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Abstract: This study investigates the impact of non-pharmaceutical interventions (NPIs), 
including the use of cotton fabric masks and social distancing, on disease infections, such as 
COVID-19, and exposure rates within waiting areas of an emergency department. Employing a 
multi-agent simulation approach, the research models patient flow, with each agent representing 
a physical entity governed by predefined attributes and rules. The objective is to assess the 
performance of preventive measures quantitatively based on agent proximity and exposure time. 
Findings indicate that facemask usage reduces infections, and both facemask adherence and 
social distancing contribute to lower infection rates. The study highlights the similarity in effect 
between social distancing and a 20% facemask adherence rate. Additionally, it underscores that 
as more agents adopt facemasks, the time needed for exposure increases. Waiting areas emerge 
as potential hotspots for transmission. 

Keywords: non-pharmaceutical interventions; NPIs; disease infection; COVID-19 exposure; 
hybrid simulation; waiting areas; public healthcare. 
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1 Introduction 
Researchers have focused on understanding the diverse 
dispersion patterns of COVID-19 across regions. For 
example, (Pereira et al., 2022) constructed a comprehensive 
risk model incorporating key variables such as probability, 
susceptibility, danger, vulnerability, and potential damage. 
Since the onset of the COVID-19 pandemic, researchers 
have conducted extensive studies in epidemiology to 
examine the behaviour and transmission dynamics of the 
virus. Their objective has been to identify effective 
preventive measures for reducing positive cases and 
mitigating the broader impacts of the pandemic, including 
economic repercussions resulting from interventions like 
lockdowns. A study by Mondal et al. (2022) revealed that 
the prevalence of respiratory viral diseases has significantly 
reduced following COVID-19, possibly due to the impact of 
non-pharmaceutical interventions (NPIs). Initial attention 
was directed towards open public spaces such as schools, 
universities, places of worship, shopping malls, and public 
transportation stations due to their high occupancy and 
potential for clustering, making them crucial in 
understanding infection curves. For example, a study by 
Hunter and Kelleher (2022) explored the impact of 
community mixing when schools reopen after the summer 

holidays. Another work done by Saleh and Adly (2023) 
concluded that the significance of lowering air pollution 
levels is underscored to alleviate the enduring health 
impacts of COVID-19. However, closed environments also 
play a significant role in virus transmission if appropriate 
preventive measures are not implemented (Shbool et al., 
2022a). 

Hospitals and healthcare facilities are of particular 
concern in closed spaces. Hospitals are susceptible to 
increased infection rates due to the influx of patients with 
varying health conditions, given the continuous operation 
regardless of epidemiological situations. Waiting areas 
within hospitals, where people gather before receiving 
medical attention, can contribute to congestion and facilitate 
higher transmission rates. Accurate prediction of infection 
rates is crucial for implementing effective measures and 
policies to mitigate the spread. In this study, we introduce 
an agent-based modelling (ABM) approach to assess the 
impact of NPIs, namely facemasks and social distancing, on 
the number of COVID-19 exposures among patients visiting 
an emergency department (ED). 

Though computationally intensive, agent-based models 
provide essential insights into disease dynamics and 
interventions during pandemics, offering advantages such as 
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capturing heterogeneity and generating possible outcomes 
(Hunter and Kelleher, 2022). By employing an agent-based 
model to simulate the flow and clustering of individuals 
within a hospital, decision-makers can gain insights  
into how COVID-19 infections may occur. This enables 
informed choices regarding the implementation of 
preventive measures within healthcare facilities. 
Additionally, the model facilitates predictions on how NPIs 
affect the infection curves of COVID-19. Our research 
supports healthcare decision-makers in confidently 
implementing preventive measures by identifying specific 
areas requiring increased attention and ensuring effective 
implementation of NPIs. Ultimately, the aim is to develop 
an agent-based system dynamics hybrid model to minimise 
the risk of infection within healthcare buildings and 
safeguard the well-being of individuals on these premises. 
The contributions of this work can be summarised as 
follows: 

• Evaluating the influence of facemask mandates and 
social distancing measures on the extent of patient 
exposure within healthcare facilities. 

• Examining the impact of NPIs on various factors, 
including total exposure time, average exposure time, 
duration until worker exposure, and the number of 
individuals exposed. 

The rest of this paper is organised as follows: the second 
section reviews the related literature on COVID-19 
exposure modelling and optimisation. The methodology 
section presents the utilisation of the agent-based approach. 
The results and discussion section provides a detailed 
analysis of the study results and computations. Finally, the 
paper concludes with a summary and outlines future work. 

2 Literature review 
Numerous studies have examined COVID-19 exposure in 
closed environments using simulation models. For example, 
Bandara et al. (2021) investigated the challenges of indoor 
COVID-19 transmission by modelling virus-laden aerosol 
trajectories in a study room using computational fluid 
dynamics. The impact of NPIs on COVID-19 exposure in 
closed spaces was evaluated by Al-Bazi et al. (2023) by 
introducing an innovative COVID-19 exposure prediction 
framework. This framework comprises three modules: an 
ABM approach, a clustering module (CM), and the 
application of the decision tree (DT) technique. Touchton  
et al. (2023) compiled a comprehensive dataset capturing 
national and subnational NPI implemented by governments 
in the Americas during the COVID-19 pandemic, allowing 
for dynamic and varied NPI comparisons within and across 
countries to understand their impact on health outcomes. 
Montcho et al. (2023) addressed the impact of NPIs on 
COVID-19 dynamics in Germany, which was assessed 
through a distributed lag linear model, considering 
challenges such as correlated interventions, time trends, and 
seasonal influences. The study revealed that the reduction in 

the number of intensive care patients is observed after a 
time lag of 10–15 days, with an overall decrease associated 
with increased intervention intensity after a time lag of 9 
and 10 days, while acknowledging the complexity of 
drawing causal conclusions due to the absence of a suitable 
experimental study design. The impact of NPI on  
COVID-19 transmission by incorporating mobility data was 
also investigated using Bayesian modelling with Facebook 
mobility maps for the UAE by Hasan et al. (2022). The 
study assessed NPI efficacy, focusing on early epidemic 
stages to inform future pandemic response strategies. 
Ravkin et al. (2022) explored the impact of NPIs instituted 
during the SARS-CoV-2 pandemic on the atypical patterns 
of the 2020–2021 respiratory syncytial virus (RSV) season 
in children, where Google Trends data was used as a proxy. 
Mader and Rüttenauer (2022) investigated the NPIs 
effectiveness in reducing COVID-19-related fatalities 
beyond the initial wave, utilising a comprehensive approach 
across 169 countries from July 2020 to September 2021. 
The results showed the importance of NPIs in fatality 
reduction and underscored the significance of vaccinations 
in combating COVID-19-related deaths. This result is 
consistent with the conclusions of the study done in Europe 
from August 2020 to October 2021 by Ge et al. (2022), 
revealing that the combined effect of NPIs and vaccination 
resulted in a 53% reduction in the reproduction number. The 
reproduction number was estimated using a mathematical 
model in the study done by Saidan et al. (2020). 

