
coordinates of the intersection point). 

The call of this kernel function is as follows, and the partial codes of main functions 
are displayed in Appendix A3. 

kernel blocks _ rect,  threads _ rect ( , , );a b c<<< >>>  

2.1.2 Calculation of spatial damage probability distribution 
Most of the fragments that hit the target do not necessarily cause damage to the target, so 
the fragments with a damage effect need to be further discriminated by using other 
conditions in the damage element that hits the target. Generally speaking, fragments can 
cause mechanical damage to the target by kinetic energy, that is, forming holes or 
penetrating the target. Fragments penetrating the target usually cause damage to the 
target. THOR’s formula (Chen et al., 2015; Cho et al., 2018; Wang et al., 2022) provides 
a simple method for preliminarily calculating the ultimate velocity of fragments 
penetrating a target with a specific thickness and material, as well as the residual velocity 
and residual mass of fragments after penetrating the target. For steel fragments, the 
parameters needed for calculation include the fragment mass, fragment impact velocity, 
and so on. The THOR equation does not include the secondary fragments formed by the 
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collapse or fracture of the target material. After counting the number of broken fragments 
on each component, the damage probability of each key component can be obtained 
according to the damage criterion. After obtaining the damage probability distribution of 
the key components of the target, the probability operation is carried out according to the 
logical connection relationship between the key components in the damage tree, that is, 
the damage probability of each subsystem (intermediate event) is calculated through the 
damage probability of the key component (bottom event), and then the damage 
probability corresponding to each functional system or damage level (top event) is 
obtained. 

Let the average damage rate of a single effective damage element to the target be pi, 
and assume that the target killing by each damage element as an independent event, then 
the probability of the target being damaged under the condition that i damage elements 
penetrate the target component is: 

( )1 1 i
i iP p= − −  (8) 

For a specific damage tree, the logical relationship between its key components includes 
two connection modes: series connection and parallel connection, in which the series 
damage tree is a logical AND operation relationship, while the parallel damage tree is a 
logical OR operation relationship. For J mutually independent killing events E1, E2, …, 
EJ connected in series, the result event Q will only occur if and only if J killing events 
occur simultaneously. When damage events are mutually independent, the occurrence 
probability of the result event can be expressed as below: 

( ) ( )
1 1

( )
J J

k kk k
P Q P E P E

= =
= =∏ ∏  (9) 

For J mutually independent damage events E1, E2, …, EJ connected in parallel, the result 
event Q will occur as long as one damage event occurs, and the occurrence probability of 
the result event can be expressed as follows: 

( ) ( )[ ]
1 1

( ) 1 1
JJ

k kk k
P Q P E P E

= =
= = − − ∏  (10) 

3 Simulation analysis 

In this study, the damage probability calculation method was based on the 3D STL model 
of target components and the AUTODYN damage field simulation model (Pang et al., 
2022; Thakur et al., 2022), and the parallel calculation was adopted to speed up the 
calculation process. On this basis, effective assumptions were made, and the number of 
damage elements that hit the target with damage effects was calculated through numerical 
simulation, parallel calculation, and statistics. Finally, the overall damage probability of 
the target was solved through the damage tree. Therefore, such series of complicated 
calculations with a large data size cannot be implemented just by a simple mathematical 
formula. Before completing the damage evaluation calculation of the target, a database of 
typical targets and damage fields was established by using SQL, as shown in the example 
in Appendix A2. An interactive simulation platform was compiled by using MATLAB 
and CUDA C (Defez et al., 2022; Zhang et al., 2011; Hou et al., 2017; Yamout et al., 
2022; Schmid et al., 2022), as shown in Figure 6, where Figure 6(a) is the interface for 
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setting projectile and target parameters, and Figure 6(b) is the interface for damage 
assessment. 

