

International Journal of Information and Communication
Technology

ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

Method of target damage probability distribution simulation
and evaluation based on GPU parallel computing

Xiaoyun Lei, Yaping Tan, Lihua Zhu

Article History:
Received: 30 July 2024
Last revised: 12 September 2024
Accepted: 14 September 2024
Published online: 10 October 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijict
http://www.tcpdf.org

 Int. J. Information and Communication Technology, Vol. 25, No. 7, 2024 37

 Copyright © The Author(s) 2024. Published by Inderscience Publishers Ltd. This is an Open Access Article
distributed under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Method of target damage probability distribution
simulation and evaluation based on GPU parallel
computing

Xiaoyun Lei and Yaping Tan
School of Information Technology,
Jiangsu Open University,
Nanjing, Jiangsu Province, China
Email: leixy@jsou.edu.cn
Email: tanyp@jsou.edu.cn

Lihua Zhu*
School of Mechanical Engineering,
Nanjing University of Science and Technology,
Nanjing, Jiangsu Province, China
Email: njust_academic@163.com
*Corresponding author

Abstract: For the projectiles with proximity-fused warheads used to destroy
the target, the most vulnerable information is vital to destroy targets efficiently.
So, it is important to quickly locate the most vulnerable position of the target in
combat. An algorithm combining GPU parallel computing and numerical
simulation is proposed. For a specific target, a slicing processing method is
used to define the spatial position parameters, and the damage probability
distribution in the space near the target is established to determine the most
vulnerable position. In the example, the computation speed of the method is
about 3.6 times higher than that of the CPU serial calculation method. It could
quickly locate the most vulnerable position of a certain ballistic missile,
namely, when the projectile was situated in the plane of 1/5 projectile length
from the bottom of the target, the target would be damaged with the highest
probability of 90%.

Keywords: damage probability; vulnerable position; GPU parallel computing;
numerical simulation.

Reference to this paper should be made as follows: Lei, X., Tan, Y. and
Zhu, L. (2024) ‘Method of target damage probability distribution simulation
and evaluation based on GPU parallel computing’, Int. J. Information and
Communication Technology, Vol. 25, No. 7, pp.37–56.

Biographical notes: Xiaoyun Lei graduated from the Nanjing University of
Science and Technology in 2021. She works in Jiangsu Open Univer-sity. Her
research interests include intelligent ammunition technology and robotics.

Yaping Tan graduated from Nanjing University of Science and Technology in
2022 and now works at Jiangsu Open University. Her research interests include
terminal effects and impact dynamics.

 38 X. Lei et al.

Lihua Zhu graduated from Southeast University in 2016. She now works in
Nanjing University of Science and Technology. Her research interests include
robotics and remote sensing technology.

1 Introduction

For a target, the damage assessment is also called the vulnerability study. In the early
research, the anti-damage ability of targets was explored through a large number of
shooting tests (Starks, 1990; Guber et al., 1967). With the continuous development of
computer technology, the simulation evaluation method of target vulnerability has
developed into the main basic research method (Muuss et al., 1983; Wasmund, 2001).
Domestic simulation evaluation methods began in the 1980s, mainly from two aspects of
mathematics and image. The mathematical method is based on a large amount of known
prior information. It generally simulates the entire process of ammunition acting on the
target or analyses the actual drill and combat process, and executes the entire damage
process from top to bottom. Due to the integration of a large amount of prior information,
the calculation is very large, resulting in a serious delay in the acquisition of damage
information. These kinds of methods are more suitable for the design stage of
ammunition and protective armour, or post-war assessment. For example, Kong et al.
proposed an evaluation method combining machine learning (Tekwa, 2023) and fuzzy
hierarchical analysis (Tekwa, 2023; Zhang et al., 2021; Wang et al., 2020; Kong et al.,
2023; Deng et al., 2022). This method focuses on improving the accuracy of the detection
of the key components of the target. The fuzzy hierarchical analysis is difficult to solve
the problem of repeatability evaluation, and the real-time performance is hard to be
guaranteed. Chen et al. proposed a method based on Bayesian network models that can
make inferences about uncertain damage situations (Deng et al., 2022; Chen et al., 2022).
Jian et al. (2018) proposed a method combining fuzzy reasoning and Monte Carlo, but
due to the large complexity of the parameters of the model, there is also a problem of
information lag. The image-based evaluation method can basically meet the requirements
of actual damage effect measurement, but accurate image registration still requires
manual intervention, and it is still difficult to achieve a real-time evaluation of moving
targets (Li et al., 2024; Liu et al., 2024; Xu et al., 2024). Foreign simulation and
evaluation methods for target vulnerability have reached a high level, such as LMP-3 in
Sweden (Gyllenspetz and Zabel, 1981), VAREA and VAST in the United States
(Shah and Mehtre, 2015), and SLAMS in Canada (Shewchenko, 2012). A relatively
perfect damage information database has been formed, and the efficiency of information
acquisition has been improved.

