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Abstract: Voice Activity Detection (VAD) distinguishes speech segments from noise or silence 
areas. An efficient and noise-robust VAD system can be widely used for emerging speech 
technologies such as wireless communication and speech recognition. In this paper, we propose two 
versions of an unsupervised Arabic VAD method based on the combination of the Short-Time 
Energy (STE) and the Spectral Centroid (SC) features for formulating a typical threshold to detect 
speech areas. The first version compares only the STE feature to the threshold (STE-VAD). In 
contrast, the second compares the SC vector and the threshold (SC-VAD). The two versions of our 
VAD method were tested on 770 sentences of the Arabphone corpus, which were recorded in clean 
and noisy environments and evaluated under different values of Signal-to-Noise-Ratio.  
The experiments demonstrated the robustness of the STE-VAD in terms of accuracy and Mean 
Square Error.  
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applications. 
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1 Introduction 

Speech is the essential human means of communication. It is 
the articulate vocal sound expression of ideas and thoughts. In 
the last three decades, the necessity for alternate methods of 
interacting with computer systems has motivated speech-
processing researchers worldwide to extract relevant 
information from the speech signal efficiently and robustly. 
Among the speech processing applications, there are 
Automatic Speech Recognition (ASR), Speech Synthesis, 
Speech Coding, Speaker Identification and Speech 
Transmission (Bäckström, 2017). Detecting speech from an 
audio stream is a critical step that directly influences the 

performance of these systems. For instance, too many false  
alarms or non-speech segments misidentified as speech and 
used in training may taint the acoustic models and lower their 
accuracy. On the other side, the ASR algorithms will be able 
to recognise the whole spoken sentence if more speech 
segments are identified during testing. To deal with this 
problem, we employ Voice Activity Detection (VAD), which 
involves solving a binary classification task to distinguish 
speech segments from ambient silence or noise (Zhang and 
Wu, 2012). According to the nature of excitation of the vocal 
cords, speech can be divided into two groups: voiced and 
unvoiced. In the first type, the airflow from the lungs vibrates 
the vocal cords, while in the unvoiced speech, there is no use 
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of the vocal cords (Silva et al., 2017). A typical VAD system 
comprises two parts: The features extraction and a speech/  
non-speech decision mechanism. The first part aims to 
transform the speech waveform into a parametric 
representation, which will be used as input to the decision 
model. Most VAD features proposed in the literature take 
advantage of the discriminative characteristics of speech in 
various domains, which can be divided into five categories: 
energy-based features, spectral-domain features, cepstral-
domain features, harmonicity-based features and long-term 
features. The subsequent component of VAD involves 
establishing the rule or technique used to assign a class (either 
speech or non-speech) to the input feature vector. Since 
background noise interferes with the classifier’s performance, 
the classification problem is frequently more complicated 
than it first appears. Accuracy, reliability, robustness, latency 
and memory requirements are essential characteristics of 
every VAD (Bäckström, 2017). Among these properties, 
robustness against noisy environments has been the most 
challenging task. In high Signal-to-Noise Ratio (SNR) 
conditions, the simplest VAD algorithms can perform 
satisfactorily, while in low SNR environments, all VAD 
algorithms degrade to a certain extent. At the same time, the 
VAD algorithm should be low complexity, which is 
necessary for real-time systems. VAD approaches can be 
divided into supervised, semi-supervised and unsupervised 
methods (Sadjadi and Hansen, 2013). The supervised one’s 
process VAD as a traditional classification problem, which 
they solve either by directly training a classifier or by 
separately building statistical models for speech and non-
speech and then making VAD judgments. While the semi-
supervised methods use the features vector extracted as an 
input of a classifier for feeding the model and taking the final 
decision. The last type is the unsupervised method which 
involves metrics-based methods that depend on continuous 
observation of a specific metric, such as energy or zero-
crossing rate, followed by a simple threshold-based decision 
stage. In our research, we are motivated by an unsupervised 
VAD approach as presented in Giannakopoulos (2009). This 
method utilises two distinct features: Short Time Energy 
(STE) and Spectral Centroid (SC), which are derived from the 
time and frequency domains, respectively. The method 
employs dual thresholds to effectively discriminate between 
the presence and absence of speech events. Our paper 
presents a VAD system that combines STE and SC features 
to determine a single threshold to detect speech segments. 
This approach has two versions: STE-VAD, which only 
compares the energy values and the threshold, and STE-SC 
introduces a VAD system based on comparing the SC vector 
with the criterion thresholding. The two versions were 
evaluated using the Arabphone corpus (Frihia and Bahi, 
2016), which was recorded in noisy and noiseless 
environments. The paper is organised as follows:  
Section 2 introduces state of the art; Section 3 describes the 
VAD method (Giannakopoulos, 2009), its drawbacks and  
our proposed method. Section 4 presents the speech corpus 
used in addition to the accuracy and the Mean Square Error 
(MSE) as evaluation metrics and discusses the experimental 
results. Section 5 summarises the paper and presents the 
future work. 

