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Abstract: The escalation of geo-hazards, particularly landslides, has become a 
pressing concern, exacerbated by both natural factors and human activities. The 
frequency of rainfall-triggered landslides in mountainous regions is surging, 
posing imminent threats to lives and infrastructure. Jammu and Kashmir 
witness this peril throughout the year, affecting millions. This study focuses on 
creating a landslide susceptibility map for District Doda, employing a  
multi-method approach. A comparative analysis of multi-criteria decision 
method-analytical hierarchy process (AHP) and Shannon information entropy 
(SIE) determines their efficacy. The inventory, comprising 250 landslides, 
incorporates nine conditioning factors. AHP designates 91% of the area as very 
high or highly susceptible, while SIE identifies 46.49% as vulnerable. Area 
under curve (AUC) values of 0.898 and 0.976 for AHP and SIE, respectively, 
underscore the latter’s superior predictive capability. This study is instrumental 
in aiding stakeholders with decision-making, land-use planning, and 
formulating effective mitigation strategies. 

Keywords: landslide; susceptibility; Shannon entropy; analytical hierarchy 
process; AHP; geohazards; decision-making. 
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1 Introduction 

Growing frequency of anthropogenic activities like expanding transportation 
infrastructure, building dams and growing cities in ecologically fragile regions have 
accelerated the frequency of natural hazards and their repercussions (Kumar and 
Anbalagan, 2016; GNDAR, 2021). According to the prediction of UNDRR (2022) report, 
there will be 560 human casualties by 2023 due to natural hazards triggering more 
economic losses. Among various geo-hazards landslides represent a serious hazard in 
many areas of the world (Guzzetti et al., 2012). A ‘landslide’ is the movement of a mass 
of rock, debris or earth down a slope under the impact of gravity (Cruden and Varnes, 
1996) and transported material is mostly weathered rock slide (Hungr et al., 2001). 
Subaerial and subaqueous landslides are also possible, and a variety of natural 
occurrences, such as prolonged or strong rainfall, earthquakes, fast snowmelt, volcanic 
activity, and several human acts, can all result in landslides (Cruden and Varnes, 1996) as 
well as the frequency of landslides has increased by 3%, causing enormous damage to 
infrastructure and human life (GNDAR, 2021; El Jazouli et al., 2019). Topographic 
factors like geology, groundwater characteristics, slope, curvature, land use, pedology 
(Kumar and Anbalagan, 2016; Van Westen et al., 2008) and triggering factors like 
rainfall, earthquakes and over-anthropocentrism (Lazzari and Piccarreta, 2018; Ray et al., 
2009; Sultana, 2020) are also known to have contributed in amplifying the impacts of 
landslides. Landslides are more prevalent in mountainous regions around the world, and 
they pose a hazard to the communities that live there as well as other infrastructure like 
railroads and roadways (Pandey et al., 2019; Wu et al., 2020). The natural surface runoff 
process and slope continuity have been altered by the changing mountainous landscape, 
which includes a shrinking forest landscape, an increase in urban settlements, and a 
pacing up of the provision of transportation facilities, that have raised the threat of 
landslides (Chuang and Shiu, 2018; Mcoll, 2022). 
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Indian Himalayas are prone to landslides triggered by torrential rain and earthquakes. 
Owing to hilly and varied topography, frequent escarpment, faults and pulverised rocks, 
the landslide-driven hazards have been become more frequent and disastrous especially 
during the monsoon season (Kumar et al., 2017; Martha et al., 2021). Few excerpts of 
events from Himalayas such as Sadal Village Landslide (Kumar et al., 2017), Assar 
landslide (Singh et al., 2012), Pawari Landslide zone (Kumar et al., 2018), Lanta Khola 
landslide (Anbarasu et al., 2010) indicate the activeness of landslide hazard intimidating 
the population, exposing communication and transport infrastructure to great loss. A 
recent study also indicated the North West Himalayas are the most fatal in terms of 
landslide (Parkash, 2011). 