From the methodology perspective, Emroozi et al. 
(2022) conducted a study to assess COVID-19 dynamics 
using system dynamics modelling, exploring the impact of 
three proposed scenarios on disease management variables. 
Farkas and Chatzopoulos (2021) presented a mathematical 
model assessing the impact of self-quarantine on disease 
dynamics, revealing that actual peak case numbers may 
have been substantially higher than reported test cases and 
that solid adherence to self-quarantine rules had a more 
pronounced impact during the early phase of the outbreak, 
even when considering the reduction of the effective 
susceptible population size due to a national lockdown. Bahl 
et al. (2021) developed an agent-based model to predict the 
spread of COVID-19 in a college, highlighting the impact of 
interventions like facemasks and closures. (Patel et al., 
2021) built a model for North Carolina to assess the 
combined effect of vaccines and NPIs on infection cases. 
Kaffai and Heiberger (2021) studied the effectiveness of 
NPIs in Germany, emphasising quarantine and working 
from home. Ying and O’Clery (2021) focused on  
COVID-19 spread in a virtual supermarket, emphasising the 
importance of limiting customer arrivals and mandating face 
masks. Alrashed et al. (2020) predicted COVID-19 spread 
in Saudi Arabia, demonstrating the impact of lockdowns. 
Cuevas (2020) introduced a model with behavioural rules to 
simulate infection transmission. Proverbio et al. (2021) 
extended the SEIR model to evaluate the effect of NPIs in 
different countries. A work by D’Orazio et al. (2021) 
assessed solutions for COVID-19 in university buildings, 
considering proximity, exposure time, and facemasks. 
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Hunter and Kelleher (2021) modified an epidemic model for 
measles to study COVID-19 transmission, addressing 
school closures and vaccinations. Kou et al. (2021) 
proposed a multi-scale agent-based model to study virus 
transmission between and within cities in China, 
highlighting the importance of vaccination and quarantine. 
Gathungu et al. (2020) presented a mathematical model to 
study the effects of NPIs. Hinch et al. (2021) developed an 
agent-based model to evaluate the performance of NPIs 
based on age stratification and social networks. 
Gharakhanlou and Hooshangi (2020) implemented an 
agent-based model to study the impact of preventive 
measures in Urmia, Iran. Panovska-Griffiths et al. (2021) 
modelled the effectiveness of face masks and tested trace 
isolate strategies in schools and communities. Álvarez and 
Rojas-Galeano (2020) explored the complex dynamics of 
COVID-19 mitigation through NPIs using agent-based 
models. It highlights the effectiveness of a ‘zonal’ strategy 
alongside individual NPIs in a conceptual city, offering 
insights for planning interventions in different epidemic 
stages. 

Other studies focused on the disruptions faced by 
healthcare and supply chains due to COVID-19, 
emphasising the global spread of the virus and the critical 
role of vaccination. Narassima et al. (2021) used  
agent-based model and Grey Relational Analysis to rank 
regions based on key variables influencing virus 
transmission, aiding policymakers in rational vaccine 
distribution. The impact of other parameters, such as word-
of-mouth, on the vaccination proportions has been 
investigated and found to have a positive effect. Sensitivity 
analysis explored the impact of positive/negative events, 
word of mouth, and session numbers, revealing significant 
increases in vaccination proportions with higher daily 
session rates. It is worth mentioning that the word-of-mouth 
factor is of great concern in supply chains, and it affects the 
spread of services and patient satisfaction, see Shboo et al. 
(2022b). 

At the same time, many studies focused on the 
operational performance of healthcare facilities and 
hospitals. For example, Venkatesan et al. (2023) carried out 
in a multi-speciality ophthalmic outpatient clinic to analyse 
patient waiting time using data analysis and discrete event 
simulation (DES). Another work by Shbool et al. (2023) 
studied the patient’s length of stay in the ED considering the 
effect of the COVID-19 pandemic. Another study by 

However, a noticeable gap in the existing literature is 
the absence of studies focusing on assessing the exposure 
level of COVID-19 in waiting areas of healthcare facilities. 
This research aims to address this critical issue by 
introducing an innovative approach combining agent-based 
and system dynamics models. The integration of these 
models enables us to accurately estimate COVID-19 
exposure in the waiting areas of a closed healthcare facility, 
specifically emphasising the ED. While prior literature has 
examined the dynamics of disease spread using agent-based 
models, our study uniquely directs attention to the often-
overlooked waiting areas within healthcare facilities. 

Our methodology distinguishes itself by evaluating the 
impact of facemasks and social distancing and 
quantitatively assessing the effectiveness of these 
preventive measures based on agent proximity and exposure 
time. This detailed analysis provides an in-depth 
understanding of how NPIs influence infection rates, 
particularly in high-risk environments such as hospital 
waiting rooms. 

Our study significantly contributes to the existing 
literature by addressing the specific gap in understanding 
COVID-19 exposure dynamics within healthcare waiting 
areas. Integrating social distancing dynamics into an  
agent-based simulation and a quantitative assessment of NPI 
efficacy positions our research at the forefront of 
endeavours to enhance precision and suggest new healthcare 
facility risk mitigation strategies. 

3 Methodology 
This section presents the model components used in 
predicting the exposure rate of COVID-19 in waiting areas 
within closed environments. This work considers NPIs in 
waiting areas, including facemasks and social distancing. 
First, the model’s inputs, processes, and outputs are 
identified and presented to understand the model 
requirements. The process core of the model consists of an 
agent-based model component and the SD model 
component. 

3.1 Model framework 
The primary goal of the model framework is to elucidate the 
interrelationship between model inputs, processes, and 
outputs, leading to a comprehensive prediction of the 
exposure rate for COVID-19. This understanding becomes 
pivotal in accurately forecasting potential risks. The visual 
representation of the COVID-19 exposure prediction model 
framework is depicted in Figure 1. 

Figure 1 Model’s inputs, process, outputs 

 

For this investigation, we adopt an agent-based model to 
assess the impact of two NPIs within an ED: the utilisation 
of cotton fabric facemasks and the implementation of social 
distancing measures based on physical interactions. The 
model comprehensively incorporates a range of inputs, 
including patient arrival rate at the ED, the proportion of 
actual infected patients among the arrivals, patient 
compliance with wearing facemasks, adherence to social 
distancing norms in the waiting area, medication routes for 
individual patients, and the time taken at each medication 
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stage. These inputs collectively form the basis for the first 
component of our model. 

The process module consists of two components that are 
related to each other. The first component, the agent-based 
model, mimics the attributes (infected, susceptible, and 
facemasks) and patients’ movements as represented by 
transitions between different departments inside the medical 
facility. The decision to employ an agent-based approach 
stems from its ability to effectively capture the behavioural 
dynamics of transient and permanent entities within the 
system. 

The second component is the SD model, which is 
integrated with the agent-based model to monitor the 
movement of each agent inside the medical facility and 
capture their exposure to infected agents. It collects 
information about the total exposure time of each agent 
during their movement across the medical facility. It reports 
their medical status (susceptible, probably exposed, 
exposed) after visiting different waiting areas across the 
medical facility and experiencing various levels of exposure 
(distance, time, and mask). This component continuously 
checks the agent’s status, and its calculations are triggered 
when the condition of an infected agent is satisfied, or the 
non-pharmaceutical intervention procedures are violated. 
This violation is represented when an infected agent exists 
within less than two metres of another agent. Ultimately, 
this component calculates the infection probability of each 
agent, which is used to decide which status the patient will 
be in upon leaving the ED. The infection probability is 
calculated when the effective exposure time is collectively 
reached. 