2 Related work 

Voice activity detection has many techniques and approaches. 
This section introduces the supervised and unsupervised 
methods used in the literature to separate between voiced and 
unvoiced speech. 

2.1 Supervised methods 

Supervised learning approaches have recently been used more 
because they offer the potential to overcome the constraints of 
statistical model-based methods. In this section, we will 
introduce numerous techniques that tackle the challenge of 
VAD through the lens of machine and deep learning. The 
primary objective is to categorise segments into classes of 
speech and non-speech. The MFCC features and the Support 
Vector Machine (SVM) were proposed to detect the speech 
segments in Kinnunen et al. (2007). According to the 
experiments, the proposed method works excellently, and the 
SVM is more straightforward to adapt to new data sets than the 
traditional approach. Convolution Neural Network (CNN) 
based model along with a Denoising Autoencoder (DAE) was 
presented in Shin et al. (2010). The test was done against 
acoustic features and their delta at noise levels ranging from 
SNR 35 to 0 dB. The results demonstrated that adding more 
expressive audio features with DAE improves accuracy, 
especially at noise levels. The suggested model has achieved 
good accuracy. In the work (Eyben et al., 2013), the approach 
suggested for realising a VAD system has based on Recurrent 
Neural Networks (RNN) and Long Short-Term Memory 
(LSTM). The method could pattern the long-range 
dependencies between the inputs. The results demonstrated that 
LSTM-RNN outperforms the statistical VAD baselines on real-
life noisy speech data from Hollywood movies. A powerful 
hierarchical generative model called a Deep Belief Network 
(DBN) was suggested in Zhang and Wu (2012) to combine the 
benefits of several acoustic features in a linear way for 
extracting a new feature. The experiments carried out on the 
AURORA2 corpus demonstrated that DBN-based VAD 
outperforms 11 referenced algorithms with low-detection 
complexity. Hughes and Mierle (2013) introduced a Recurrent 
Neural Network (RNN) architecture for detecting speech. It 
had nodes that computed the quadratics polynomials. The 
chosen model exceeds the Gaussian Mixture Models (GMMs) 
and a hand-tuned State Machine (SM) by a 26% reduction in 
False Alarms Rate (FAR). A VAD algorithm based on CNN 
was presented in Silva et al. (2017). It detected voice frames 
using the audio spectrogram raw image in a specific audio 
source. The method was compared with five baseline systems 
evaluated in Dean et al. (2010): ETSI, G729B, Sohn, LTSD, 
GMM-MFCC-1. The results demonstrated that CNN 
outperformed the introduced algorithm regarding Half-Total 
Error Rate (HTER). Bai et al. (2017) presented a new VAD 
algorithm based on Deep Neural Networks (DNN) and Viterbi. 
The miss rate and FAR were used to evaluate the performance 
of the proposed method. The obtained values showed its 
effectiveness and its flexibility in real-time. Sehgal and 
Kehtarnavaz (2018) described a smartphone application that 
uses a CNN for detecting speech in real time. The acquired 
results exhibited that CNN outperforms the previously  
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developed random forest applications. Deep architecture based 
on an RNN was proposed Ariav et al. (2018), and it has been 
trained to make a VAD system. According to the experimental 
results, the suggested architecture exceeded state-of-the-art 
detectors in terms of accuracy, even in low SNR conditions and 
complicated types of transients. Arslan and Engin (2019), a 
VAD method has been proposed using various features of the 
time and the spectral domains. The first one includes STE and 
ZCR. The second has entropy, centroid, roll-off and flux of 
speech signals as a feature. Multi-Layer Feed-Forward Neural 
Network was chosen as a classifier to separate between speech 
and non-speech segments. The algorithm was tested for six 
different noises with four levels of SNR. The suggested 
technique was compared with G.729B (Benyassine et al., 1997) 
and Long-Term Spectral Flatness Measure (Ma and Nishihara, 
2013) in terms of Correct Speech Rate, FAR and Overall 
Accuracy Rate. This evaluation exhibited its efficiency. Zhang 
and Xu (2022) presented a VAD method based on a DNN for 
maximising Area Under the Curve (AUC) to increase the 
performance of DNN-based VAD at various threshold settings. 
The test was applied on different SNR levels in babbling and 
factoring noise scenarios. The experiments revealed that using 
DNN to optimise AUC outperforms the typical methods of 
using DNN to optimize the Minimum Squared error. A 
lightweight CNN architecture for real-time voice activity 
detection has been nominated in Alam and Khan (2020). The 
trained model was evaluated in a noisy environment, and the 
experiments showed that the model was potent. Furthermore, 
the data augmentation and regularisation techniques provided 
good results. Rho et al. (2022) proposed a Neural Architecture 
Search (NAS) with search space and macro-structure optimised 
for the VAD problem, which might be applied to build a 
network structure that automatically enhances detection 
precision. The outcomes of the research showcased the 
superiority of the proposed NAS framework over manually 
designed state-of-the-art VAD models across diverse real-
world data sets augmented with noise. 