Thus, it is necessary to understand the landslide susceptibility of a region like India 
Himalayas because the evolution, development process and susceptibility of landslide 
assessment are labyrinthine. Previous literature revealed that there are different 
quantitative, qualitative, semi quantitative and deterministic model for the landslide 
susceptibility assessment (Dikshit et al., 2020). Landslide susceptibility often deals with 
spatial distribution of probability of occurrence of landslide considering the conditioning 
factors (Reichenbach et al., 2018). Landslide zonation remained vital for the 
developmental activities in understanding the topographical factors (Pandey et al., 2020). 
Landslide susceptibility mapping have been conducted using multi criteria method 
(Intarawichian and Dasananda, 2010; Kumar and Anbalagan, 2016), frequency ratio 
(Ding et al., 2017; Addis, 2023), Gaussian theorem (Gao et al., 2022), weight of evidence 
(Ilia and Tsangaratos, 2016; Getachew and Meten, 2021), machine learning algorithm 
like support vector machine (Pandey et al., 2020, Ballabio and Sterlacchini, 2012), 
boosted regression tree (Pandey et al., 2019, Saha et al., 2021), random forest (Hong et 
al., 2016, Park and Kim, 2019), index of entropy method (Pourghasemi et al., 2012; 
Wubalem et al., 2022) and many more. Various techniques come with their own set of 
limitations. For example, machine learning methods may not be dependable for broad 
user due to their stringent criteria and the need for powerful computing system. 
Multivariate statistical approaches struggle to assess the contribution of individual classes 
(Wubalem and Meten, 2020). Nevertheless, bivariate statistical methods offer a 
promising solution as they can yield favourable results by pinpointing the class 
contribution and are relatively straightforward to manage (Wubalem, 2021). Amongst all 
the bivariate method, frequency ratio (FR) along with index of entropy method is widely 
utilised, although requires previous landslide data (Wubalem et al., 2022). Presence of 
previous landslide database poses no restriction in carrying out this study. 

Dikshit et al. (2020) in their analysis of the research gap revealed that Jammu and 
Kashmir along with North Eastern states lacked the research in this particular sub-field of 
enquiry that is landslide susceptibility. According to Shah et al. (2022), there is decadal 
increase in the number of landslides from 136 to 373, severely affecting villagers and 
commuters depriving them of basic necessities for a few days. He also reported that 
Ramban (38), Kishtwar (34) and Doda (32) have the highest frequency of death totalling 
to 1,000 death in the region. He also observed that landslides occur more frequently in 
the winter season than in the monsoon. Ali et al. (2022) have also observed those 
landslides are the major secondary disaster during the monsoon along the National 
Highways isolating the Kashmir Valley from the rest of the India. Thus, the Jammu and 
Kashmir experience landslide not only in monsoon but in winters as well. It becomes 
imperative as researcher to fill the gap and study the landslide susceptibility in the area 
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having region’s one of the highest causalities. To carry out this objective in an area 
having dearth of studies on comparative approach, analytical hierarchy process and  
FR-Shannon entropy method have been compared and duly validated to check their 
prediction. 

2 Study area 

One of the mountainous districts of Jammu division of Union Territory of Jammu and 
Kashmir (UT of J&K) is Doda lying in the south eastern part of the region in the Middle 
Himalayas (as shown in Figure 1). The geographical extent lies between 320 51’ to  
330 24’ latitude and 750 20’ to 760 14’ longitude having a total area of 2,408 sq. km. It is 
surrounded by Kishtwar on the East and North East, Udhampur on the South West and 
Kathua in the South, Anantnag in the North and Ramban in the North West. The area 
spans across lush green forest, delicate geology, beautiful valleys and glaciers. The 
climate varies is subhumid temperate type in the study area (Rashid et al., 2013). The 
region had a long history of landslides which Singh et al. (2012) elaborated how one slide 
detached one district from accessing resources. Presence of Muree thrust and Panjal 
thrust (shown as fault in Figure 2) is also one of the main concerns that on shaking brittle 
rocks nearby broke down into pieces (Singh et al., 2012). Patel et al. (2020) reviewed that 
2009 landslide detached the whole district by disrupting the road linkages and spiked the 
food prices for a month due to stranding vehicles on the roads. 

Figure 1 Map of the study area showing national highways, major river system and historical 
landslides (see online version for colours) 
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Figure 2 Geomorphological feature shown along with lineaments (see online version for colours) 

 

3 Methods and materials 

3.1 Data sources 

The secondary data has been used for conducting the study (as shown in the Table 1). 
The Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) was used 
which was downloaded from US Geological Survey (USGS) Earth Explorer having 
resolution 30 metres. The IMD gridded data of resolution (0.5 ∗ 0.5 degree) was utilised 
for showing rainfall. The geological data was downloaded from the BHUKOSH, the web 
portal of Geological Survey of India. The OSM database was also utilised for 
downloading road network. The satellite data like Sentinel-2, Landsat 8 OLI/ TRS and 
Gridded Soil database of National Oceanic and Atmospheric Administration (NOAA) 
was also utilised in this study. 