Several key performance indicators represent the model 
outputs, including the number of safe and exposed agents, 
the average exposure time for exposed agents, and the total 
exposure time. 

By adopting this sophisticated model framework, we 
strive to gain valuable insights into the dynamics of 
COVID-19 exposure and make informed decisions 
regarding implementing NPIs to mitigate risks effectively. 
The subsequent sections will discuss the methodology 
employed, presenting a coherent and detailed account of the 
modelling process. The following section explains the first 
agent-based module in detail. 

3.1.1 Agent-based model 
The agent-based component is designed to simulate the 
movement of patients within a medical facility accurately, 
encompassing waiting areas and seating arrangements. The 
model considers two types of agents: medical staff and 
patients, as depicted in Figure 2, along with their respective 
attributes. 

Each agent possesses static attributes and follows 
specific behavioural rules that govern their interactions and 
movements. The attributes of the medical staff agents 
include job titles (such as a physician, imaging technician, 
nurse, pharmacist) and physician specialities (e.g., internal 
medicine, pediatric, orthopedic). Dynamic behavioural rules 
of the medical staff agent include medical service discipline 

and medical service path, dictate the actions of patient 
agents concerning their movement, waiting, and location. 
Patient agents are defined with static attributes like patient 
ID, name, and gender. Patients interact with the 
environment based on a set of dynamic behaviour rules, 
including path, facemask implementation, and social 
distancing. 

Figure 2 Agents’ attributes and behaviours (see online version  
for colours) 

  
This model component effectively represents agents’ 
behaviour from their arrival at the medical facility to 
receiving treatment and departing. Several inputs are 
required for the agent-based model to work, with the 
primary ones being the arrival rate of patients, the 
percentages of incoming infected and susceptible patients, 
and the service time for various medical procedures, 
including internal medicine, general surgery, pediatrics, and 
dentist orthopaedic treatments. The simulation environment 
used to develop the model encompasses the SD model and 
interior geometry of the building, incorporating walls, beds, 
and waiting areas. 

Furthermore, the agent-based model replicates patient 
interaction to assess the potential exposure to infected 
agents. It takes into account factors like social distancing 
and facemask usage among patients. Additionally, the 
model accurately simulates the service process for each 
patient within different medical services departments, such 
as inspection, dental care, x-rays, and more. By identifying 
and tracking patient exposure to infected individuals 
throughout the medical facility, this data is passed on to the 
SD component for exposure prediction and level 
identification. 

3.1.2 System dynamics 
This model was designed to gather critical information, 
including exposure time, the number of infected agents 
within a two-metre range of a susceptible agent, and the 
facemask status of both infected and susceptible individuals 
as they evolve within the agent-based model. Integrating 
this model with the agent-based model allows real-time data 
collection during agents’ movements within the medical 
facility. The SD model is activated upon an agent’s 
departure from the facility to determine the final exposure 
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level using the equations below. A snapshot of the SD 
model that captures all related statistics is shown in  
Figure 3. 

Table 1 SD parameters 

Factor Old New Description 

Infection 
prevention 

pMj IPFj It indicates 
aggregated 
infection 
prevention for 
susceptible agent j 
from infected 
agents 

Aggregated 
exposure 
time 

Exposure 
Time 

AETj It indicates the 
total exposure 
time of infected 
agents 

Mask 
aggregated 

pMaskj 
(IM) 

ICMj Impact 
contribution of 
infected agents on 
the infection 
probability 

Total 
number of 
infected 
agents 

numInfected NIAj Total number of 
infected agents 
within 2 metres of 
the susceptible 

Susceptible 
mask effect 

maskEffect 
(SM) 

SCMj It indicates the 
infection 
prevention of the 
susceptible agent 
(0 if no mask, 
0.88 if mask is 
applied). 

Average 
exposure 
time 

Normalised 
Exposure 

Time 

NETj = AETj/EET 

Effective 
exposure 
time 

T EET 15 minutes 

Infection 
probability 

Infection 
probability 

Pr 
(Infected) 

Probability of 
infection 

The SD model constantly assesses each agent,  
verifying compliance with predefined NPIs. It carefully 
records the duration of exposure for a susceptible agent 
within a distance of less than two metres from an infected 
agent. Furthermore, the model quantifies the collective 
impact of facemasks on the infected agents near the 
susceptible individual, denoted by the factor pMaskj. For a 
comprehensive understanding of the parameters utilised in 
the SD model and their respective explanations, refer to 
Table 1. These factors were identified by Al-Bazi et al. 
(2023). 

The model sums the masking effect for the infected 
agents in variable sumPMj. The model gives the value of 
0.88 (Rengasamy et al., 2017) for those wearing facemasks 
and zeroes for those who do not; these sumPMj variable 
values are stored in the pMj variable. Regarding the 
exposure time effect, the model calculates this time 
depending on how many infected agents are within the 

range of two metres, i.e., if there are two infected agents 
around the susceptible, the exposure time after one minute 
while both of them are there is two minutes as each agent is 
contributing to the exposure time. Table 2 shows the 
equation explanation. 

Figure 3 System dynamics model (see online version  
for colours) 

 

Table 2 SD equation sheet 

Equation Equation Explanation 

(1) pMj sumPMj=  Represents 
the green 
box number 
1 in Figure 3 

(2) 

*(1 )

T Exposure Time

num Infected second

=

=  
Represents 
the green 
box number 
2 in Figure 3 

(3) NET NormalizedExposureTime
expsuretime

T

=

=
 

Represents 
the green 
box number 
3 in Figure 3 

(4) pMjpMaskj
exposure Time

=  
Represents 
the masking 
effect of the 
infected 
agents that 
are in the 
range of less 
than 2 
metres 

(5)  
0.88  

 
0

if susceptible
agent is wearing

maskEffect
a facemask

otherwise



= 



 

Represents 
the green 
box number 
4 in Figure 3 

Finally, all calculations feed into equation (6) (D’Orazio  
et al., 2021) to calculate the infection probability. 
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min(1, * (1 ) * (1 ))Infection Probability NET SM IM= − −  (6) 

where 

• Δt is the exposure time for the susceptible patient 

• T equal to 15 minutes 

• SM represents the reduction effect of facemasks on 
infection, assumed to be 0.88 (Rengasamy et al., 2017) 
considering the use of surgical facemasks in optimal 
conditions, 

• IM represents the infection reduction effect based on 
the status of infectious agents nearby, with a value of 
0.88 (Rengasamy et al., 2017), varying with the number 
of infectious agents and their facemask usage. 

In our infection model, the exposure time (Δt) is pivotal in 
determining the infection probability for each susceptible 
agent. As per equation (6), the calculation of this probability 
assumes that initially infected agents possess a high 
transmission efficiency. Given the cumulative nature of 
exposure time, the infection probability for each susceptible 
agent is recalculated each time they come into proximity 
with an infectious agent. The probabilities are then summed 
until the susceptible agent leaves the department. 

Each agent’s probability is compared to a randomly 
generated number between zero and one upon departure. If 
the calculated probability surpasses the generated number, 
the agent is categorised as ‘exposed’; otherwise, they are 
classified as ‘safe.’ The system dynamics library facilitates 
the systematic collection of information concerning 
exposure time and aids in continuously calculating infection 
probability. The cumulative exposure time is paramount in 
evaluating an agent’s exposure status. 