2.2 Unsupervised methods 

In this section, we will present the methods which separate 
between active and inactive speech founded only on the 
internal characteristics of the signal and which do not require 
any prior knowledge. Those are the unsupervised methods. In 
the literature, only some researchers are interested in 
detecting Arabic speech. A noise-robust Voice Activity 
Detection system was suggested in Ali and Talha (2018) to 
label the speech presence and absence segments in the signal. 
The use of long-term features implements it. The Texas 
Instruments Massachusetts Institute of Technology 
(experiments were carried) and the King Saud University 
(KSU) Arabic speech databases were used to evaluate the 
method performance. The results revealed that it accurately  
classified the voiced and unvoiced segments in clean and 
noisy environments. The Wavelet Packet Transform (WPT) 
method presented in Ghanbari and Karami-Mollaei (2006) 
begins by applying a wavelet transform to the signal, 
resulting in sub-band decomposition using WPT coefficients. 
The voice inside the signal is then determined by comparing 
the sub-band energy of components between detail and  
 

approximation coefficients. Moattar and Homayounpour 
(2009) proposed a Voice Activity Detection (VAD) method 
that was designed to be robust in noisy environments. The 
proposed method relied on short-term features such as Short-
term Energy (STE), Spectral Flatness Measure (SFM), and 
the most dominant frequency component of the speech frame 
spectrum, represented by F. The authors tested their approach 
on four different data sets in various noise settings with 
different Signal-to-Noise Ratio (SNR) levels. The first data 
set used was experiments were carried, followed by Farsdat, a 
microphone voice corpus, TPersianDat, a Farsi telephony 
speech corpus and Aurora2 Speech Corpora. They compared 
their proposed algorithm to several previously stated 
methods, and the results showed that their method 
outperformed the others in terms of VAD performance. The 
Long-term Spectral Flatness Measure (LSFM) is used in Ma 
and Nishihara (2013). Twelve (12) different types of noise 
were used in the experiments on the TIMIT corpus, with five 
different SNRs ranging from –10 to 10 dB. The Accuracy and 
the Error Rate (ER) were the two metrics utilised to assess the 
performance. Yoo et al. (2015) presented a robust formant-
based VAD approach to handle the problem of detecting 
formants in noisy situations. It outperformed typical VAD 
algorithms under various noise conditions and had a far faster 
processing time. At SNR of 0, 5, 10 and 15 db. A VAD 
approach based on the Power Spectral Deviation of Teager 
Energy was proposed in Kim et al. (2016) to discriminate 
between speech and non-speech in various noisy situations 
(babble, office, automobile). The evaluation is performed by 
ER, False Acceptance Rate (FAR) and False Rejection Rate 
(FRR). It showed better accuracy than the traditional 
methods. In Zaw and War (2017), a combination of ZCR, 
Spectral Entropy, STE and Linear Prediction Error (LPE) was 
used. The results revealed that the approach could more 
precisely recognise the endpoints of voice signals. To detect 
speech regions, a novel thresholding approach based on a 
modified global threshold was proposed in Elton et al. (2022). 
It greatly enhanced the overall VAD performance. Several 
experiments showed that the introduced method could detect 
active human speech in low-SNR and diverse noisy 
conditions. Moreover, it handled signals with non-stationary 
noises, which can include a variety of complicated 
occurrences that are a mix of different noises. An effective 
VAD algorithm was introduced in Çolak and Akdenniz 
(2021). It is based on three short-time features: Short Time 
Energy, Periodicity and Spectral Flatness. The data set used 
in testing was created by combining several types of noise 
(white, vehicle, airport) with various SNR levels. This VAD 
approach produced the most outstanding results with white 
noise and can be used in adaptive filter applications. 