3.2 Methodology 

The methodology adopted for the present study is discussed below and is also shown in 
Figure 3. 
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Table 1 The conditioning parameter causing landslide 

S. no. PARAMETERS SOURCE 
1 ELEVATION SRTM DEM (30 m) downloaded from USGS 

EARTH EXPLORER 
2 SLOPE Derived from SRTM DEM 
3 LAND USE LAND COVER SENTINEL 2 Satellite imagery, resolution 10 m 
4 LITHOLOGY BHUKOSH portal, Geological Survey of India 
5 LINEAMENT DENSITY BHUKOSH portal, Geological Survey of India 
6 SOIL MOISTURE Gridded soil Database, NOAA, USA (0.5*0.5 degree) 
7 NDVI Landsat 8 OLI/TRS, 30 m resolution 
8 RAINFALL IMD gridded data (0.5*0.5 degree) 
9 Distance to roads OSM Database 

Figure 3 Flowchart of methodology adopted (see online version for colours) 
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3.2.1 Preparation of inventory of landslide causing conditioning factors 
The formation of inventory is, indeed, the preliminary stage for the landslide assessment 
to be conducted as it involves data collection and its processing (Zhou et al., 2018). The 
study prepared the inventory by adopting three methods: historical data from the 
Geological Survey of India (2015 and above), imageries from Google Earth followed by 
field investigation. We carefully considered 625 landslides occurred in the study area 
since 2015 for the evaluation and analysing their relationship with causing factors. The 
different conditioning factors have been identified based on previous literature and the 
availability of data (Süzen and Kaya, 2012) which are as shown in Table 1. 

3.2.1.1 Elevation 
Elevation is a significant conditioning factor derived from the SRTM DEM having 
resolution 30 m. Ranging between 695 m to 4,956 m, at lower elevation, the risk of 
landslide remains less pronounced (Intarawichian and Dasananda, 2010) [Figure 4(a)]. 

3.2.1.2 Slope 
The major targeting factor amongst the topographic factors in landslide assessment is 
slope (Nourani et al., 2014) which is derived from the SRTM DEM in ArcGIS. The slope 
angle map was classified into five classes at an interval of 150 ranging from 00 to 74.210. 
Raising slope angle results in increased shear strength, which decreases slope stability, 
enhanced the likelihood of landslide in general (Çellek, 2020) [Figure 4(b)]. 

3.2.1.3 Lineament density 

Lineament is generally an expression of geological feature like fault in an area (Arifin 
and Adnan, 2021). The possibility of landslides near the lineament is sufficiently high as 
the strength to hold the rock during the tectonic movement become weak (Chen et al., 
2017). The lineaments in line format were downloaded from the BHUKOSH, a  
web-portal of Geological Survey of India. The density map is prepared by using linear 
density tool of the spatial analyst tool [Figure 4(c)]. Ranging from 0 to 11.11 km, the 
lineament density is highest near the river flowing through the area. 

3.2.1.4 Rainfall 
It is considered as a triggering factor whose impact is widely known. Rainfall data was 
collected from the Indian Meteorological Department in gridded format and further 
processed to form the rainfall map. High rainfall influencing the runoff affects slope 
stability and relates to higher occurrence of landslide in space time context (Bui et al., 
2011). The rainfall ranged from 797 mm to 1,224 mm [Figure 4(h)] showing the 
enhancing susceptibility. 

3.2.1.5 Soil moisture 
Soil moisture substantially impacts the occurrence of landslide by increasing the runoff 
and enhanced erosion (Fayaz and Khader, 2020). Soil moisture map [Figure 4(e)] is 
prepared from the data downloaded in the gridded (0.5*0.5 degrees) format from NOAA, 
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USA. It ranged from 357 to 363 mm showing higher susceptibility in the parts having 
higher soil moisture. 

3.2.1.6 Normalised difference vegetative index (NDVI) 
The function of vegetation is indispensable as it maintains soil structure and reduces the 
risk of landslide (Peduzzi, 2010). Thus, NDVI is considered and mapped using the 
Landsat 8 OLI/TRS satellite image. NDVI is prepared using the following formula 

NDVI (Band 5 Band 4) (Band 5 Band 4)= − +  (1) 

The value of NDVI ranged from –0.152 to 0.526 [Figure 4(f)] revealing less potential of 
landslide in higher NDVI values. 

Figure 4 (a) Elevation (b) Slope (c) Lineament density (d) Distance to roads (e) Soil moisture  
(f) NDVI (g) Rainfall (see online version for colours) 

(a) (b) (c) 

(d) (e) (f) 

(g) 

 

3.2.1.7 Distance to roads 
This factor is substantial in assessing the risk of landslide hazard as human activities like 
transportation facilities have greatly influenced the geological structure and milieu (Guo 
et al., 2019). Road network is downloaded from OpenStreetMap (OSM) database and the 
distance to road [Figure 4(d)] is prepared from the Euclidean distance tool in ArcGIS 
software with an interval of 30 m. 
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3.2.1.8 Lithology 
It is another compelling factor in addition to slope because variation in lithological 
feature often produces substantial differences in permeability and strength of the rock 
(Pradhan et al., 2010). Lithology map [Figure 5(b)] was prepared after downloading from 
the BHUKOSH, a web-portal of Geological Survey of India. We identified 23 different 
formations but the carbonaceous phyllite with marble and quartzite is dominant in the 
central part of the area followed by carbonaceous slate with phyllite and leucratic to 
mesocratic biotite granite. 
Table 2 Geology age and lithology in the study area 