Figure 6 GUI of simulation platform (see online version for colours) 

  
(a) 

 
(b) 

In order to determine the influence of the orientation of the projectile in the layered space 
near the target on the damage probability of the target, considering the spatial position of 
the target centre at a vertical distance of 5 m from the axis of the projectile, the complete 
damage probability of a single projectile to a target under different spatial intersection 
conditions was quickly calculated by using the accelerated parallel computing method. 
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The target was divided into 50 components, with a total of 67,487 surface elements, and 
the damage field contained about 780 damage elements. It took about 7 min to calculate 
an example by using the CPU serial computing method, and the average time ratio 
between them was about 3.6 after using the GPU parallel computing method (of course, 
this result is high correlated with the performance of the computer itself and the degree of 
program optimisation), indicating that parallel computing can indeed improve the 
computing efficiency of damage assessment to a certain extent, but the degree of 
improvement has a great relationship with computer performance, program structure 
optimisation, algorithm optimisation, and data access (Zhou et al., 2021; Kistler and 
Franz, 2001). 

Figure 7 Diagram of damage probability distribution of a single projectile to a specific target  
(see online version for colours) 

 

Note: ‘PD of p-t’ means perpendicular distance of projectile and target. Lp is the length 
of projectile. 

Considering the relationship between the degree of damage and the relative position of 
the projectile and a specific target, the hierarchical spatial damage probability distribution 
of the target was determined. As shown in Figure 7, the target had different damage 
probabilities when it was near the orientations of 100° and 275°, especially when the 
vertical distance between the projectile and the target was 1/5 of the length of the 
projectile, that is, the projectile was located in the plane at 1/5 of the projectile length 
from the bottom of the target, and the damage probability of the target was the highest, 
which could reach 90%. When the warhead was detonated in other directions of the 
target, the damage probability of the target was almost zero. In theory, when only the 
kinetic energy of fragments was considered, the kinetic energy of fragments would be 
reduced because of the air drag in the process of flying to the target, so the probability of 
target damage would be further reduced if the warhead was detonated at a far distance 
from the target in the same orientation. 
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We take the implementation of the original traditional serial computing algorithm 
framework (Figure 3) on Intel i5-7300HQ CPU + GeForce RTX2080Ti GPU as a 
benchmark to evaluate the performance of the GPU-accelerated computing method. The 
following Table 2 lists the data in terms of running time, intersection calculation rate, and 
system power consumption. It can be seen that compared with i5 CPU, the speed of 
GPU-accelerated method has obvious advantages, and the system power consumption is 
lower than that of i5 CPU. The i5 CPU is more than 5 times of the GPU-accelerated 
computing method in power consumption, while the calculation rate of GPU-accelerated 
method is increased by more than 3.6 times, especially the runtime per intersection 
calculation process is decreased by 82.9%. GPU-accelerated method has obvious 
performance improvement. 
Table 2 Performance comparison between serial computational processing method and  

GPU-accelerated computing method runs on Intel i5-7300HQ CPU + GeForce 
RTX2080Ti GPU 

 Intel i5 CPU GPU-accelerated  
computing 

Runtime per probability calculation process (ms) 581.98 158.41 
Runtime per intersection calculation process (us) 121.88 20.80 
Power (W) 45.0 8.90 

In conclusion, the results of simulation analysis under certain conditions show that the 
proposed method can locate the ideal optimal damage information to a certain extent and 
improve the computational efficiency, which is consistent with the purpose of the 
method, namely to quickly obtain the most vulnerable position of the target under 
different dynamic intersection conditions. From the established database information, the 
coverage of calculation parameters for damage assessment is relatively comprehensive. 
However, there is indeed a problem that the actual situation is not considered in detail. 
Because this paper focuses more on the effectiveness of the method in improving the 
computational efficiency, some equivalence is made, such as, the equivalent material and 
the equivalent thickness of functional damage of the components, etc. These equivalents 
are reasonable and consistent with the principles of damage assessment, and the 
calculation process of the damage probability is also a standard calculation method. 
Therefore, although there are some differences between the calculated results and the 
actual results, it can still provide some reference for the design of combat strategy. In 
future work, we need to further improve the method in terms of assessment accuracy. 