To sum up, this paper proposes a simple damage assessment simulation method based
on GPU parallel computing in order to achieve the real-time solution of the optimal
detonating azimuth, distance and other combat information of warhead, and to solve the
problem of time delay in the vulnerability assessment (Zhang et al., 2017; Fu et al., 2016)
based on mathematical method. Firstly, the three-dimensional equivalent model and
damage element information database of the target are designed. Then, a multi-threaded
parallel computing software framework is constructed for the intersection calculation of
projectile and target and the identification of effective damage element. The intersection
algorithm is motivated by the principle of intersection between vector and surface

 Method of target damage probability distribution simulation 39

element. At the same time, the damage criterion of kill element penetrating target based
on THOR theory is established. Since there are a large number of the same computational
processes in the intersection calculation, we introduced the SPMD model (referring to the
Single program multiple data flow model), and used the principle of multi-threaded
parallel computing to create a kernel function to parallelise the cyclic intersection
calculation, so as to accelerate the computation process. At last, according to a slicing
processing of the spatial position information near the target, the spatial damage
probability of the target in different spatial positions is simulated and computed with
multithreaded parallel computing method, which can be used to quickly locate the most
vulnerable position information of the target. It can provide important target intelligence
support for the campaign actions.

2 Calculation method for target damage probability distribution in
three-dimensional space

For the establishment of a damage probability model in the target space, it will be
calculated by the damage assessment method and numerical simulation. The probability
model will vary with the differences between the vulnerable parts of different targets in
performance and location, and it may not have strong spatial distribution regularity in
space. Therefore, the spatial damage probability for a specific target was analysed, and a
database could be established for multiple targets to access the spatial damage probability
model in the form of a database. For a target in the air, as shown in Figure 1, the space
near the target was divided into layers by the cross section of the target passing through
the geometric centre, and the influence law of the projectile-target orientation on the
damage probability of the target was studied. The attitude of the projectile had a certain
influence on the formation of the damage field, but in this study, the spherical damage
field formed by natural fragments was considered, and the influence of attitude was
temporarily ignored. In the figure is the position vector of the projectile and target; For
the definition of the orientation of the projectile relative to the target centre on the
sectional plane, when viewed from the head of the target, the orientation was 0° in the
vertical direction and 90°–360° (0°) in the clockwise direction respectively. Aiming at the
sectional plane, the variation law of the damage probability of several sliced planes
within a certain projectile-target distance was explored, and the spatial damage
probability distribution model of the target was established.

2.1 Intersection calculation and effective damage element judgment method

In this study, the number of effective fragments suffered by the target was calculated and
counted by GPU parallel numerical calculation, and then the damage of each component
was calculated. Finally, the overall damage probability of the target was solved according
to the complete failure damage tree. According to the static fragment field information of
the projectile calculated by AUTODYN simulation, the information including the mass,
volume, velocity vector, and position vector of the damage element at the time of
explosion was derived in an XLS format. The target was modelled using 3D software
(such as UG and ProE, etc.), and the target model was exported in the form of an STL file
in the ASCII code format. The STL file contained the geometric information of the target,
that is, the vertex coordinates and the external normal vector of the triangular surface

 40 X. Lei et al.

element (SE), which was an ideal file format for calculating the intersection between the
fragment and the target.

Figure 1 Diagram of division of space around the target (see online version for colours)

0°

90°
180°

270°

l

l
vertical
distance

of
projectile-

target

The plane
of the cross

section

Given the attitude of the projectile and the target upon intersection, the damage
probability of each component of the target was related to the following parameters: the
projectile-target position vector, the target velocity vector, and the projectile velocity
vector.

(), ,t mP p l V V= (1)

2.1.1 Intersection calculation algorithm
With the known projectile-target intersection information, it was necessary to transform
the projectile and the target into the same coordinate system for damage calculation when
calculating the number of effective damage fragments. In the simulation calculation of
AUTODYN, the information of the projectile system in the static fragmentation field
could be obtained, and the relative velocity with the projectile needed to be synthesised
before the damage assessment to obtain the dynamic damage field of the projectile. The
following coordinate system was defined: the ground coordinate system was used to
determine various ballistic parameters of the projectile and the target, such as the
positions of the target and the projectile at the intersection point, velocity, and attitude
angle. The ground coordinate system (g) is represented by O-xgygzg. The projectile body
coordinate system (m) was used to describe the scattering characteristics of fragments,
expressed by O-xmymzm. The target coordinate system (t) was used to describe the
radiation characteristics and distribution position of various physical fields of the target,
as well as the position and distribution of the key parts of the target. Assuming that the
geodetic coordinate system coincided with the projectile coordinate system, then the

 Method of target damage probability distribution simulation 41

projectile was transformed from the projectile coordinate system to the geodetic
coordinate system and the target was transformed from the target coordinate system to
the geodetic coordinate system. According to the above two transformations, the target
could be transformed into the projectile coordinate system, and similarly, the projectile
could be transformed into the target system. The direction of the velocity vector Vm of the
projectile in the ground coordinate system could be determined by two angles: the yaw
angle and trajectory angle of the projectile. The trajectory angle θm is the included angle
between the longitudinal axis of the projectile and the horizontal plane (assuming that the
velocity of the projectile is consistent with the longitudinal axis of the projectile), and the
yaw angle φm is the included angle between the projection of the longitudinal axis of the
projectile on the horizontal plane and the O-xg axis. With known θm and φm, the three
components of the projectile velocity in the ground coordinate system could be
determined by the following coordinate transformation, and the coordinate transformation
matrix is Mxg.

cos cos sin cos sin
sin cos cos sin sin

sin 0 cos

m m m m m

xg m m m m m

m m

φ θ φ φ θ
M φ θ φ φ θ

θ θ

− 
 =  
 − 

 (2)

Then, the three components of the projectile velocity in the ground coordinate system are
as follows:

0
0

mxg m

myg xg

mzg

V V
V M
V

   
   =   
     

 (3)

Similarly, with the known heading angle φt and trajectory angle θt of the target, the
component of the target velocity vector (Vt, 0, 0) in the ground coordinate system is the
same as the above formula.