S. no. Lithology Formation Group Age 
1 Leucocratic to mesocratic 

biotite granite 
Kaplas Granite/ 
Kazinag/Hant/ 

Pipra* 

 Palaeozoic 

2 Alluvium, moraines, hillwash 
and scree 

 Undifferentiated 
quaternary 

Pleistocene to 
Holocene 

3 Biotite gneiss and 
quartz/garnetiferous mica 

schist 

Sangra and 
Parkachik 
(Undiff) 

Gaimbal = Suru 
crystalline 

Palaeoproterozoic 

4 Sillimanite/garnetiferous 
augen gneiss and schist 

Parkachik Gaimbal = Suru 
crystalline 

Palaeoproterozoic 

5 Kyanite/andalusite schist, 
gneiss and amhibolite 

Sangra Gaimbal = Suru 
crystalline 

Palaeoproterozoic 

6 Diamictite, arenite with 
phyllite and ash beds 

Agglomeratic 
Slate 

Pir Panjal Late Carboniferous 
to Early Permian 

7 Andesitic and basaltic lava 
flows 

Panjal Volcanics Pir Panjal Permian 

8 Carbonaceous slate, phyllite, 
quartzite 

Chamba Vaikrita Proterozoic 
(Undiff) 

9 Carbonaceous phyllite with 
marble and quartzite 

Salkhala  Proterozoic 
(Undiff) 

10 Diamictite, shale, slate, 
sandstone, limestone 

Manjir = 
Langera 

 Neoproterozoic 

11 Slate, Phyllite, quartzarenite, 
limestone, metabasics 

Katarigali  Neoproterozoic 

12 Slate, phyllite, schist, 
quartzite, conglomerate 

Ramsu Hapatnar Neoproterozoic 

13 Arenaceous slate, phyllite, 
carbonaceous phyllite 

Machhal Hapatnar Neoproterozoic 

14 Calcareous shale and 
crystalline limestone 

Zewan Vihi Late Permian 

15 Limestone, sandstone, shale 
and calcareous bands 

Khunamuh, 
Khreuh and 

Wuyan (Undiff) 

Vihi Permian to 
Triassic 

16 Arenite/Greywacke with 
siltstone and shale 

Lolab Pohru = Sind Cambrian 
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Table 2 Geology age and lithology in the study area (continued) 

S. no. Lithology Formation Group Age 
17 Phyllite, slate, carbonaceous 

shale and limestone 
Ramban  Neoproterozoic 

18 Grey argillite, quartzite, 
limestone and dolomite 

Sincha  Neoproterozoic 

19 Metabasites/metabasics Salkhala  Proterozoic 
(Undiff) 

20 Marble band Salkhala  Proterozoic 
(Undiff) 

21 Calcareous sandstone, shale 
and limestone 

Salooni, Kukti, 
Gamgul 

Tandi Permian to 
Jurassic 

22 Fossiliferous limestone with 
shale partings 

Dalman  Triassic 

23 Gravel, pebble, sand, silt and 
clay 

 Undifferentiated 
quaternary 

Pleistocene to 
Holocene 

24 Slate, phyllite, quartzite, 
limestone and schist 

Bhaderwah  Neoproterozoic 

Figure 5 (a) LULC (b) Lithology (see online version for colours) 

(a) 

(b) 
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3.2.1.9 Land use land cover 
Land use land cover (LULC) represents a decisive conditioning factor that increase or 
decrease the risk of any hazard (Kanungo et al., 2006). It was prepared using Sentinel-2 
satellite image having 10 m resolution and was classified into seven classes: waterbody, 
vegetation, grassland, agricultural land, snow cover, barren land and built-up area  
[Figure 5(a)]. 

3.2.2 Application of analytical hierarchy process-multicriteria decision method 
Multicriteria decision method is a common approach in hazard monitoring in which 
analytical hierarchy process (AHP) is widely used for evaluating criteria based on 
importance scale (Table 3) and identifying weights. It is Saaty in the year 1980s who 
developed this approach. This approach entails expert participation and orientation for 
comparing between the criteria keeping objective at the top. This approach involved a 
preparation of pairwise matrix table of criteria and computation of normalised weights. 
The consistency ratio is finally computed for accuracy check which is found to be less 
than 10%. 

maxλ 1Consistency index (CI)
n 1

−=
−

 (2) 

Consistency ratio (CR) CI RI=  (3)  

whereas RI – random index (shown in Table 4). 
Table 3 Importance scale given by Saaty (1980) 