3 VAD based on spectral centroid and  
short time energy 

The VAD method (Giannakopoulos, 2009) is based on the 
Short-Term Energy (STE) and the Spectral Centroid (SC). A 
speech signal is a non-stationary signal that varies over time. 
Therefore, it was processed by dividing it into frames of 50 ms.  
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Then, the values of these features are calculated from each 
frame. After that, their histograms were computed to identify 
the first and local maximal for formulating the two thresholds 

 ,e scT T . The main idea is to compare the feature values with 

eT  and scT . The regions which contain values that surpassed 

both thresholds were determined as speech segments in 
equation (3). The two thresholds were calculated using the 
formula below: 

1 2.
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W M M
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
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> >e scSTE T SC T  (3) 

where W is a user-defined parameter. 

1 2,e eM M : the first and second local maxima of the STE 

histogram, respectively.  

1 2,sc scM M : are the positions of the first and second local 

maxima of the SC histogram.  

3.1 Spectral centroid 

The spectral centroid (Schubert and Wolfe, 2006) is linked to a 
sound’s brightness measurement. The frequency and 
magnitude data obtained from the Fourier transform were 
employed to compute the ‘centre of gravity’. This includes 
computing the average frequency, which is weighted by 
amplitudes and dividing it by the sum of the amplitudes, as 
shown below: 
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F[k] is the amplitude in the Discrete Fourier Transform range 
corresponding to bin k, and N is the frame length. 

3.2 Short-time energy 

The short-time energy function (Giannakopoulos, 2009) is the 
energy of the short-speech segment. It is a simple and 
effective classifying parameter for the voiced and unvoiced 
parts; its definition is as follows: 

2

=1

1( ) = ( )
N

i
n

E i x n
N   (5) 

where i is the short-term frame and N is the frame length. 

3.3 Method’s drawbacks 

While implementing the method (Giannakopoulos, 2009), we 
encountered several errors. This part will discuss two major 
problems identified in many database sequences. The  
Figures 1 and 2 present an illustrative example of the method 
limitations. 

Issue 1: Masking effect: As we have previously stated, the 
threshold was established using the first and the second local 
maxima of the feature histogram. However, upon analysing 
the histograms of the Short Time Energy (STE) and Spectral 
Centroid (SC) features (depicted in Figure 1), it became 
apparent that the second, third, and fourth peaks of maximum 
values seemed to dominate over the initial peak. This was 
particularly evident in the first histogram representing the 
STE feature. This masking effect was a concern, as it meant 
that the first local maximum was not always the most 
accurate representation of the speech or noise/silence 
threshold. Instead, it was often influenced by other features 
that had higher peak values in the histogram. This could 
potentially lead to incorrect classifications of speech or 
noise/silence areas within the audio data. 

Figure 1 Illustrative example of the neighbouring peaks dominance problem (see online version for colours) 
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To address this problem, one potential solution was to use a 
combination of the features, rather than relying solely on the 
first and second local maximum of a single feature. This 
would allow us to take into account the impact of particular 
features on the speech threshold, which could obscure our 
results. By acknowledging this concern and investigating 
alternative approaches, we were able to enhance the precision 
of our methodology and effectively differentiate between 
speech and non-speech regions in audio recordings. 

Issue 2: Criterion thresholding: The second issue with the 
speech segmentation method pertains to the thresholding 
criterion, where the detection of speech segments is 
dependent on certain threshold values. This algorithm uses 
two feature vectors to determine whether a given time 
interval contains speech or non-speech. In order to classify 
an interval as containing speech, both feature vectors must 
have values greater than their respective thresholds (as 
specified in equation (3)). 

However, the algorithm can encounter problems when the 
values of the two feature vectors do not meet the threshold  
 

criteria at the same time. Figure 2 illustrates such a scenario, 
where the Short-Time Energy (STE) values are higher than 

eT  in a certain interval (e.g. [100–150]), but the Spectral 

Centroid (SC) values are lower than scT  in the same interval. 

As a result, the algorithm misclassifies this region as non-
speech. 

This issue highlights the importance of careful selection 
of threshold values for the feature vectors, as well as 
consideration of the relative importance of each feature in 
speech classification. 

4 Proposed method 

To address the problems of the VAD method 
(Giannakopoulos, 2009), we suggested our method,  
which is based on the combination of the Short-Time 
Energy (STE) and the Spectral Centroid (SC), to determine 
a thresholding criterion. The Figure 3 presents the algorithm 
architecture. 

Figure 2 Illustration of the threshold issue (see online version for colours) 

 

Figure 3 The algorithm architecture 
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 Framing and windowing: Speech signal preprocessing is 
crucial because it transforms the speech waveform into a 
parametric representation. It describes the acoustic events 
in a voice signal using several speech characteristics. 
Although it is known that the preprocessing step of 
speech signal contains multiple techniques that could be 
used, in our work, we applied the two most powerful 
concepts in this step: the framing and the windowing 
techniques. Speech is a non-stationary signal; its 
statistical features do not remain constant across time. As 
a result, spectral characteristics should be retrieved from 
tiny signal segments, predicated on the assumption that 
the signal in this short frame is stationary. For this 
reason, we divided the acquired signal into short frames 
of 10 ms, known as the framing process.  