For the convenience of research, the following assumptions were made in the process
of coordinate system transformation:

a The angle of attack, sideslip angle, and roll angle of the projectile are zero, that is,
the longitudinal axis of the projectile is consistent with the velocity direction of the
projectile.

b The angle of attack, sideslip angle, and roll angle of the target are zero, that is, the
longitudinal axis of the target is consistent with its velocity direction.

After the projectile explodes, the scattering velocity vector of its fragment field will
change under the influence of the projectile’s transport velocity vector. Let the transport
velocity vector of the fragment be v1, and the initial velocity vector of a fragment after
static explosion of the projectile be v0. The dynamic scattering angle and dynamic initial
velocity vp0 of the fragment could be calculated by the following formula:

0 0

0 0 1

sinarctan
sin
v φφ

v φ v
=

+
 (4)

2 2
0 0 10 1 2 cospv v v v v φ= + + (5)

 42 X. Lei et al.

Figure 2 Composition of velocities of fragment

The projectile-target intersection is a dynamic intersection process, that is, the projectile
continues to move along its own trajectory while the fragments fly to the target.
Therefore, the intersection result is calculated by relative motion during the period from
the formation of fragments to hitting the target, that is, the target is transformed into the
projectile coordinate system, and the intersection result of fragments relative to the target
is calculated under the projectile system, assuming that the target moves in a straight line
at a uniform velocity in this short period.

When the damage element flies to the target at a resultant velocity, its velocity
actually attenuates continuously in the air. Generally, the following drag formula is
adopted:

2
0

x

p

C Aρx
m

p pv v e
−

= (6)

where vp0 is the initial fragment velocity (m/s), vp is the attenuated fragment velocity
(m/s), x is the fragment flight distance (m), ρ is the air density (kg/m3), mp is the fragment
mass (kg), A is the average windward area (m2), and cx is the fragment resistance
coefficient, which is related to the fragment shape and velocity. The average windward
area A of the fragment is associated with the fragment mass and shape, generally
expressed by equation (7). Therein, K is the fragment shape coefficient (m2/kg2/3).

2
3Km pA = (7)

Table 1 Empirical values of cx and K of typical steel fragments

Fragment shape Spherical shape Square shape Long strip shape Irregular shape
cx 0.97 1.56 1.3 1.5
K (10–3m2/kg2/3) 3.07 3.09 3.3–3.8 4.5–5

The drag coefficient cx and shape coefficient K of fragments are mainly obtained by
experiments. Table 1 lists the values of drag coefficient cx and shape coefficient K of
various steel fragments. Among them, influenced by the shape change, the shape
coefficient K of rhombic, elongated, and irregular shapes is a range.

In the process of fragment-target intersection, whether the fragment hits the target can
be determined by judging whether the velocity vector of the damage element intersects
with the surface element of the target component. In case of intersection, it means that the
damage element hits the target component. By using the geometric characteristic data of

 Method of target damage probability distribution simulation 43

the target component and the coordinate transformation theory of analytic geometry, the
intersection of the vector and the surface element can be judged, and then the coordinates
of the geometric intersection point, impact angle, and other data can be obtained. The
penetration equation can be used to judge whether the damage element can penetrate the
target component and obtain the residual mass and velocity of the damage element. On
this basis, whether the motion of the damage element ends is decided and whether the
penetration damage succeeds is judged.

The basic algorithm for the intersection judgment is as follows:
Algorithm: Intersection judgment

It is known that: The STL file of the target takes a triangle as the basic unit;
 The coordinate system of both projectile and target has been transformed

to the same coordinate system;
 The three vertices of the triangular surface elements that constitute the

target are A, B, and C respectively, the unit normal vector is n, the unit
vector of the fragment velocity vector is m, and the initial position point of
the fragment is P0;

Step 1: The included angle between two vectors is calculated as θ = acos
(mn/(|m||n|))

Step 2: The intersection point between the straight line and plane is:
Cross_P = m(nA – nP0)/mn + P0

Step 3: Whether the intersection point Cross_P is inside the triangular surface
element or the sideline is judged:

()() ()()
()() ()()
()() ()()

_
1

, , , ,

, , , ,

, , , ,

AC

AB

AP

AC AC AB AB AC AB AC AB

AB AB AC AP AC AB AB AP

AC AC AB AP AC AB AC AP

n C A
n B A
n Cross P A

tmp
n n n n n n n n

u n n n n n n n n tmp

v n n n n n n n n tmp

= −
 = −
 = −

 =

 −  


 = − ⋅  


 = − ⋅  

 If: (u < 0 || u > 1) || (v < 0 || v > 1) is true, the condition is not satisfied
(|| indicates logic OR);

 If: (u + v < = 1) is true, the condition is satisfied, and the distance d
between the fragment position and intersection point and the target
angle λ in this case can be calculated accordingly.

 d = ||Cross_P – P0||
 λ = (π – θ)

The above intersection method is used to calculate the intersection information of a single
fragment and a surface element. When the whole damage field intersects with all surface
elements of the whole target, the calculation amount is amazing. In this study, therefore,
the idea of parallel computing was followed, and rapid resolving was performed through
the GPU parallel computing method (Hong et al., 2019; Huang and Xie, 2021; Ma et al.,
2022).