Furthermore, the model assesses the infection status of 
all infectious agents within the specified range, considering 
whether they wear facemasks. For a comprehensive 
understanding, Figure 4 offers an overview of the infection 
model’s framework, illustrating the intricate interplay 
between exposure time, infection probability, and agent 
classifications. 

3.1.3 Waiting area settings and infection model 
This module implements a structured seating arrangement to 
ensure appropriate social distancing among patients 
awaiting medical services. The waiting area seats are treated 
as individual objects rather than dynamic agents, as 
illustrated in Figure 4, showcasing the applied waiting area 
configurations designed to maintain safe distances between 
patients. 

Each seat within the waiting area is one metre long, 
ensuring that two seats effectively maintain the necessary 
safe social distance. The schematic on the right side of 
Figure 4 illustrates patients’ responses to the waiting area 
settings identified by the second module. If a patient 
(whether infected or safe) selects an incorrectly designated 
seat, marked as ‘red crossed,’ it constitutes a breach of the 
prescribed safe social distancing measures set by the 

waiting area configuration. Consequently, this breach 
increases the risk of exposure, contingent upon other  
NPIs like facemask usage and the extent of exposure to an 
infected patient. 

Figure 4 Social distancing in waiting area (see online version  
for colours) 

 

In this module, we elucidate the virus transmission process 
and the specific conditions under which it occurs, see  
Figure 5. 

Figure 5 Infection framework and rules (see online version  
for colours) 

  
Figure 5 shows respiratory droplets as the sole mode of 
virus transmission between agents. As agents move within 
the medical treatment department, each susceptible agent is 
continuously monitored every second to determine whether 
a particular condition is met. The state is defined by 
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infectious patients within a two-metre range of a susceptible 
agent. Once this condition is met, the susceptible agent is 
classified as ‘probably exposed, a time counter initiates, 
counting the time in seconds multiplied by the number of 
infectious agents, as long as the condition is not violated. 

3.1.4 Agent dynamics 
This section delineates the behaviour of agents, illustrated in 
Figure 6, as they progress from their arrival at the 
department, undergo medical procedures, and ultimately 
leave. The dynamics of the agents encompass factors such 
as arrival rates and waiting times specific to each section: 
internal medicine, general surgery, pediatrics, and 
orthopedic treatment. The development of this layer 
extensively utilised the AnyLogic pedestrian library, which 
was employed for constructing a significant portion of the 
model. The flow of patients is similar to traffic pedestrian 
transportation in a city, which is a problem for which  
agent-based simulation is utilised, see, for example 
(Dziecielski and Wozniak, 2022). 

Figure 6 Agent dynamics flow chart 

 

The Pedestrian Library played a crucial role in building the 
internal geometry of the facility, encompassing walls and 
beds and facilitating the representation of queues, service 
areas, and waiting zones. Notably, this library offers the 
advantage of enabling seamless movement of agents in a 
continuous space, ensuring avoidance of collisions with 
obstacles like walls, counters, and fellow agents, resulting in 
a more human-like behaviour. Within the ED, a small 

fraction of patients arrive solely for vital sign checks. The 
remaining patients have several possible paths to follow, 
leading them to sections such as internal medicine, general 
surgery, the pediatric hall, orthopaedics, or a visit to the 
dentist. However, agents only determine their destined 
section after undergoing diagnosis at the triage stage. Once 
an agent is assigned to a specific section, they proceed 
through three essential medical procedures, detailed as 
follows: 

3.1.4.1 Medical imaging procedure 
Agents may proceed to the imaging department to undergo 
X-ray, CT-Scan, or Ultrasound imaging procedures. Each 
imaging procedure entails its own set of waiting times, and 
notably, most orthopaedic visitors require X-ray imaging. 
Patients who visit the imaging area wait within its 
designated waiting zone. If the imaging technician is 
occupied, patients return to their previous bed, especially if 
the waiting area is at full capacity. 

3.1.4.2 Specimen delivery 
Patients might be required to provide urine or stool 
specimens in designated bathrooms, where separate 
facilities are available for men and women. The samples are 
delivered to the laboratory for analysis upon providing the 
required specimen. Subsequently, patients return to their 
beds, awaiting laboratory results. Physicians utilise these 
results to determine the necessity for further medical tests 
and required pharmaceuticals. 

3.1.4.3 Blood sample collection 
When a patient is required to provide blood samples, the 
nursing staff collects them while the patient remains in bed. 
After collection, the nurse transports the blood samples to 
the central laboratory. Patients await the availability of 
laboratory test results, which the physician then reviews to 
facilitate diagnosis. 

After completing one or more of the procedures above, 
agents may go to the pharmacy to handle the medical 
prescriptions provided by the physician. Notably, a patient 
may undergo one or more of these procedures, and the 
sequence may vary, determined randomly. The dynamic 
component of the model heavily relies on the pedestrian 
library of the AnyLogic software. This library accurately 
defines the routes for patient medication, service routes for 
medical staff, medical procedures, waiting times, and 
designated areas within the facility. Furthermore, this 
component determines the rate at which agents arrive at the 
department and the rate of infection arrival. 

 

 



138 M.A. Shbool et al.  

Figure 7 Jordan University Hospital (JUH) emergency department layout 

 

Figure 8 Simulation model – snapshot 1 (see online version for colours) 
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Figure 9 Simulation model – snapshot 2 (see online version for colours) 

  
Table 5 Model input parameters 

Parameter name Description Value Unit 

General    
Arrival rate Patients arrival rate 12 patients/hour 
Dentist    
Dentist probability Probability of going to the dentist 0.125  
Number dentist beds Number of dentist beds 2  
Clerk work duration Time for clerk to complete work T (1, 1.4, 2) minutes 
Number of dentists Number of dentists 1  
Dentist X-ray probability Probability of needing XRAY 0.5  
Dentist duration Duration of consultation T (15, 30, 40) minutes 
X-ray dentist duration Duration of x-ray for dentist T (2, 6, 10) minutes 
Triage    
Triage nurses number Number of nurses in triage 2  
Triage beds number Number of beds in triage 3  
Triage clerk worktime Clerk time to process patient T (1, 1.4, 2) minutes 
Triage time Duration of triage T (1, 1.5, 2) minutes 
Early disposal probability 1 minus the sum of these two is the probability of going to 

any medical hall 
0.005  

Ortho probability  0.125  
IM probability Some of these should be equal to 1 0.33  
GS probability  0.34  
Ped probability  0.33  
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Table 5 Model input parameters (continued) 