In the next step, we applied the windowing process, which is 
presented as the technique of multiplying the speech signal 
segment’s waveform by a time window to emphasise the 
signal’s predefined characteristics and smooth out the 
discontinuity at the beginning and the end of the sampled 
signal. The function chosen for applying this process was the 
Hamming window, where mathematical formulation can be 
defined as in equation (6) 

  
[ ] =

20.54 0.46cos 0 <= <= 0 otherwise

w n
ncc n L

L
  (6) 

where 

L is the number of samples in each frame. 

n is the number of the frame under processing. 

w[n] is the result of the windowing procedure. 

 Features extraction: The process of converting raw data 
into numerical features that may be analysed while 
keeping the information in the original data is known as 
feature extraction. In this stage, we extracted the 
characteristics of the signal from the temporal and 
frequency domains, which are presented as the STE and 

the SC values. Afterward, we combined these two 
features into one vector: 
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 Histogram computing and smoothing: In this step, we 
used the Matlab function: Histogram (x), which chose an 
adequate number of bins to span the range of values in x 
and displayed the shape of the fundamental distribution. 
Its use is to compute the histogram of the vector’s values. 
Afterward, the medium filter, a non-linear filter, was 
applied to the histogram to remove the high-frequency 
fluctuations from a signal; this is known as the 
smoothing technique. 

 Thresholding: This stage introduced the final phase of 
our work when we defined a decision threshold to apply 
a binary classification (speech and non-speech classes). 
The computed threshold was based on the first and 
second local maximums of the histogram, as shown in 
Figure 4. The mathematical representation of the 
threshold can be described in equation (8). 

1 2.
= e sc e sc

e sc

W M M
T

W
 




 (8) 

where 

W is a user-defined parameter.  

1e scM  : is the position of the first local maxima of the 

histogram of the combined features.  

2e scM  : is the position of the second local maxima of the 

histogram of the combined characteristics. 

Figure 4 Histogram of the combined vector (see online version for colours) 
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In order to accurately distinguish between speech and non-
speech areas within audio recordings, we implemented two 
different versions of our method: the STE-VAD and SC-
VAD. These two methods were designed to identify non-
speech regions as those with values below the e scT  , while 

speech regions were defined as those with values above it 
(equations (9) and (10)). Our method stood in contrast to the 
approach used in a previous study (Giannakopoulos, 2009), 
which relied on a double threshold endpoint detection method 
(as described in equation (3)). By using our method, we were 
able to achieve more accurate results and reduce the potential 
for false positives or false negatives. This was particularly 
important in situations where the audio data was complex or 
contained background noise that could interfere with the 
accurate identification of speech and non-speech areas. 

> e scSTE T   (9) 

> e scSC T   (10) 

4.1 Signal-to-noise ratio estimation 

The Signal-to-Noise Ratio (SNR) is among the most basic 
signal-processing metrics. It is defined as the ratio of signal 
power to noise power expressed in decibels (dB) and 
indicates the amount of background noise in a speech signal 
(see equation (11)). 

= s

n

P
SNR

P
 (11) 

where sP  is the power of signal and nP  is the background 

noise. 
However, assessing a signal in practice can be 

challenging due to the variety of forms and ways that it could 
be corrupted. Furthermore, the inherent fluctuation in the 
signal provides another level of difficulty to SNR 
computation. As a result, it is critical to investigate and 
estimate the impact of noise on the original signal in relevant 
ways. 

In our experiment, we applied our VAD method on the 
Arabphone corpus (Frihia and Bahi, 2016), which does not 
contain any information on the SNR. Therefore, we used the 
WADA-SNR method (Waveform Amplitude Distribution 
Analysis) (Kim and Stern, 2008) for estimating the SNR of 
speech signals, which is based on statistical information 
obtained from the amplitude distribution of a speech 
waveform. The approach assumes that an additive noise 
signal is Gaussian and that the Gamma distribution with a 
shaping value of 0.4 can approximate the amplitude 
distribution of clean speech. 

5 Experimental results 

This section describes the database used to evaluate the VAD 
approach (Giannakopoulos, 2009) and the proposed method.  
 
 

Then, we present the implementation details and compare the 
two methods in terms of accuracy, Mean Square Error and 
Error Rate. 

5.1 Work environment 

The method was implemented in Matlab, and the  
technical characteristics of the computer used during the 
implementation phase are: 

 Central processing unit: Intel (R) Core (TM) i5-6300U 
CPU @ 2.40 GHz 2.50 GHz.  

 Random access memory: 8 GB.  