S. no. Explanation Intensity of relative 
importance 

1 In case of criteria A and B are equally important 1 
2 In case of criteria A is moderately important than B 3 
3 In case of criteria A is strongly important than B 5 
4 In case of criteria A is very strongly important than B 7 
5 In case of criteria A is extremely important than B 9 
6 In case of intermediate judgements 2,4,6,8 

Table 4 Random index as given by Saaty 

N 1 2 3 4 5 6 7 8 9 10 
RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 

3.2.3 Application of Shannon information entropy method 
For objective based weight assigning methods, Claude Shannon happened to have 
propounded the information entropy theory (Shannon, 1948; Lianxiao and Morimoto, 
2019). In this study, frequency ratio (FR) was first calculated using following formulas: 
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No. of pixel of landslide in class
No. of total pixel in classFR
total landslide pixel in class

total pixel in class

=



 (4) 

Entropy is calculated using FR of each class present in layer utilising following 
equations. 

The specific gravity Vij, among the n indices of the ith evaluation item of the index, j 
is as follows: 

ij
ij n

ij1

Y
V

Y

′
=

′
 (5) 

Among Y′ is the frequency ratio calculated using equation (4). 
Information entropy is calculated using Ej is as follows: 

( )n
j ij iji 1

E K V ln V
=

= − ∗  (6) 

whereas k = 1/ln(n), assured when Vij = 0, ln(Vij) = 0. 
Utility value Dj for index j is calculated as follows: 

j jD 1 E= −  (7) 

in which the entropy value Ej is higher, smaller value Dj is calculated. 
The weight of each layer is calculated using following equation: 

j j jW D D=   (8) 

3.2.4 Constructing landslide hazard vulnerability map 
After evaluating the weight of all thematic layers, they were overlayed to prepare 
landslide vulnerability map by utilising following formula: 

n
i ii 1

LHVM w H
=

= ∗  

whereas wi – weight of respective layer and Hi – classified conditioning layer. 

3.2.5 Validation using area under receiver operating characteristic 
For validating the final landslide map, area under receiver operating characteristic  
(AU-ROC) curve was utilised to observe the accuracy of the map by comparing the 
landslide inventory map and AHP and Shannon information entropy (SIE)-based final 
map. El Jazouli et al. (2019) discussed in detail the importance and role of AU-ROC 
curve in prediction. ROC curve is frequently used curve to estimate the probability of 
occurrence of events. AU-ROC curve value range from 0 to 1 in which values above 0.6 
are considered satisfactory and values above 0.8 and 0.9 represents the good and 
excellent predictive value. In this study, we took 250 landslide and non-landslide points 
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utilising the imagery and field methodology and divided the data into 70% training 
dataset and 30% testing dataset randomly for the validation. 

4 Results 

4.1 Analysis of historical database 

The landslides have previously devastated the study area with its frequent occurrence. A 
look at Table 5 revealed the movement, types and their distribution. Debris slide and rock 
cum debris slide have dominantly stressed the area accounting for 78% of the previous 
occurrence. Their movement was shallow translational in nature. Out of the considered 
landslides, 41.87% showed advancing and 54.14% possessed retrogressive distribution. 
Table 5 Types, movement as well as the distribution of historical landslides 

S. no. Description Percentage 
Types of landslides 

1 Rock cum debris fall 1.07 
2 Rock fall 7.06 
3 Debris fall 0.61 
4 Rock cum debris slide 25.92 
5 Rock slide 11.35 
6 Debris slide 52.61 
7 Composite rock slide 1.38 

Types of movement 
1 Shallow translation 98.01 
2 Deep translational 1.99 

Types of distribution 
1 Advancing 41.87 
2 Advancing and retrogressive 0.31 
3 Confined 0.15 
4 Enlarging 1.53 
5 Retrogressive 54.14 
6 Widening 1.99 

4.2 Contribution of conditioning factors 
Estimating the contribution of factors and subfactors is a significant step in removing the 
irrelevant input and improving the accuracy of predicting ability of a model 
(Pourghasemi et al., 2021). Both AHP and SIE approaches were applied in this 
investigation to calculate their contribution in affecting landslides. Utilising AHP, slope, 
rainfall, lithology and lineament density were determined to have significantly higher 
contribution in generating the landslide susceptibility map (LSM) (as shown in Figure 6) 
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whereas in case of SIE, distance to roads, rainfall, elevation, lithology and slope were 
contributing maximum in creation of LSM. 