Parameter name Description Value Unit 

Number IM beds Number of beds in IM 18  
Number GS beds Number of beds in GS 14  
Number pediatric beds Number of beds in pediatrics 5  
Ortho    
Number ortho beds Number of beds in Ortho 2  
Number of ortho physicians Number of Ortho physicians 1  
Ortho X-ray probability Probability of needing XRAY 1  
Ortho duration Duration of consultation T(5, 30, 60) minutes 
WC samples    
toiletSeatsM_Nb Number of male toilet seats 5  
toiletSeatsW_Nb Number of female toilet seats 5  
timeOnWC_seat Time spent on seat T (1, 2, 3) minutes 
timeInLab Time to give the sample in the lab T (1, 1.5, 2) minutes 
wcRestTime Time to rest after sample in bed T (60, 60, 60) minutes 
tPhysWCsampReview Duration of consultation T (10, 15, 25) minutes 
Pharmacy    
nbPharmacists Number of pharmacists 1  
pharmaTime Time to buy medicine T (1, 1.5, 2) minutes 
Imaging    
nbTechnician Number of technicians 1  
ctProbability Sum equals to 1 0.33 if random use 1/3 
xrayProbability  0.33 if random use 1/3 
ultrasoundProbability  0.33 if random use 1/3 
ctTime Time for CT T (4, 5, 10) minutes 
xrayTime Time for x-ray T (2, 5, 10) minutes 
ultraSoundTime Time for ultrasound T (15, 20, 30) minutes 
tPhysImagingReview Duration of consultation T(5, 15, 25) minutes 
Nurse Samples    
nbSamplesNursesIM Number of nurses to take samples IM 4  
nbSamplesNursesGS Number of nurses to take samples GS 3  
nbSamplesNursesPed Number of nurses to take samples Ped 1  
takeSampleTime Time to take samples T (2, 5, 7) minutes 
giveSampleTime Time to give the sample in the lab T (0.5, 1, 2) minutes 
sampleRestTime Time to rest after sample in bed T (60, 60, 60) minutes 
tPhysSampleReview Duration of consultation T (10, 15, 25) minutes 
Physicians    
nbPhysiciansIM Number of physicians in IM 3  
nbPhysiciansGS Number of physicians in GS 1  
nbPhysiciansPed Number of physicians in Ped 1  

 
4 Case study 
4.1 Background 
A case study was chosen to implement and justify the 
developed agent-based system dynamics model. This case 
study occurred in one of the biggest hospitals in Jordan, 
Jordan University Hospital (JUH). Established in 1971, JUH 
is the first university teaching hospital in Jordan and one of 

the first in the Arab World. The JUH currently has a bed 
capacity of 600 and a team of 2,600 employees, 225 of 
whom are full-time consultants in various medical 
specialities, serving around 500,000 patients annually in 
outpatient clinics, (25,000) surgical cases, and (94,000) 
emergency cases. With this large number of emergency 
cases, the ED is considered one of the critical departments 
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to manage and carefully watch as it might be a clustering 
point for highly potential disease transmission. 

In the emergency room, various locations serve specific 
medical purposes, with the general surgery, internal 
medicine, dentist clinic, and pediatric room being the 
primary areas where patients receive assessments and 
medications. Refer to Figure 7 for a visual representation  
of the building layout, meticulously crafted using  
computer-aided design software. This layout was created 
from the ground up due to extensive modifications  
to the department building, necessitating precise on-site 
measurements and developing an entirely new drawing to 
accurately reflect the building’s current state. 

Given the study’s primary focus on incoming patients, 
we focused solely on mapping out patient-related areas. 
Consequently, administrative spaces specifically catering to 
patient utilisation were omitted from this architectural 
layout. 

4.2 Data collection 
Table 3 presents bed and medical staff capacity data. The 
imaging department can accommodate one patient, 
including access to CT-Scan, Ultrasound, and X-ray 
facilities. Within the ED, patients receive medical care 
based on the availability of the medical staff, predominantly 
nursing staff responsible for blood sampling and laboratory 
delivery. At the same time, physicians conduct medical 
examinations and consultations. 

Table 3 Capacity of resources 

Section Number 
of beds Physicians Nurse Technician 

General 
surgery 
halls 

14 1 4 0 

Internal 
medicine 
halls 

18 3 3 0 

Pediatric 
halls 

5 1 1 0 

Dentist 
clinic 

2 1 1 0 

Imaging 
department 

3 0 0 1 

Triage 3 0 3 0 
Laboratory 0 0 0 2 

The ED comprises four primary areas for patient 
examination and treatment: general surgery, internal 
medicine, dentist clinic, and pediatric room. The following 
table outlines the bed capacity for each section. The 
department’s medical staff includes physicians, nurses, 
pharmacists, medical imaging technicians, and laboratory 
technicians. Specifically, one medical imaging technician, 
two laboratory technicians, and one pharmacist are on staff. 
The subsequent table summarises the medical staff, 

including physicians and nurses, allocated to each section 
within the department. 

Agents in the emergency room are treated according to 
the availability of the medical staff, particularly the nurses 
tasked with collecting blood samples and delivering them to 
the laboratory. Inspection and consultation in medicine  
are the responsibility of doctors. Table 4 lists the  
infection-related parameters connected to the created model. 
These values were changed to investigate different 
scenarios. 

Table 4 Model infection-related parameters 

Parameter Description Value Unit 

T Time used to 
normalise delta T 

15 minutes 

Pmask Probability of 
infecting others and 
get infected if the 
mask is used 

0.88  

pMasked The probability of a 
patient wearing the 
mask 

0  

pMaskedInfected The probability of 
an infected patient 
wearing the mask 

0  

fraction of infected 
patients 

The probability of 
an incoming patient 
being infected 

0.1  

4.3 Simulation model 
The dynamic aspect of the model utilises the Pedestrian 
Library within the Anylogic software. Its primary function 
is defining the routes for patient medication, medical staff 
services, medical procedures, waiting times, and designated 
areas within the system. This component also plays a 
pivotal role in determining the agent arrival rate at the 
department, the influx of infected patients, their gender 
distribution, and the allocation of medical staff and beds. 
Given the modular nature of the code, it can be  
challenging to provide a comprehensive overview in a 
single description. Figure 8 and Figure 9 offer snapshots 
extracted from this model segment. 

Figure 8 shows a part of the patients’ flow within the 
ED. The top portion is for patients needing  
orthopaedics-related treatments where a logical check is 
first carried out (isBedAvailable) where the patient seizes a 
bed from the total available beds represented by the 
parameter (nbOrthoBeds) if the answer is yes and waits for 
a bed to be available otherwise. Next, the patient receives an 
initial check from one of the total available nursing staff 
represented by the parameter (nbOrtho) for an expected 
duration represented by the parameter (orthoDuration). If 
an X-ray is required, the patient must go through the X-ray 
logic like the above logic. 

The snapshot in Figure 9 shows the logic of triage 
results where the patient is directed to the right specialised 
consultant, where the agent seizes the required resource if 
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available, and if not available, waiting time is initiated until 
the physician becomes available. 

In contrast, the infection component of the model is 
primarily comprised of a state chart, a system dynamics 
model, and an event that triggers every second. These 
elements within the infection module facilitate the 
simulation by defining various agent states and collecting 
data as agents move within the department. 

The complete set of input parameters is detailed in  
Table 5. These values have been derived from the respective 
ED data, making them authentic and reflective of real-world 
conditions. These parameters have remained constant across 
various combinations of preventive interventions, and all 
simulations have been conducted using this standardised set 
of parameters. 

5 Results analysis and discussion 
This section provides a concise overview of the impact of 
NPIs and their combined use on the number of exposed 
individuals. As depicted in Figure 10, the chart illustrates a 
clear correlation between the percentage of exposed patients 
and the adoption of facemasks, particularly in scenarios 
where social distancing measures are absent. A full % 
adherence rate of 100% to facemask usage substantially 
reduces infection cases. 