The fragments (0, 2 … M) of the damage field, each component of the target, and the
triangular surface element of each component are numbered, and the component number
corresponds to the position (row, column) of the component in the damage tree, and the

 44 X. Lei et al.

surface element number contained in the component is 0, …, N. The damage field is
digitised into an M’8 matrix, and the attribute parameters of each damage element are the
row elements of the matrix, including the coordinate component value, velocity vector
component value, volume, and mass of the damage element. The STL file of each
component of the target can be read and then digitised into an N’12 matrix, and each row
contains the geometric information of a triangular surface element, including the normal
vector component value of the surface element and the coordinate component values of
three vertices.

GPU accelerated parallel computing was performed using NVIDIA’s CUDA C
programming technology, which could greatly improve the repeated computing
efficiency. The CUDA application program can directly call the bottom-layer CUDA
driver to call GPU hardware for parallel computing. If the commonly used serial
calculation algorithm is adopted, the code of the geometric intersection calculation part is
as follows. It can be seen that the whole iterative loop computing process will be repeated
(N + 1)’ (M+1)’ (T + 1) times, where T + 1 is the number of components included in the
target. And there is no dependence between each iterative computing and the next-round
computing. Therefore, the tasks or data can be divided and loops can be parallelised.

Figure 3 Part of code for intersection calculation in serial computing method

for t=0:T
//Load the geometry information matrix of the first part
Data_surface=Surfaces.DIRS(t).name;
//intersection judgment
for m=0:M
 l=Line(m,:);%%The row number is the fragment number

//N+1 is the number of facet elements of the current part
 for n=0:N
 p=Plane(n,:);

 //Surface element j of k part intersect with fragment i
 [flag,theta,distance,point]=sub_intersection(p,l);
 If flag~=0
 EffectAct(end+1,:)=[mn flag theta distance point];
 end
 end
end
。。。//Process

 //Intersection result
geo_jiaohui=[geo_jiaohui;temp2];
end

In CUDA, the loop is parallelised by creating kernel functions. At this time, the loop
control variable will no longer represent the number of loops, but a variable used to
represent the currently allowed threads. CUDA provides a special variable – thread index
(thread ID) to identify each thread, which can be used as a subscript to access the array.
Each thread performs the operation of intersection judgment, with the same code but

 Method of target damage probability distribution simulation 45

different data, that is, the SPMD (Single program multiple data stream) model in CUDA
is adopted.

Figure 5 Schematic design of thread block layout

thread0~15，thread block0 thread16~31，thread block0

thread32~47，thread block0 thread48~63，thread block0

thread64~79，thread block0 thread80~95，thread block0

thread96~111，thread block0 thread112~127，thread block0

thread128~143，thread block0 thread144~159，thread block0

thread160~175，thread block0 thread176~191，thread block0

thread192~207，thread block0 thread208~223，thread block0

thread224~239，thread block0 thread240~255，thread block0

thread0~15，thread block1 thread16~31，thread block1

thread32~47，thread block1 thread48~63，thread block1

thread64~79，thread block1 thread80~95，thread block1

thread96~111，thread block1 thread112~127，thread block1

thread128~143，thread block1 thread144~159，thread block1

thread160~175，thread block1 thread176~191，thread block1

thread192~207，thread block1 thread208~223，thread block1

thread224~239，thread block1 thread240~255，thread block1

thread224~239，thread blocki thread240~255，thread blocki

As shown in the following figure, the surface element matrix (marked as a) and the
fragment field velocity vector matrix (marked as b) are both two-dimensional arrays. In
order to maximise the equipment utilisation, each thread block has 256 threads, and
32 threads (or integer multiples thereof) form a thread bundle, so a thread block has eight
thread bundles. In addition, we suggest that the array span should be an integer multiple
of the thread bundle size, if the array is not filled, and if judgment statement is used to

 46 X. Lei et al.

omit the calculation of the filled part in the calculation. We choose a rectangular layout,
as shown in the figure, to read the data once, to access the memory continuously in the
form of rows, and then to perform the next intersection calculation. For a and b matrices,
preprocessing is needed to design the layout to meet the requirements of computing
efficiency, and GPU parallel computing sacrifices the memory for a high computing
speed. The rows a and b are complemented to 32 elements, the columns to an integer
multiple of 8, and the sizes of the two matrices become M’32 and N’32. Moreover,
leng_blocks = max{M’, N’}’ (T + 1), then the layout design code is:

dim3 threads_rect(32, 8);
dim3 blocks_rect(1,leng_blocks/8);
Therefore, the indexes of the array in two dimensions are:
idx (blockIdx.x*blockDim.x) threadIdx.x;
idy (blockIdx.y*blockDim.y) threadIdx.y;

= +
= +

BlockIdx.x is an index of thread blocks in a thread grid in the x direction. In this study,
the x dimension index is always 0; BlockIdx.y is the index in the y direction, which is
within 0-leng_blocks in this study; blockDim.x = 32, blockDim.y = 8, and threadIdx.x =
0~31; threadIdx.y = 0-7. In the array, idy corresponds to the row number and idx
corresponds to the column number. There is no need to worry about the number of
threads to open. Even if there are 64 million threads to process 64 million array elements,
and each array element is a single-precision floating-point number, then each element
occupies 4 bytes, totalling about 256 MB of data storage space. Now basically all GPUs
support this size of space.