Figure 6 Predictive capabilities of individual factors computed by AHP and SIE (see online 
version for colours) 

 

In addition, the weights for layers and sub-layers of the factors are as much significant for 
improving the LSM that are computed and are shown in Tables 6 and 7. The consistency 
ration for AHP pairwise matrix was found to be 0.922. 
Table 6 Pairwise matrix computed for conditioning factors 

 EL SL LULC Li LD SM NDVI R DTR NW 
EL 1.00 0.20 0.33 0.17 1.00 2.00 0.50 0.20 2.00 0.05 
SL 5.00 1.00 4.00 2.00 1.00 2.00 5.00 2.00 5.00 0.23 
LULC 3.00 0.25 1.00 1.00 1.00 1.00 1.00 0.50 2.00 0.09 
Li 6.00 0.50 1.00 1.00 1.00 3.00 5.00 0.33 5.00 0.15 
LD 1.00 1.00 1.00 1.00 1.00 3.00 3.00 0.33 4.00 0.12 
SM 0.50 0.50 1.00 0.33 0.33 1.00 2.00 0.20 2.00 0.06 
NDVI 2.00 0.20 1.00 0.20 0.33 0.50 1.00 0.20 3.00 0.05 
R 5.00 0.50 2.00 3.00 3.00 5.00 5.00 1.00 3.00 0.22 
DTR 0.50 0.20 0.50 0.20 0.25 0.50 0.33 0.33 1.00 0.03 

Note: EL– elevation, SL – slope, Li – lithology, LD – lineament density, SM – soil 
moisture, R – rainfall, DTR – distance to roads, NW – normalised weights. 
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Table 7 Weights computed for sub layers of conditioning factors 

S. no. Layers Sub-layers 
Percentage 

of area 
under class 

Percentage 
of area 
under 

landslides 

Weights 
(AHP) 

Weights 
(entropy) 

1 Lithology Leucocratic to mesocratic 
biotite granite 

16.934 7.400 0.045 0.046 

Alluvium, moraines, hillwash 
and scree 

3.166 4.175 0.119 0.138 

Sillimanite/garnetiferous 
augen gneiss and schist 

1.583 0.000 0.024 0.000 

Kyanite/andalusite schist, 
gneiss and amhibolite 

5.118 4.554 0.049 0.093 

Diamictite, arenite with 
phyllite and ash beds 

0.035 0.000 0.026 0.000 

Andesitic and basaltic lava 
flows 

1.105 0.000 0.026 0.000 

Carbonaceous slate, phyllite, 
quartzite 

16.611 13.852 0.049 0.087 

Carbonaceous phyllite with 
marble and quartzite 

40.571 67.742 0.076 0.175 

Diamictite, shale, slate, 
sandstone, limestone 

1.917 1.328 0.052 0.073 

Slate, phyllite, quartzarenite, 
limestone, metabasics 

2.240 0.380 0.052 0.018 

Slate, phyllite, schist, 
quartzite, conglomerate 

3.449 0.000 0.026 0.000 

Arenaceous slate, phyllite, 
carbonaceous phyllite 

1.954 0.000 0.026 0.000 

Calcareous shale and 
crystalline limestone 

0.175 0.000 0.026 0.000 

Limestone, sandstone, shale 
and calcareous bands 

0.851 0.000 0.026 0.000 

Arenite/greywacke with 
siltstone and shale 

1.975 0.000 0.026 0.000 

Phyllite, slate, carbonaceous 
shale and limestone 

0.655 0.000 0.026 0.000 

Grey argillite, quartzite, 
limestone and dolomite 

0.457 0.000 0.026 0.000 

Metabasites/metabasics 0.004 0.000 0.027 0.000 
Marble band 0.100 0.190 0.132 0.198 

Calcareous sandstone, shale 
and limestone 

0.363 0.190 0.062 0.055 

Fossiliferous limestone with 
shale partings 

0.169 0.190 0.130 0.118 
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Table 7 Weights computed for sub layers of conditioning factors (continued) 

S. no. Layers Sub-layers 
Percentage 

of area 
under class 

Percentage 
of area 
under 

landslides 

Weights 
(AHP) 

Weights 
(entropy) 

  Gravel, pebble, sand, silt and 
clay 

0.023 0.000 0.026 0.000 

Slate, phyllite, quartzite, 
limestone and schist 

0.544 0.000 0.026 0.000 

2 Slope 0–14 8.659 1.905 0.062 0.058 
14–28 39.911 26.984 0.097 0.179 
28–40 42.011 56.984 0.160 0.358 
40–56 9.221 14.127 0.263 0.405 
56–74 0.197 0.000 0.419 0.000 

3 Elevation 695–1,609 13.353 59.206 0.046 0.770 
1,609–2,213 34.013 32.540 0.096 0.166 
2,213–2,788 34.954 5.397 0.136 0.027 
2,788–3,513 13.524 2.857 0.256 0.037 
3,513–4,956 4.156 0.000 0.466 0.000 