The rationale behind these results can be attributed to 
the well-documented effectiveness of facemasks in reducing 
the transmission of respiratory diseases. Without social 
distancing, facemasks act as a critical barrier to prevent the 
direct spread of respiratory droplets containing infectious 
agents. The noticeable decrease in the percentage of 
exposed patients as the facemask adherence rate increases 
underscores facemasks’ pivotal role in mitigating the risk of 
infection. 

Figure 10 Exposed patients vs. % of facemask commitment with 
no social distance implemented (see online version  
for colours) 

  
Figure 11 presents the effects of implementing two NPIs, 
facemasks and social distancing, in various scenarios. 
Control A represents no participation in preventive 
measures, Control B enforces social distancing alone, and 

the final scenario combines both NPIs and facemasks. 
Notably, both NPIs yield a significant decrease in the 
percentage of exposed patients, but using face masks is a 
particularly effective measure in preventing the spread of 
infection. 

The rationale behind these findings lies in the 
complementary nature of facemasks and social distancing. 
Facemasks provide a physical barrier against respiratory 
droplets, reducing the chances of direct transmission. On the 
other hand, social distancing further decreases the 
likelihood of close contact and exposure to potentially 
infected individuals. When these NPIs are employed, 
combining physical and social distancing measures creates a 
formidable defence against the spread of infections, thereby 
substantially reducing the percentage of exposed patients. 

Figure 11 Exposed patients vs. % of facemask commitment with 
social distance implemented (see online version for 
colours) 

  
Figure 12 offers a comprehensive insight into the impact of 
facemask usage on the average time required for an 
individual to become exposed to COVID-19. Notably, the 
data reveals a direct correlation between the percentage of 
agents adhering to facemask mandates and the extended 
duration for an agent to become exposed. 

Figure 12 Average exposure time for exposed patients vs. 
facemask % implementation (see online version  
for colours) 

 

The rationale behind these findings lies in the fundamental 
concept of infection prevention. Facemasks are an effective 
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barrier, reducing the likelihood of respiratory droplets 
containing infectious agents being transmitted from one 
individual to another. When a higher percentage of 
individuals within a population consistently wear 
facemasks, the overall risk of exposure decreases 
significantly. 

This relationship between facemask adherence and 
increased time to exposure underscores the importance of 
broad facemask mandates in mitigating the spread of 
COVID-19. It reinforces the notion that collective 
commitment to this preventive measure protects individuals 
and has a wider societal impact by slowing the transmission 
of the virus. Consequently, it emphasises the vital role of 
facemasks in reducing the risk of COVID-19 transmission, 
ultimately contributing to the well-being of the community 
as a whole. 

Figure 13 presents a density map illustrating the spatial 
distribution of patients within the facility. It is readily 
apparent that certain areas exhibit significantly longer 
waiting times for these individuals compared to others. The 
presence of red circles on the map highlights locations with 
higher patient densities and extended waiting times. These 
extended wait times elevate the risk of individuals being 
exposed to potentially infected agents over an extended 
period, increasing the likelihood of infection. To mitigate 
this risk, it is imperative for facility management to 
prioritise these areas and implement measures to alleviate 
such clustering. 

Figure 13 Heat/density map of the ED (see online version  
for colours) 

 

To provide a precise reference for the colour scheme used in 
the density map, please see Figure 14. In this context, blue 
represents areas with very low patient density, while red 
indicates the highest. The aqua colour is reserved for critical 
density areas, where the patient density reaches 1.5 
individuals per square metre. 

It is worth noting that the central spot in the density 
map, despite having a relatively high patient density, has not 
been highlighted. This omission is deliberate, as these 
patients are isolated, minimising the risk of infection. 

As for the model accuracy and validation, the results 
were compared with the actual estimation from the hospital 

records. An error of 10.6% was found with the model 
results, which we believe is acceptable. 

Figure 14 Colour index of the heat map (see online version  
for colours) 

  

6 Sensitivity analysis 
The objective of the sensitivity analysis study was to gain 
insights into the model’s behaviour and its sensitivity to 
fluctuations in the number of medical staff. Descriptive 
statistical measures can be found in Table 6, while the 
graphical representation of this analysis is presented in 
Figure 15. 

Table 6 Descriptive statistics of responses used in sensitivity 

Facemask 
% Statistics 

Number of 
agents who 

got 
infected 

Number 
of agents 
who got 
exposed 

Number of 
susceptible 

20% Mean 15.0 114.4 61.7 
Std. dev. 4.6 20.7 15.3 

40% Mean 14.6 120.3 62.4 
Std. dev. 4.0 25.7 14.8 

60% Mean 9.3 120.7 62.0 
Std. dev. 3.1 17.7 15.8 

80% Mean 5.7 115.4 54.6 
Std. dev. 3.0 20.8 12.5 

100% Mean 1.6 135.7 56.4 
Std. dev. 0.8 12.9 15.5 

Figure 15 Impact of the number of medical staff on the model 
response (see online version for colours) 

 

Sensitivity analysis is a valuable tool for gauging how the 
model reacts to changes in the number of physicians and the 
service time the medical staff provides. Figure 8 provides a 
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visual depiction of the model’s responses as the number of 
physicians varies. An incremental increase of one physician 
in each department was introduced in each model run, 
allowing for a comprehensive assessment of the model’s 
behaviour. 

In Figure 16, we delve into the model’s reaction to 
alterations in service time. Here, we have deliberately 
reduced the service time by 30%, 60%, and 90%, comparing 
these scenarios against the baseline represented by control 
model A. This analysis sheds light on the model’s 
sensitivity to variations in service time, which is a critical 
aspect of understanding its performance in different 
conditions. 

By conducting this sensitivity analysis, we can better 
grasp how the model responds to medical staff numbers and 
service time changes, providing valuable insights for 
optimising and refining the system’s performance in  
real-world healthcare settings. 

Figure 16 Model’s response to service time reduction (see online 
version for colours) 

  

7 Conclusions and future work 
The results obtained from various combinations of NPIs, 
such as facemask mandates and social distancing, have shed 
light on crucial parameters, including total exposure time, 
average exposure time, the time required for an agent to 
become exposed, and the number of exposed agents. 

Facemask mandates have demonstrated a direct impact 
on the number of exposed agents. As more arriving 
individuals wear facemasks, there is a notable reduction in 
the number of exposed individuals. Furthermore, the data 
suggests that increased facemask usage corresponds to 
increased time needed for an agent to become exposed, 
underscoring the effectiveness of facemasks in minimising 
exposure risk. 

On the other hand, implementing social distancing has 
significantly decreased the total exposure time and average 
exposure time for individuals close to infectious agents. 
Consequently, this has resulted in a reduced number of 
exposed agents. The figures corroborate these findings, 
highlighting the positive effect of social distancing on 
exposure reduction. 

Analysis of heat density maps has revealed areas with 
high population densities within the department, notably the 
waiting areas, pediatric hall, general surgery waiting area, 
main waiting area, and imaging waiting area. A common 
factor among these areas is the insufficient medical staff, 
with limited physician and nursing staff presence, resulting 
in extended waiting times and increased exposure time. 
Increasing medical staff allocation in these sections is 
imperative to address this issue. 