After the layout is designed, the intersection algorithm of the kernel function can be
designed. The memory of two matrices is allocated on GPU, and the intersection results
are also stored in the matrices and returned to CPU. Each row of the returned matrix
includes eight elements (fragment number, component number, surface element number,
intersection marks, target angle, projectile-target distance upon intersection, and
coordinates of the intersection point).

The call of this kernel function is as follows, and the partial codes of main functions
are displayed in Appendix A3.

kernel blocks _ rect, threads _ rect (, ,);a b c<<< >>>

2.1.2 Calculation of spatial damage probability distribution
Most of the fragments that hit the target do not necessarily cause damage to the target, so
the fragments with a damage effect need to be further discriminated by using other
conditions in the damage element that hits the target. Generally speaking, fragments can
cause mechanical damage to the target by kinetic energy, that is, forming holes or
penetrating the target. Fragments penetrating the target usually cause damage to the
target. THOR’s formula (Chen et al., 2015; Cho et al., 2018; Wang et al., 2022) provides
a simple method for preliminarily calculating the ultimate velocity of fragments
penetrating a target with a specific thickness and material, as well as the residual velocity
and residual mass of fragments after penetrating the target. For steel fragments, the
parameters needed for calculation include the fragment mass, fragment impact velocity,
and so on. The THOR equation does not include the secondary fragments formed by the

 Method of target damage probability distribution simulation 47

collapse or fracture of the target material. After counting the number of broken fragments
on each component, the damage probability of each key component can be obtained
according to the damage criterion. After obtaining the damage probability distribution of
the key components of the target, the probability operation is carried out according to the
logical connection relationship between the key components in the damage tree, that is,
the damage probability of each subsystem (intermediate event) is calculated through the
damage probability of the key component (bottom event), and then the damage
probability corresponding to each functional system or damage level (top event) is
obtained.

Let the average damage rate of a single effective damage element to the target be pi,
and assume that the target killing by each damage element as an independent event, then
the probability of the target being damaged under the condition that i damage elements
penetrate the target component is:

()1 1 i
i iP p= − − (8)

For a specific damage tree, the logical relationship between its key components includes
two connection modes: series connection and parallel connection, in which the series
damage tree is a logical AND operation relationship, while the parallel damage tree is a
logical OR operation relationship. For J mutually independent killing events E1, E2, …,
EJ connected in series, the result event Q will only occur if and only if J killing events
occur simultaneously. When damage events are mutually independent, the occurrence
probability of the result event can be expressed as below:

() ()
1 1

()
J J

k kk k
P Q P E P E

= =
= =∏ ∏ (9)

For J mutually independent damage events E1, E2, …, EJ connected in parallel, the result
event Q will occur as long as one damage event occurs, and the occurrence probability of
the result event can be expressed as follows:

() ()[]
1 1

() 1 1
JJ

k kk k
P Q P E P E

= =
= = − − ∏ (10)

3 Simulation analysis

In this study, the damage probability calculation method was based on the 3D STL model
of target components and the AUTODYN damage field simulation model (Pang et al.,
2022; Thakur et al., 2022), and the parallel calculation was adopted to speed up the
calculation process. On this basis, effective assumptions were made, and the number of
damage elements that hit the target with damage effects was calculated through numerical
simulation, parallel calculation, and statistics. Finally, the overall damage probability of
the target was solved through the damage tree. Therefore, such series of complicated
calculations with a large data size cannot be implemented just by a simple mathematical
formula. Before completing the damage evaluation calculation of the target, a database of
typical targets and damage fields was established by using SQL, as shown in the example
in Appendix A2. An interactive simulation platform was compiled by using MATLAB
and CUDA C (Defez et al., 2022; Zhang et al., 2011; Hou et al., 2017; Yamout et al.,
2022; Schmid et al., 2022), as shown in Figure 6, where Figure 6(a) is the interface for

 48 X. Lei et al.

setting projectile and target parameters, and Figure 6(b) is the interface for damage
assessment.

Figure 6 GUI of simulation platform (see online version for colours)

(a)

(b)

In order to determine the influence of the orientation of the projectile in the layered space
near the target on the damage probability of the target, considering the spatial position of
the target centre at a vertical distance of 5 m from the axis of the projectile, the complete
damage probability of a single projectile to a target under different spatial intersection
conditions was quickly calculated by using the accelerated parallel computing method.

 Method of target damage probability distribution simulation 49

The target was divided into 50 components, with a total of 67,487 surface elements, and
the damage field contained about 780 damage elements. It took about 7 min to calculate
an example by using the CPU serial computing method, and the average time ratio
between them was about 3.6 after using the GPU parallel computing method (of course,
this result is high correlated with the performance of the computer itself and the degree of
program optimisation), indicating that parallel computing can indeed improve the
computing efficiency of damage assessment to a certain extent, but the degree of
improvement has a great relationship with computer performance, program structure
optimisation, algorithm optimisation, and data access (Zhou et al., 2021; Kistler and
Franz, 2001).

Figure 7 Diagram of damage probability distribution of a single projectile to a specific target
(see online version for colours)

Note: ‘PD of p-t’ means perpendicular distance of projectile and target. Lp is the length
of projectile.