4 Rainfall 797–926 4.337 0.000 0.045 0.000 
926–1,013 4.681 0.000 0.079 0.000 

1,013–1,074 29.146 33.446 0.144 0.396 
1,074–1,127 42.925 59.797 0.262 0.481 
1,127–1,224 18.910 6.757 0.470 0.123 

5 NDVI (–0.15)–0.05 9.166 3.175 0.071 0.073 
0.05–0.015 28.900 45.238 0.430 0.331 
0.015–0.22 14.214 24.127 0.148 0.359 
0.22–0.28 33.085 19.206 0.225 0.123 
0.28–0.52 14.635 8.254 0.125 0.119 

6 LULC Waterbody 0.506 1.429 0.042 0.223 
Vegetation 51.752 2.143 0.049 0.003 

Agricultural land 1.348 4.821 0.180 0.283 
Built up area 9.374 36.607 0.105 0.309 

Bareland 0.594 0.357 0.324 0.048 
Snow cover 3.437 0.179 0.044 0.004 
Grassland 32.988 54.464 0.255 0.131 

7 Lineamen
t density 

0–2.2 59.141 84.393 0.471 0.501 
2.2–4.4 25.803 9.827 0.268 0.134 
4.4–6.6 10.679 3.083 0.143 0.101 
6.6–8.8 3.583 2.697 0.075 0.264 

8.8–11.1 0.795 0.000 0.044 0.000 
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Table 7 Weights computed for sub layers of conditioning factors (continued) 

S. no. Layers Sub-layers 
Percentage 

of area 
under class 

Percentage 
of area 
under 

landslides 

Weights 
(AHP) 

Weights 
(entropy) 

8 Distance 
to roads 

0–1.1 50.301 92.293 0.471 0.844 
1.1–2.8 28.672 6.744 0.268 0.108 
2.8–5.2 10.315 0.771 0.143 0.034 
5.2–8.8 6.600 0.193 0.075 0.013 

8.8–14.3 4.111 0.000 0.044 0.000 
9 Soil 

moisture 
353.58–358.59 24.786 23.333 0.044 0.192 
358.77–359.77 22.026 23.000 0.075 0.213 
359.77–361.01 18.971 37.000 0.143 0.399 
361.01–362.27 17.631 13.333 0.268 0.155 
362.27–363.95 16.586 3.333 0.471 0.041 

4.3 Landslide susceptibility assessment 

The modelling results indicated that LSM generated from AHP and SIE (as shown in 
Figure 7) have been categorised into five based on natural break method: very low, low, 
moderate, high and very high susceptibility. The AHP model indicated that 83.33% and 
8.6% of the area come under high and very high susceptibility class respectively. The SIE 
model indicated that 20.79%, 25.74%, 17.74%, 22.52%, and 13.20% of Doda District fell 
under very high, high, moderate, low and very low classes respectively. The area under 
different classes computed by both methods is shown in Figure 8. It is significant to note 
that only 46% of the area was falling under high and very high susceptibility classes in 
SIE approach which accounted for 1,120 sq. km of the total study area whereas total of 
2,000 sq. km was falling under high landslide susceptibility. The very high and high 
susceptibility areas were found in the central part of the study area in proximity to river 
and roads and heavy concentration of built-up area. 

4.4 Spatial relationship between factors and landslide 

An attempt is made to decipher the spatial relationship between factors and the landslide 
in the district Doda. The relationship was understood through factors and classes of LSM 
falling under the high and very high susceptibility. It was understood that occurrence of 
landslide was highly recorded in the elevation between 1,609–2,788 m whereas in 
between 609–1,609 m, very high susceptibility was also observed by SIE. The slope of 
140 to 400 was coincided with high susceptibility to landslides. Majority of the landslides 
fell under the rainfall of 1,013 m to 1,224 m in the study area. It was noticed that 
calcareous phyllite with marble and quartzite formation along with fossiliferous 
limestone with shale partings and alluvium, moraine, hill wash and scree were the major 
formation predisposed to landslides. Major land use like agricultural land, built up area, 
grassland and bare land were prone to landslide. Not only this, NDVI ranging between 
0.05 to 0.28 revealed the high occurrence of landslides in the study area. Soil moisture, 
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distance to roads and lineament density revealed the decreasing trend in the values 
showing the occurrence of landslides. 