 Operating system: Windows 10 Pro 64-bit.  

5.2 Database description 

The study was carried out using a data set of 770 Arabic 
sentences sourced from the Arabphone database (Frihia and 
Bahi, 2016). This database comprises spoken Modern 
Standard Arabic and features recordings of 30 Algerian 
adults, encompassing both genders, from the regions of 
Annaba, Jiel and Tarif. The data set consists of 2520 words 
and 12,000 phonemes recorded across diverse environments 
at a 16 kHz sampling rate. Each phoneme within a phrase is 
positioned at one of three available locations within the word: 
beginning, middle or end. Table 1 provides a selection of 
Arabic sequences utilised in this data set. 

Table 1 Sequences of Arabphone corpus 

Consonant Sequence 

 ثيѧѧѧѧѧѧѧاب ثلاثѧѧѧѧѧѧѧѧة ثابѧѧѧѧѧѧѧѧت ورث  ث

 جѧѧѧاء نجيѧѧѧب مѧѧѧع الحجѧѧѧاج ج

 ن الحيѧѧѧѧѧѧوا حѧѧѧѧѧافر الحجѧѧѧر جرح ح

 خديجѧѧѧة خѧѧѧѧاتم خالѧѧѧد أخذ خ

 ذرى الفѧѧѧѧѧѧلاح القمѧѧѧѧѧѧح بالمѧѧѧѧѧѧذراة ذ

 زار عѧѧѧزام جѧѧѧزيرة الكѧѧѧرز ز

 السѧѧѧѧمع والبصѧѧѧѧر مѧѧѧѧن الحѧѧѧѧواس س

 لا أشѧѧѧѧѧرب الشѧѧѧѧѧاي بعѧѧѧѧѧد  العشѧѧѧѧѧاء ش

 سѧѧѧѧѧѧرق اللصѧѧѧѧѧѧوص صѧѧѧѧѧѧندوق الصѧѧѧѧѧѧياد ص

 نظيفѧѧѧѧѧѧѧѧѧة محفѧѧѧѧوظ أظѧѧѧѧافر ظ

 لعمѧѧѧاد العربѧѧѧѧѧѧѧة عادل عبѧѧѧѧا ع

5.3 Assessment metric 

The performance of the two methods was measured by using 
two criteria, namely Accuracy (ACC) and Mean Square Error 
(MSE): 

 Accuracy (ACC): For a comprehensive evaluation of the 
detection outcomes, it is essential to have parameters that 
characterise the accuracy rate. In our investigation, we 
outline four parameters pertaining to accuracy rate, as 
detailed below: 
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o True positive (TP): Speech segments correctly 
identified as the accurate class. 

o True negative (TN): Silence or noise regions 
correctly categorised as non-speech segments. 

o False positive (FP): Speech segments incorrectly 
classified as silence. 

o False negative (FN): Silence or noise sections 
inaccurately labelled as speech. 

o The ACC is computed by the following formula: 

(%) = .TP TNACC
TP TN FP FN


  

 (12) 

 Mean square error (MSE): The MSE (Sammut and 
Webb, 2011) refers to the sum of the squares of the 
errors, that is, the average squared difference between the 
predicted values and what is estimated. It is a risk 
function that displays the anticipated value of the squared 
error loss. It is defined as follows:  

 2

=1

1=
n

i i
i

MSE X X
N

  (13) 

where :iX  The observed value, :iX  The predicted  

value. 

5.4 Results and discussion 

In this section, the outcomes achieved by implementing both 
the method described in Giannakopoulos (2009) and our 
proposed approach to distinguish between speech and non-
speech segments will be presented. 

Table 2 lists the comparison results in terms of accuracy. 
It has four columns: One for speakers of various genders, 
another for the accuracy of the original approach, the third for 
the STE-VAD method and the last column describes the 
accuracy based on the SC-VAD. The last row displays the 
overall accuracy of each method: the original approach has a 
78.54%, the STE-VAD has 90.79% while the STE-SC 
provides only 62.39%. 