Considering the relationship between the degree of damage and the relative position of
the projectile and a specific target, the hierarchical spatial damage probability distribution
of the target was determined. As shown in Figure 7, the target had different damage
probabilities when it was near the orientations of 100° and 275°, especially when the
vertical distance between the projectile and the target was 1/5 of the length of the
projectile, that is, the projectile was located in the plane at 1/5 of the projectile length
from the bottom of the target, and the damage probability of the target was the highest,
which could reach 90%. When the warhead was detonated in other directions of the
target, the damage probability of the target was almost zero. In theory, when only the
kinetic energy of fragments was considered, the kinetic energy of fragments would be
reduced because of the air drag in the process of flying to the target, so the probability of
target damage would be further reduced if the warhead was detonated at a far distance
from the target in the same orientation.

 50 X. Lei et al.

We take the implementation of the original traditional serial computing algorithm
framework (Figure 3) on Intel i5-7300HQ CPU + GeForce RTX2080Ti GPU as a
benchmark to evaluate the performance of the GPU-accelerated computing method. The
following Table 2 lists the data in terms of running time, intersection calculation rate, and
system power consumption. It can be seen that compared with i5 CPU, the speed of
GPU-accelerated method has obvious advantages, and the system power consumption is
lower than that of i5 CPU. The i5 CPU is more than 5 times of the GPU-accelerated
computing method in power consumption, while the calculation rate of GPU-accelerated
method is increased by more than 3.6 times, especially the runtime per intersection
calculation process is decreased by 82.9%. GPU-accelerated method has obvious
performance improvement.
Table 2 Performance comparison between serial computational processing method and

GPU-accelerated computing method runs on Intel i5-7300HQ CPU + GeForce
RTX2080Ti GPU

 Intel i5 CPU GPU-accelerated
computing

Runtime per probability calculation process (ms) 581.98 158.41
Runtime per intersection calculation process (us) 121.88 20.80
Power (W) 45.0 8.90

In conclusion, the results of simulation analysis under certain conditions show that the
proposed method can locate the ideal optimal damage information to a certain extent and
improve the computational efficiency, which is consistent with the purpose of the
method, namely to quickly obtain the most vulnerable position of the target under
different dynamic intersection conditions. From the established database information, the
coverage of calculation parameters for damage assessment is relatively comprehensive.
However, there is indeed a problem that the actual situation is not considered in detail.
Because this paper focuses more on the effectiveness of the method in improving the
computational efficiency, some equivalence is made, such as, the equivalent material and
the equivalent thickness of functional damage of the components, etc. These equivalents
are reasonable and consistent with the principles of damage assessment, and the
calculation process of the damage probability is also a standard calculation method.
Therefore, although there are some differences between the calculated results and the
actual results, it can still provide some reference for the design of combat strategy. In
future work, we need to further improve the method in terms of assessment accuracy.

4 Conclusions

In order to rapidly position of the most vulnerable position of the target and solve the
problem of time delay in the methods of vulnerability assessment based on mathematical
model, a simple target vulnerability evaluation simulation method based on multi-thread
parallel computing framework is proposed. According to the designed damage
information database and the sliced space position definition method, the spatial damage
probability distribution information of the target can be solved timely to obtain the
optimal explosion location of the warhead. The example shows that, compared with the
serial calculation method, the efficiency can be improved by 3.6 times, and the most

 Method of target damage probability distribution simulation 51

vulnerable position of the target can be quickly provided for the ballistic end point to
achieve the maximum damage probability of the target. Of course, prior database
information is still indispensable in our method, and the human-computer interaction
function of the whole software system needs to be further improved.

Acknowledgements

The research received support from the National Natural Science Foundation of China
(Grand No. 12302471) and Natural Science Research of Jiangsu Higher Education
Institutions of China (No. 1020220767 and No. 22KJD590001).

References
Chen, G., Yao, L., Wang, G., Shang, X., Chen, W., Yan, Y. and Ming, Z. (2022) ‘A human-

machine consensus formation method for robust decision making in battlefield situation
assessment’, Acta Armamentarii, Vol. 43, No. 11, p.2953.

Chen, J., Yuan, B.H., Xiao, C. and Chen, Y.J. (2015) ‘An experimental evaluation method of
energy release characteristics of reactive materials’, Chinese Journal of Explosives &
Propellants, Vol. 38, No. 3, pp.49–53.

Cho, A.H., Park, K. and Kim, G.I. (2018) ‘Estimation of penetration equation parameters by
comparing numerical analysis and experimental results’, Journal of Mechanical Science and
Technology, Vol. 32, No. 12, pp.5755–5765.

Defez, E., Ibáñez, J., Peinado, J., Alonso-Jordá, P. and Alonso, J.M. (2022) ‘New Hermite series
expansion for computing the matrix hyperbolic cosine’, Journal of Computational and Applied
Mathematics, Vol. 408, No. C, p.114084.

Deng, L., Yang, P., Liu, W. and Wang, J. (2022) ‘Application in damage effect evaluation of early
warning radar of cloudy Bayesian network based on Dempster Shafer/analytic hierarchy
process method’, Acta Armamentarii, Vol. 43, No. 4, p.814.