It is worth noting that bed areas with high agent 
densities were excluded from the analysis, as all patients in 
these areas are appropriately isolated with medical curtains, 
reducing the risk of virus transmission. 

Challenges and limitations encompass model validation 
proved challenging due to inherent variability in patient 
behaviour within the dynamic ED environment. Data 
accuracy and availability significantly impact model 
reliability, necessitating improved data collection and 
validation methods. Considerations include temporal and 
spatial scale variations, socioeconomic and cultural 
influences, and the need for ethical data handling. Model 
calibration and generalisation must be ensured cautiously, 
given facility-specific nuances and regional variations. 
Addressing long-term dynamics and simplifying model 
complexity for broader accessibility are also noteworthy. 

As future work, modifications to the model could 
incorporate viral load considerations for initially infected 
agents, enhancing the model’s realism and predictive 
accuracy. 

Acknowledgements 
We would like to express our sincere thanks to the Deanship 
of Scientific Research at The University of Jordan for 
Funding this work (Grant# 2473 a Document# 2022-
2021/110). 

References 
Al-Bazi, A., Madi, F., Monshar, A.A., Eliya, Y., Adediran, T.  

and Al Khudir, K. (2023) ‘Modelling the impact of  
non-pharmaceutical interventions on COVID-19 exposure in 
closed-environments using agent-based modelling’, 
International Journal of Healthcare Management, pp.1–15, 
https://doi.org/10.1080/20479700.2023.2189555. 

Alrashed, S., Min-Allah, N., Saxena, A., Ali, I. and Mehmood, R. 
(2020) ‘Impact of lockdowns on the spread of COVID-19 in 
Saudi Arabia’, Informatics in Medicine Unlocked 20, January, 
p.100420, https://doi.org/10.1016/j.imu.2020.100420. 

Álvarez, L. and Rojas-Galeano, S. (2020) ‘Simulation of  
non-pharmaceutical interventions on COVID-19 with an 
agent-based model of Zonal restraint’, medRxiv. https://doi. 
org/10.1101/2020.06.13.20130542. 

Bahl, R., Eikmeier, N., Fraser, A., Junge, M., Keesing, F., 
Nakahata, K. and Reeves, L. (2021) ‘Modeling COVID-19 
spread in small colleges’, PLOS One, Vol. 16, No. 8, 
p.e0255654, https://doi.org/10.1371/journal.pone.0255654. 

 



 Assessing the impact of non-pharmaceutical interventions on disease infection 145 

Bandara, R.M.P.S., Fernando, W.C.D.K. and Attalage, R.A. 
(2021) ‘Modelling of aerosol trajectories in a mechanically-
ventilated study room using computational fluid dynamics in 
light of the COVID-19 pandemic’, International Journal of 
Simulation and Process Modelling, Vol. 17, No. 4, p.250, 
https://doi.org/10.1504/IJSPM.2021.122504. 

Cuevas, E. (2020) ‘An agent-based model to evaluate the  
COVID-19 transmission risks in facilities’, Computers in 
Biology and Medicine, June, Vol. 121, p.103827, https://doi. 
org/10.1016/j.compbiomed.2020.103827. 

D’Orazio, M., Bernardini, G. and Quagliarini, E. (2021) ‘A 
probabilistic model to evaluate the effectiveness of main 
solutions to COVID-19 spreading in university buildings 
according to proximity and time-based consolidated criteria’, 
Building Simulation, Vol. 14, No. 6, pp.1795–1809, 
https://doi.org/10.1007/s12273-021-0770-2. 

Dziecielski, M. and Wozniak, M. (2022) ‘Agent-based simulation 
of pedestrian movement: a gradient method with an 
amplification parameter’, International Journal of Simulation 
and Process Modelling, Vol. 18, No. 3, p.244, https://doi.org/ 
10.1504/IJSPM.2022.126897. 

Emroozi, V.B., Modares, A. and Roozkhosh, P. (2022) ‘Presenting 
an efficient scenario to deal with the prevalence of  
COVID-19 disease using a system dynamics approach in 
Iran’, International Journal of Simulation and Process 
Modelling, Vol. 19, Nos. 3–4, pp.122–37, https://doi.org/10. 
1504/IJSPM.2022.131555. 

Farkas, J.Z. and Chatzopoulos, R. (2021) ‘Assessing the Impact of 
(Self)-quarantine through a basic model of infectious disease 
dynamics’, Infectious Disease Reports, Vol. 13, No. 4, 
pp.978–92, https://doi.org/10.3390/idr13040090. 

Gathungu, D.K., Ojiambo, V.N., Kimathi, M.E.M. and Mwalili, 
S.M. (2020) ‘Modeling the effects of nonpharmaceutical 
interventions on COVID-19 spread in Kenya’, 
Interdisciplinary Perspectives on Infectious Diseases 2020, 
December, p.e6231461, https://doi.org/10.1155/2020/6231 
461. 

Ge, Y., Zhang, W-B., Wu, X., Ruktanonchai, C.W., Liu, H., 
Wang, J., Song, Y. et al. (2022) ‘Untangling the  
changing impact of non-pharmaceutical interventions and 
vaccination on European COVID-19 trajectories’, Nature 
Communications, Vol. 13, No. 1, p.3106, https://doi.org/10. 
1038/s41467-022-30897-1. 

Gharakhanlou, N.M. and Hooshangi, N. (2020) ‘Spatio-temporal 
simulation of the novel coronavirus (COVID-19) outbreak 
using the agent-based modeling approach (case study: Urmia, 
Iran)’, Informatics in Medicine Unlocked, 20 January, 
p.100403, https://doi.org/10.1016/j.imu.2020.100403. 

Hasan, U., Al Jassmi, H., Tridane, A., Stanciole, A., Al-Hosani, 
Farida and Aden, B. (2022) ‘Modelling the effect of  
non-pharmaceutical interventions on COVID-19 transmission 
from mobility maps’, Infectious Disease Modelling, Vol. 7, 
No. 3, pp.400–418, https://doi.org/10.1016/j.idm.2022.07. 
004. 

Hinch, R., Probert, W.J.M., Nurtay, A., Kendall, M., Wymant, C., 
Hall, M., Lythgoe, K. et al. (2021) ‘OpenABM-Covid19–an 
agent-based model for non-pharmaceutical interventions 
against COVID-19 including contact tracing’, PLOS 
Computational Biology, Vol. 17, No. 7, p.e1009146, 
https://doi.org/10.1371/journal.pcbi.1009146. 

Hunter, E. and Kelleher, J.D. (2021) ‘Adapting an agent-based 
model of infectious disease spread in an Irish County to 
COVID-19’, Systems, Vol. 9, No. 2, p.41, https://doi.org/10. 
3390/systems9020041. 

Hunter, E. and Kelleher, J.D. (2022) ‘Validating and testing an 
agent-based model for the spread of COVID-19 in Ireland’, 
Algorithms, Vol. 15, No. 8, p.270, https://doi.org/10.3390/ 
a15080270. 

Kaffai, M. and Heiberger, R.H. (2021) ‘Modeling non-
pharmaceutical interventions in the COVID-19 pandemic 
with survey-based simulations’, PLOS One, Vol. 16, No. 10, 
p.e0259108, https://doi.org/10.1371/journal.pone.0259108. 