Table 2 Comparison of the accuracy 

Speaker Sequence STE-VAD SC-VAD 

1 97.32 94.87 47.93 

2 90.1 94.56 75.71 

3 89.82 98.61 63.78 

4 74.10 95.01 70.53 

5 37.76 92.61 50.91 

6 82.09 88.43 45.83 

7 83.25 92.78 64.50 

8 86.84 92.25 69.51 

9	 80.86 98.58 60.72

10 66.94 78.30 40.48 

11 54.78 92.60 46.64 

12 81.90 95.21 80.22 

13 72.52 89.16 65.56 

14 83.48 88.43 70.17 

15 65.27 88.71 54.87 

16 70.55 91.46 65.05 

17 77.16 87.39 87.34 

18 81.14 96.56 45.54 

19 87.27 82.21 48.01 

20 92.68 91.98 79.76 

21 86.25 94.31 83.61 

22 81.30 89.04 78.37 

23 96.02 94.86 73.36 

24 93.83 95.21 56.17 

25 83.40 95.28 61.38 

26 82.64 92.52 53.85 

27 82.31 85.62 60.93 

Total accuracy 78.54% 90.79% 62.39% 
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Based on this table, we can see that the STE-VAD method 
improves the accuracy of the original method, while the SC-
VAD method reduces the accuracy. In our experiments, we 
observed that the values of the STE were significantly higher 
in the clean environment, which explains why the accuracy of 
speakers 3 and 9 (98.61%, 98.58%) who recorded their 
utterances in a clean environment improved. 

Additionally, it was observed that the energy levels of the 
speech segments surpass those of the non-speech areas, which 
is the reason which justifies why the low energy sounds like 
[_H] is defined as a silence area. This sound presents one of 
the fricative consonants in the Arabic language, which result 
from a narrowing or very narrow constriction of the vocal 
tract at the airflow meeting. 

Moreover, several sounds in Arabic are not found in other 
languages. An example is the uvular plosive ق[q], which is 
considered a noise since the air releases an explosive noise 
during its production. 

Table 3 compares the outcomes in terms of Mean 
Square Error (MSE), with MSE values by each speaker  
for the original approach, STE-VAD and SC-VAD. The  
SC-VAD does have a larger MSE than the other methods, 
with a value of 0.1706, this is to be expected considering  
its low accuracy of 62.39%. The original method yielded  
an MSE of 0.0028, whereas the STE-VAD provided the 
lowest value of 0.0013, indicating the efficiency of this 
approach. 

Table 3 Comparison of the mean square error 

Speaker Sequence STE-VAD SC-VAD 

1 0.0052 0.0009 2.4983 

2 0.0009 0.0022 0.0596 

3 0.0051 0.0002 0.0085 

4 0.0014 0.0007 0.0140 

5 0.0010 0.0078 0.0458 

6 0.0059 0.0013 1.0486 

7 0.0011 0.0009 0.0173 

8 0.0011 0.0007 0.0108 

9	 0.0023	 0.0009 0.0411

10 0.0038 0.0021 0.9759 

11 0.0027 0.0018 0.1733 

12 0.0007 0.0036 0.0062 

13 0.0047 0.0022 0.0234 

14 0.0037 0.0004 0.1313 

15 0.0060 0.0001 0.0130 

16 0.0014 0.00005 0.0125 

17 0.0038 0.0003 0.0333 

18 0.0015 0.0097 0.0130 

19 0.0012 0.0014 0.0151 

20 0.0036 0.0026 0.0033 

21 0.0005 0.0004 0.0093 

22 0.0049 0.0055 0.0244 

23 0.0022 0.0009 0.0059 

24 0.0028 0.0005 0.2526 

25 0.0044 0.0009 0.0134 

26 0.0012 0.0006 0.0063 

27 0.0016 0.0008 0.0165 

Mean square error 0.0028 0.0013 0.1706 
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Figure 6 states an example of a sentence recorded  
from the speaker 27, the green line indicates the beginning 
of the speech segment and the red line shows the end  
of the speech. The areas between these selected regions 
present the noise in the signal. From the reference  
(see Figure 5), this sentence has 6 speech segments, but the 
original VAD method detected only 3 active segments 

correctly. Figure 7 illustrates the results obtained  
using the STE-VAD where all speech segments are 
accurately classified. Figure 8 presents the output of the SC-
VAD which considered the whole sentence as one speech 
segment, the existing noise in the signal causes this occurred 
error. Therefore, we can conclude that the STE-VAD was 
very performant. 

Figure 5 Result of the VAD reference using Praat tool (see online version for colours) 

 

Figure 6 Result of the method (Giannakopoulos, 2009) (see online version for colours) 
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Figure 7 Result of STE-VAD method (see online version for colours) 

 

Figure 8 Result of SC-VAD method (see online version for colours) 

 

 

5.4.1 SNR comparison 

Table 4 summarises the evaluation of the two methods by 
using the same test data (Frihia and Bahi, 2016) and under 
different values of SNR: <5, 5, 20 and >20. Our STE-VAD 
method has a maximum and promising value of accuracy 
compared to the method (Giannakopoulos, 2009), in 
particular in the interval exceeding 20 dB with a value of 
92.16%, which confirms its performance. 
 