Fu, J.P., Guo, G., Feng, S., Chen, Z.G., Zhao, T.Y. and Hou, X.C. (2016) ‘Damage assessment
method and application of blast-fragmentation warhead against ground target’, Acta
Armamentaria, Vol. 37, No. S1, pp.7–12.

Guber, W., Nagel, R., Goldstein, R. et al. (1967) ‘A geometric description technique suitable for
computer analysis of both nuclear and conventional vulnerability of armored military
vehicles’, Physics, S 2624-8174, Corpus ID: 107670884 [online]
https://api.semanticscholar.org/ CorpusID:107670884 (accessed 21 May 2024).

Gyllenspetz, I.M. and Zabel, P.H. (1981) ‘Comparison of US and Swedish aerial target
vulnerability assessment methodologies’, Försvarets forskningsanst [online]
https://api.semanticscholar.org/ CorpusID:107877327 (accessed 21 May 2024).

Hong, C., Jie, H., Yi, L. and Sen, L. (2019) ‘Domain decomposition based SPH parallel
computing method study and its application’, Journal of System Simulation, Vol. 30, No. 10,
pp.3717–3723.

Hou, K., Liu, W., Wang, H. and Feng, W.C. (2017) ‘Fast segmented sort on GPUs’, Proceedings of
the International Conference on Supercomputing, pp.1–10.

Huang, X. and Xie, K. (2021) ‘Research and implementation of a high performance
distributed object-oriented simulation engine’, Journal of System Simulation, Vol. 33, No. 9,
pp.2215–2226.

Jian, L.J., Li, Y.Z. et al. (2018) ‘Damage evaluation research considering fuzzy inference and
Monte-Carlo method’, Aero Weaponry, Vol. 2018, No. 6, pp.78–83, DOI: 10.19297/j.cnki.41-
1228/tj.2018.06.013.

 52 X. Lei et al.

Kistler, T. and Franz, M. (2001) ‘Continuous program optimization: design and evaluation’, IEEE
Transactions on Computers, Vol. 50, No. 6, pp.549–566.

Kong, X.X., Qin, W.Y. et al. (2023) ‘Damage assessment algorithm based on deep learning and
fuzzy analytic hierarchy process’, Acta Aeronautica et Astro nautica Sinica, Vol. 40, No. X,
pp.1–18, DOI: 10.7527/S1000-6893.2023.29503.

Li, H., Ma, G.R., Liu, Y.D., and Zhang, H.M. (2024) ‘A remote sensing imagery-based model for
assessment of building damage induced by large-equivalent explosions’, Explosion and Shock
Waves, Vol. 44, No. 3, p.031407.

Liu, Y., Liu, M., Lv, Z., Yan, J., Chu, S., Shi, Z. and Huang, F. (2024) ‘Research on the
development status and trend of ammunition damage assessment technology based on
mapping knowledge domains’, Transactions of Beijing institute of Technology, Vol. 44,
No. 3, pp.219–230, DOI: 10.15918/j.tbit1001-0645.2023.100.

Ma, L., Zhang, X., Lei, X. and Bao, T. (2022) ‘Design and implementation of a hybrid solver
on CPU and GPU multi-target machines’, Journal of System Simulation, Vol. 34, No. 4,
pp.670–678.

Muuss, M.J., Applin, K.A., Suckling, J.R., MOSS, G., Weaver, E. and Stanley, C. (1983)
GED: An Interactive Solid Modeling System for Vulnerability Assessments, PN, USA,
DOI: 10.21236/ada126657.

Pang, S.L., Chen, X., Xu, J.S., Zhaori, G.T. and Du, H.Y. (2022) ‘Analysis on damage
characteristics and detonation performance of solid rocket engine charge subjected to jet’,
Defence Technology, Vol. 18, No. 9, pp.1552–1562.

Schmid, R.F., Pisani, F., Cáceres, E.N. and Borin, E. (2022) ‘An evaluation of fast segmented
sorting implementations on GPUs’, Parallel Computing, Vol. 110, No. 2022, p.102889.

Shah, S. and Mehtre, B.M. (2015) ‘An overview of vulnerability assessment and penetration testing
techniques’, Journal of Computer Virology and Hacking Techniques, Vol. 11, No. 2015,
pp.27–49.

Shewchenko, N. (2012) ‘A vulnerability/lethality model for the combat soldier, a new paradigm –
basis and initial development’, Personal Armour Systems Symposium, Nuremberg--Fürth,
Germany, September.

Starks, M.W. (1990) ‘Vulnerability science, a response to a criticism of the ballistic
research haboratoey’s vulnerability modeling strategy’, Journal: Engineering, Vol. 1,
No. AD-A224785, pp.1–24, DOI: 10.21236/ada224785,

Tekwa, K. (2023) ‘Review of Wang & Sawyer. Machine learning in translation’, Babel, Vol. 70,
No. 3, pp.450–453, DOI: 10.1075/babel.00341.tek.

Thakur, N., Bharj, R.S., Kumar, P., Sharma, P., Sharma, S. and Bahl, S. (2022) ‘Determination of
the material model parameters for high pressure densification induced glass inferred through
analytical comparison and its ballistic performance as used in composite laminates’, Physica
Scripta, Vol. 98, No. 1, p.015225.

Wang, M., Wang, X., Liu, Q., Shen, F. and Jin, J. (2020) ‘A novel multi-dimensional cloud model
coupled with connection numbers theory for evaluation of slope stability’, Applied
Mathematical Modelling, Vol. 77, No. 1, pp.426–438.