Kou, L., Wang, X., Li, Y., Guo, X. and Zhang, H. (2021) ‘A multi-
scale agent-based model of infectious disease transmission to 
assess the impact of vaccination and non-pharmaceutical 
interventions: the COVID-19 case’, Journal of Safety Science 
and Resilience, Vol. 2, No. 4, pp.199–207, https://doi.org/10. 
1016/j.jnlssr.2021.08.005. 

Mader, S. and Rüttenauer, T. (2022) ‘The effects of non-
pharmaceutical interventions on COVID-19 mortality: a 
generalized synthetic control approach across 169 countries’, 
Frontiers in Public Health, Vol. 10, p.820642, https://doi. 
org/10.3389/fpubh.2022.820642. 

Mondal, P., Sinharoy, A. and Gope, S. (2022) ‘The Influence of 
COVID-19 on influenza and respiratory syncytial virus 
activities’, Infectious Disease Reports, Vol. 14, No. 1, 
pp.134–41, https://doi.org/10.3390/idr14010017. 

Montcho, Y., Klingler, P., Lokonon, B.E., Tovissodé, C.F.,  
Kakaï, R.G. and Wolkewitz, M. (2023) ‘Intensity and lag-
time of non-pharmaceutical interventions on COVID-19 
dynamics in German hospitals’, Frontiers in Public Health, 
Vol. 11 [online] https://www.frontiersin.org/articles/10. 
3389/fpubh.2023.1087580 (accessed 15 August 2023). 

Narassima, M.S., Anbuudayasankar, S.P., Balaji, K.S. and 
Ramasubramanian, B. (2021) ‘Modelling and simulation of 
vaccine distribution: a COVID-19 situation’, International 
Journal of Simulation and Process Modelling, Vol. 17, No. 4, 
p.303, https://doi.org/10.1504/IJSPM.2021.122508. 

Panovska-Griffiths, J., Kerr, C.C., Waites, W., Stuart, R.M., 
Mistry, D., Foster, D., Klein, D.J., Viner, R.M. and Bonell, C. 
(2021) ‘Modelling the potential impact of mask use in schools 
and society on COVID-19 control in the UK’, Scientific 
Reports, Vol. 11, No. 1, p.8747, https://doi.org/10.1038/ 
s41598-021-88075-0. 

Patel, M.D., Rosenstrom, E., Ivy, J.S., Mayorga, M.E., 
Keskinocak, P., Boyce, R.M., Lich, K.H., Smith, R.L., 
Johnson, K.T. and Swann, J.L. (2021) ‘The joint impact of 
COVID-19 vaccination and non-pharmaceutical interventions 
on infections, hospitalizations, and mortality: an agent-based 
simulation’, medRxiv, January, https://doi.org/10.1101/2020. 
12.30.20248888. 

Pereira, L., Correia, J., Sequeiros, J., Santos, J. and Jerónimo, C. 
(2022) ‘Spatial-temporal monitoring risk analysis and 
decision-making of COVID-19 distribution by region’, 
International Journal of Simulation and Process Modelling, 
Vol. 18, No. 1, p.23, https://doi.org/10.1504/IJSPM.2022. 
123472. 

Proverbio, D., Kemp, F., Magni, S., Husch, A., Aalto, A., 
Mombaerts, L., Skupin, A., Gonçalves, J., Ameijeiras-Alonso, 
J. and Ley, C. (2021) ‘Dynamical SPQEIR model assesses the 
effectiveness of non-pharmaceutical interventions against 
COVID-19 epidemic outbreaks’, PLOS One, Vol. 16, No. 5, 
p.e0252019, https://doi.org/10.1371/journal.pone.0252019. 

Ravkin, H.D., Yom-Tov, E. and Nesher, L. (2022) ‘The effect of 
nonpharmaceutical interventions implemented in response to 
the COVID-19 pandemic on seasonal respiratory syncytial 
virus: analysis of GOOGLE trends data’, Journal of Medical 
Internet Research, Vol. 24, No. 12, p.e42781, https://doi.org/ 
10.2196/42781. 



146 M.A. Shbool et al.  

Rengasamy, S., Shaffer, R., Williams, B. and Smit, S. (2017) ‘A 
comparison of facemask and respirator filtration test 
methods’, Journal of Occupational and Environmental 
Hygiene, Vol. 14, No. 2, pp.92–103, https://doi.org/10.1080/ 
15459624.2016.1225157. 

Saidan, M.N., Shbool, M.A., Arabeyyat, O.S., Al-Shihabi, S.T., Al 
Abdallat, Y., Barghash, M.A. and Saidan, H. (2020) 
‘Estimation of the probable outbreak size of novel 
coronavirus (COVID-19) in social gathering events and 
industrial activities’, International Journal of Infectious 
Diseases, September, Vol. 98, pp.321–27, https://doi.org/10. 
1016/j.ijid.2020.06.105. 

Saleh, S.A.K. and Adly, H.M. (2023) ‘Impact of ambient air 
pollution exposure on long COVID-19 symptoms: a cohort 
study within the Saudi Arabian population’, Infectious 
Disease Reports, Vol. 15, No. 5, pp.642–61, https://doi.org/ 
10.3390/idr15050060. 

Shbool, M., Al-Bazi, A., Zureigat, L. and Mahafzah, A. (2022a) 
‘Developing modern agent technologies in combating Covid-
19 exposure: an application in a healthcare facility’, in 2022 
International Conference on Innovation and Intelligence for 
Informatics, Computing, and Technologies (3ICT),  
pp.700–706, https://doi.org/10.1109/3ICT56508.2022.99908 
27. 

Shbool, M.A., Al-Bazi, A. and Al-Hadeethi, R. (2022b) ‘The 
effect of customer satisfaction on parcel delivery operations 
using autonomous vehicles: an agent-based simulation study’, 
Heliyon, Vol. 8, No. 5, p.e09409, https://doi.org/10.1016/j. 
heliyon.2022.e09409. 

Shbool, M.A., Arabeyyat, O.S., Al-Bazi, A., Al-Hyari, A., Salem, 
A., Abu-Hmaid, T.’ and Alim, M. (2023) ‘Machine learning 
approaches to predict patient’s length of stay in emergency 
department’, Applied Computational Intelligence and Soft 
Computing, October, p.e8063846, https://doi.org/10.1155/ 
2023/8063846. 

Touchton, M., Knaul, F.M., Arreola-Ornelas, H., Porteny, T., 
Carniado, Ó.M., Faganello, M., Hummel, C. et al. (2023) 
‘Non-pharmaceutical interventions to combat COVID-19 in 
the Americas described through daily sub-national data’, 
Scientific Data, Vol. 10, No. 1, p.734, https://doi.org/10.1038/ 
s41597-023-02638-6. 

Venkatesan, S.P., Saurabh, L., Thomas, N. and Roy, S. (2023) 
‘Patient waiting time analysis in a multi-specialty ophthalmic 
outpatient clinic using data analysis and discrete event 
simulation’, International Journal of Simulation and Process 
Modelling, Vol. 20, No. 1, pp.10–20, https://doi.org/10.1504/ 
IJSPM.2023.134520. 

Ying, F. and O’Clery, N. (2021) ‘Modelling COVID-19 
transmission in supermarkets using an agent-based model’, 
PLOS One, Vol. 16, No. 4, p.e0249821, https://doi.org/10. 
1371/journal.pone.0249821. 