Table 4 VAD accuracy in different SNR intervals 

SNR (db) <5 [5, 20] >20 

The original method 76.24% 77.14% 86.52% 

STE-VAD 88.66% 91.41% 92.16% 

SC-VAD 52.56% 60.18% 69.28% 

Table 5 shows the accuracy results after utilising the 
unsupervised VAD approach (Ali and Talha, 2018), which  
 



 Unsupervised VAD method based on short-time energy 169 

used long-term features such as fundamental frequency, 
shimmer and jitter. The performance of this method was 
evaluated using the King Saud University (KSU) Arabic 
speech database in three different noisy environments (white, 
automobile and babble) at different SNR values. The highest 
accuracy for 5, 15 and 25 db is 88.91%, 91.12% and 94.72%, 
respectively. 

Table 5 Accuracy for noisy sequences using the KSU 
database (Ali and Talha, 2018) 

Noise / SNR (db) 5 15 25 

White 88.46% 91.12% 94.27% 

Car 88.91% 90.38% 9 4.53% 

Babble 88.21% 90.16% 94.72% 

According to the two Tables 4 and 5, we can see that our STE-
VAD method yields promising results compared with the 
method (Ali and Talha, 2018), especially in the interval where 
SNR <5 with an accuracy value of 88.66%, this confirms that 
our method can identify the speech areas properly under low 
SNRs, while the other method has 88.46% and 88.21% at the  
5 db, respectively for white and babbling environments. 

The fricatives are the most numerous consonants in the 
Standard Arabic language, with 13 different fricative 
consonants (see Table 6). They are produced in the vocal cavity 
by a narrow constriction that makes the air circulation 
turbulent. There are two types of fricatives: Voiced and 
voiceless fricatives. Acoustically, the voiced fricatives have 
weak resonance structures that appear as shadows of feeble 
formants with a slight noise, while the voiceless possess a 
random high noise.  

Table 6 Classification of fricative consonants in the Standard 
Arabic language 

Fricatives ح ث خ  ذ  ز  س  ظ ص ش ع  غ  ه ف   

Transliteration th H x dh z s sh S Z ‘ R f h 

Voiced  +  + +   + + + +  + 

Voiceless +  +   + +     +  

In our experiments, we treated the problem of the Arabic 
voiceless fricatives. Table 7 presents the values of the two 
parameters, FP and FN, used to calculate the Error Rate (ER), 
which is described in equation (14). We have found that the 
ER of the proposed method is 50.89%, while the  
method (Giannakopoulos, 2009) has 29.15%. This result 
demonstrates the robustness of the suggested method since 
solving the problem of voiceless fricatives will lead to a 
50.89% drop in the ER, representing half of the committed 
errors. On the other hand, accuracy will improve, whereas the 
ER of the original method will only drop by 29.15%. 

(%) = f f
Rate

t t

FP FN
Error

FP FN




 (14) 

where 

FPf: The areas of voiceless fricatives are detected as silence 
or noise. 

FNf: The non-speech segments in the sequences of voiceless 
fricatives are classified as speech. 

tFP : The total segments of speech detected as non-speech 

areas. 

tFN : The total segments of non-speech detected as speech. 

Table 7 Number of voiceless fricatives misclassified 

Voiceless 
fricatives 

خ ث  ف ش س 

 FP FN FP FN FP FN FP FN FP FN 

Original method 
(Giannakopoulos 
(2009) 

103 4 147 11 128 7 130 13 111 8 

STE-VAD 50 14 116 7 69 9 98 5 54 8 

6 Conclusion and future work 

An unsupervised Arabic VAD algorithm was proposed in this 
paper. It is based on the combination of the two features: 
Short Time Energy (STE) and Spectral Centroid (SC). The 
objective of combining these characteristics was the 
determination of criterion thresholding: e scT  . We use two 

versions of this approach: STE-VAD and SC-VAD. To 
evaluate our performance method and the efficiency of 
method (Giannakopoulos, 2009), we use the Arabphone 
database (Frihia and Bahi, 2016), which was recorded in 
noisy and clean environments and tested at various SNRs 
levels. The experimental results clearly show that the STE-
VAD attained an excellent accuracy of 90.79% and a value of 
0.0013 in terms of the MSE. While the SC-VAD reduces the 
accuracy to 62.39% and increases the MSE value to 0.1706, 
the method (Giannakopoulos, 2009) produces an accuracy of 
78.54% and an MSE of 0.0028. Furthermore, we show that 
voiceless fricatives caused many problems in the Arabic 
VAD system. Solving these problems will develop a path-
breaking method that can be used in real-time voice 
processing applications. As a perspective, our approach holds 
the potential to serve as a dependable input for a phonetic 
segmentation method for Arabic and Moroccan dialect 
speech. This future integration aims to streamline processing 
time and enhance the overall accuracy of the system. 
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