Wang, Y., Yin, J., Zhang, X. and Yi, J. (2022) ‘Study on penetration mechanism of shaped-charge
jet under dynamic conditions’, Materials, Vol. 15, No. 20, p.7329.

Wasmund, T.L. (2001) ‘New model to evaluate weapon effects and platform vulnerability: AJEM’,
Wstiac Newsletter, Vol. 2, No. 2001, pp.1–3.

Xu, Y.B., Yan, J.R. et al. (2024) ‘Autonomous attack decision of bomb swarm on ground target
based on visual damage assessment without communication’, Acta Armamentarii, pp.1–14
[online] http://kns.cnki.net/kcms/detail/11.2176.tj.20240228.1319.006.html (accessed 16 June
2024).

Yamout, P., Barada, K., Jaljuli, A., Mouawad, A.E. and El Hajj, I. (2022) ‘Parallel vertex cover
algorithms on GPUs’, 2022 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), May, pp.201–211.

 Method of target damage probability distribution simulation 53

Zhang C.Y, Shu, J.S. et al. (2017) ‘Current status and development of evaluation technology for
target damage effect’, Aerospace Technology, Vol. 2017, No. 6, pp.68–72+77.

Zhang Z.T., Zhang, L. et al. 2021) ‘Damage effectiveness evaluation of air defense weapon system
based on cloud model’, Journal of Information Engineering University, Vol. 22, No. 4,
pp.497–501.

Zhang, K., Li, J., Chen, G. and Wu, B. (2011) ‘GPU accelerate parallel Odd-Even merge sort:
an OpenCL method’, Proceedings of the 2011 15th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), pp.76–83.

Zhou, K., Meng, X., Sai, R., Grubisic, D. and Mellor-Crummey, J. (2021) ‘An automated tool for
analysis and tuning of GPU-accelerated code in HPC applications’, IEEE Transactions on
Parallel and Distributed Systems, Vol. 33, No. 4, pp.854–865.

Appendix A

1 Format of data

Damage field information obtained by AUTODYN simulation (part) (see online version
for colours):

2 The design of database

Database includes:

2.1 DamageClassTable1
The target damage level data table mainly stores all damage levels and damage level
description information of the target (see online version for colours).

2.2 DamageCriterionTable1

Save the damage criteria and damage criteria of each component (see online version
for colours).

 54 X. Lei et al.

2.3 DamageTreeTable1

The target damage data table mainly stores the target information, damage level, damage
degree of system or component, parent node system, component ID, and the association
relationship between the node and the component associated with the structure tree and
each tree node (see online version for colours).

2.4 EquDataTable1

EquDataTable1 mainly stores the ownership of every part, vulnerable area proportion,
Penetration equivalent ratio, equivalent material, functional damage equivalent thickness,
structural dimension parameters (see online version for colours).

 Method of target damage probability distribution simulation 55

2.5 EquMaterial1

Mainly save the calculation parameters of THOR formula (see online version
for colours).

#include <math.h>
#define pi 3.1415926535897932f
__global__ void kernel(int *c, const int *a, const int *b)
{
int j = (blockIdx.x*blockDim.x)+threadIdx.x;
int i = (blockIdx.y*blockDim.y)+threadIdx.y;
/* plane = {a[i][j+0] a[i][j+1] a[i][j+2];
a[i][j+3] a[i][j+4] a[i][j+5];
a[i][j+6] a[i][j+7] a[i][j+8];
a[i][j+9] a[i][j+10] a[i][j+11]}; */
float m[1][3],m[1][3],A[1][3],B[1][3],C[1][3],P[1][3];
float norm_n,norm_m,mn;
n = {a[i][j+0],a[i][j+1],a[i][j+2]};
norm_n = sqrt(a[i][j+0]*a[i][j+0]+a[i][j+1]*a[i][j+1]+a[i][j+2]*a[i][j+2]);
m = {b[i][j+0],b[i][j+1], b[i][j+2]};
norm_m = sqrt(b[i][j+0]*b[i][j+0]+b[i][j+1]*b[i][j+1]+b[i][j+2]*b[i][j+2]);
n[0] = n[0]/norm_n;
n[1] = n[1]/norm_n;
n[2] = n[2]/norm_n;
m[0] = m[0]/norm_m;
m[1] = m[1]/norm_m;
m[2] = m[2]/norm_m;
mn = n[0]*m[0]+n[1]*m[1]+n[2]*m[2];
A = {a[i][j+3],a[i][j+4],a[i][j+5]};
B = {a[i][j+6],a[i][j+7],a[i][j+8]};
C = {a[i][j+9],a[i][j+10],a[i][j+11]};

 56 X. Lei et al.

P = {b[i][j+3],b[i][j+4],b[i][j+5]};
int flag;
float theta,point[1][3];
if mn ! = 0
{
float phi,t,u,v;
float cross_point[1][3],uv[1][2];
phi = acos(mn);
t = (n[0]*A[0]+n[1]*A[1]+n[2]*A[2]-n[0]*P[0]+n[1]*P[1]+n[2]*P[2])/mn;
cross_point[0] = P[0]+m[0]*t;
cross_point[1] = P[1]+m[1]*t;
cross_point[2] = P[2]+m[2]*t;
uv = fcn_interCross(cross_point,A,B,C);
u = uv[0];
v = uv[1];