Figure 7 Landslide susceptibility map using (a) AHP and (b) SIE (see online version for colours) 

 

Figure 8 Proportion of area under the different landslide classes (see online version for colours) 

 

4.5 Validation 
No study is completed until it is validated. In this study, validation of output LSM map 
was evaluated using AU-ROC curve (as shown in Figure 9) which indicated that value of 
AU-ROC curve for AHP was 0.898 and for SIE was 0.976. The value of curve showed 
that predictive ability of maps under AHP and SIW was good for the both the models. 
Through the curve, SIE method was best fit among the two to represent landslide hazard 
zone map. 
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Figure 9 (a) validation curve for AHP (b) Validation curve for SIE (see online version for 
colours) 

  
(a)     (b) 

5 Discussion 

Multitude of studies has carried out on landslide susceptibility assessment using 
comparative approach involving multi criteria with statistical analysis, within different 
machine learning algorithm, or combining machine learning algorithm with statistical 
analysis to find out the best fit method (Chen et al., 2017; Ding et al., 2017; Pandey et al., 
2020). In the present attempt, we incorporated the multi criteria AHP and Shannon 
information entropy method to evaluate the best approach among them since Shannon 
entropy has never utilised in such comparative study. This study revealed that around 
45% of study area was comprised of landslide prone area as per SIE approach when 
validated found in excellent category as per area under curve whereas 83.33% of area 
found highly vulnerable in accordance with AHP approach. This huge difference was 
attributed to subjectivity bias of multi criteria method and dominance of weights of slope, 
rainfall and lithology computed by AHP enhancing the inconsistency in the results. The 
findings revealed that mainly lower slope, higher rainfall, moderate elevation along with 
closer distance to roads and fault were the major determinants in the occurrences of the 
landslides. The weak lithological nature of the region exhibiting carbonaceous phyllite 
with marble, carbonaceous slate with phyllite underneath the low vegetation section of 
the region have enhanced the likelihood of landslide. The understanding can be gained 
from the weak lithology that how the intrusion of construction activities along this 
lithological bed could threaten the area. El Jazouli et al. (2019) had even considered 
slope, lithology and distance to lineament as the major causative factors but distance to 
road as well as land use could have a triggering impact and have had the potential to 
activate the landslide under the definite condition. The insights can be gained from the 
study of Singh et al. (2012) that the slide in the study area was induced due to 
construction of the reservoir. Another factor included was soil moisture owing to the 
reason cited by the study conducted by Singh et al. (2012), stated that rock had poor 
absorption capacity. The study was quite in contrast to Singh et al. (2012) as it found the 
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high susceptible region in 140 to 400 slopes whereas another study by Kumar et al. 
(2017) explains this fact that clay and sandstone have weakness at 100 to 400 towards 
slope failure. The computed results provided the highest weight to ‘distance to road’ 
under SIE approach which can be proved through the excerpt from the Patel et al. (2020) 
review study stating that the 2009 landslide on NH 1B road impacted many lives by 
blocking the road and enhancing the food security problem over a month. The rainfall, 
which has been found the major determinant under both the methods, cannot be ignored 
being the major triggering factor as Kumar et al. (2017) established the strong 
relationship between the rainfall and occurrence of landslide. 

It is concluded from the results that the SIE have the better capability because of 
utilisation of contribution of each conditioning factor using the past location of landslide 
which is not possible in AHP. The computed value of AUC has found to be higher than 
the performance of machine learning algorithms, i.e., 0.976 authenticating the SIE model 
as one of the best fitted models. The insight from Ding et al. (2017) and Pourghasemi  
et al. (2021) displayed the average value of AUC to be 0.900 proving the worth of the 
study. The difference of 7.8 

% in between the performance of the model was attributed to larger portion of higher 
area under high susceptibility under AHP method. The study had even gained an 
advantage from historical database of national government that helped in improving the 
results of study. 

The primary drawback of the study is that downscaling and upscaling of the available 
data, as few sources have higher scale, could have exacerbated the discrepancies in the 
findings. Furthermore, the study’s future potential lies in evaluating soil physical and 
chemical attributes, which would enhance its ability to make predictions about the future. 

6 Conclusions 

Since the frequency of landslides is surging every year, the mountainous landscape is 
changing abruptly owing to rainfall induced landslides in alliance with increased human 
interventions. This study aimed to investigate the susceptibility of landscape through the 
comparative perspective involving analytical hierarchical process and Shannon 
information entropy models. The study evidenced that Shannon entropy approach is a 
good predictor of likelihood of landslide computing 46% of the total area under high and 
very high susceptibility whose performance is validated using AUC value. The analysis 
found rainfall, slope, lithology, distance to roads and lineament to be the major 
conditioning factors contributing to occurrences of landslides. Major occurrences were 
located in proximity to the roads, and stream endangering the concentrated built-up area 
on the slopes. The outcome will provide insights to the disaster response team to prepare 
for evacuation process. It will aid in restricting the future construction activities in the 
very high and high susceptibility zones. The strategy of reforestation can have huge 
impact in preventing the future landslides. Furthermore, construction of retaining wall 
and avoiding overloading of slopes should be adopted to prevent excess soil erosion and 
mishap from forthcoming disaster. Lastly, this study will also support stakeholders in 
decision making, land use planning and formulating mitigation strategies for taking 
prompt action. 
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