4 Conclusions 

In order to rapidly position of the most vulnerable position of the target and solve the 
problem of time delay in the methods of vulnerability assessment based on mathematical 
model, a simple target vulnerability evaluation simulation method based on multi-thread 
parallel computing framework is proposed. According to the designed damage 
information database and the sliced space position definition method, the spatial damage 
probability distribution information of the target can be solved timely to obtain the 
optimal explosion location of the warhead. The example shows that, compared with the 
serial calculation method, the efficiency can be improved by 3.6 times, and the most 
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vulnerable position of the target can be quickly provided for the ballistic end point to 
achieve the maximum damage probability of the target. Of course, prior database 
information is still indispensable in our method, and the human-computer interaction 
function of the whole software system needs to be further improved. 
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Appendix A 

1 Format of data 

Damage field information obtained by AUTODYN simulation (part) (see online version 
for colours): 

 

2 The design of database 

Database includes: 

2.1 DamageClassTable1 
The target damage level data table mainly stores all damage levels and damage level 
description information of the target (see online version for colours). 

  

2.2 DamageCriterionTable1 

Save the damage criteria and damage criteria of each component (see online version  
for colours). 
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2.3 DamageTreeTable1 

The target damage data table mainly stores the target information, damage level, damage 
degree of system or component, parent node system, component ID, and the association 
relationship between the node and the component associated with the structure tree and 
each tree node (see online version for colours). 

 

2.4 EquDataTable1 

EquDataTable1 mainly stores the ownership of every part, vulnerable area proportion, 
Penetration equivalent ratio, equivalent material, functional damage equivalent thickness, 
structural dimension parameters (see online version for colours). 
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2.5 EquMaterial1 

Mainly save the calculation parameters of THOR formula (see online version  
for colours). 

  

#include <math.h> 
#define pi 3.1415926535897932f 
__global__ void kernel(int *c, const int *a, const int *b) 
{ 
int j = (blockIdx.x*blockDim.x)+threadIdx.x; 
int i = (blockIdx.y*blockDim.y)+threadIdx.y; 
/* plane = {a[i][j+0] a[i][j+1] a[i][j+2]; 
a[i][j+3] a[i][j+4] a[i][j+5]; 
a[i][j+6] a[i][j+7] a[i][j+8]; 
a[i][j+9] a[i][j+10] a[i][j+11]}; */ 
float m[1][3],m[1][3],A[1][3],B[1][3],C[1][3],P[1][3]; 
float norm_n,norm_m,mn; 
n = {a[i][j+0],a[i][j+1],a[i][j+2]}; 
norm_n = sqrt(a[i][j+0]*a[i][j+0]+a[i][j+1]*a[i][j+1]+a[i][j+2]*a[i][j+2]); 
m = {b[i][j+0],b[i][j+1], b[i][j+2]}; 
norm_m = sqrt(b[i][j+0]*b[i][j+0]+b[i][j+1]*b[i][j+1]+b[i][j+2]*b[i][j+2]); 
n[0] = n[0]/norm_n; 
n[1] = n[1]/norm_n; 
n[2] = n[2]/norm_n; 
m[0] = m[0]/norm_m; 
m[1] = m[1]/norm_m; 
m[2] = m[2]/norm_m; 
mn = n[0]*m[0]+n[1]*m[1]+n[2]*m[2]; 
A = {a[i][j+3],a[i][j+4],a[i][j+5]}; 
B = {a[i][j+6],a[i][j+7],a[i][j+8]}; 
C = {a[i][j+9],a[i][j+10],a[i][j+11]}; 
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P = {b[i][j+3],b[i][j+4],b[i][j+5]}; 
int flag; 
float theta,point[1][3]; 
if mn ! = 0 
{ 
float phi,t,u,v; 
float cross_point[1][3],uv[1][2]; 
phi = acos(mn); 
t = (n[0]*A[0]+n[1]*A[1]+n[2]*A[2]-n[0]*P[0]+n[1]*P[1]+n[2]*P[2])/mn; 
cross_point[0] = P[0]+m[0]*t; 
cross_point[1] = P[1]+m[1]*t; 
cross_point[2] = P[2]+m[2]*t; 
uv = fcn_interCross(cross_point,A,B,C); 
u = uv[0]; 
v = uv[1]; 

 


