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Abstract: The escalation of geo-hazards, particularly landslides, has become a
pressing concern, exacerbated by both natural factors and human activities. The
frequency of rainfall-triggered landslides in mountainous regions is surging,
posing imminent threats to lives and infrastructure. Jammu and Kashmir
witness this peril throughout the year, affecting millions. This study focuses on
creating a landslide susceptibility map for District Doda, employing a
multi-method approach. A comparative analysis of multi-criteria decision
method-analytical hierarchy process (AHP) and Shannon information entropy
(SIE) determines their efficacy. The inventory, comprising 250 landslides,
incorporates nine conditioning factors. AHP designates 91% of the area as very
high or highly susceptible, while SIE identifies 46.49% as vulnerable. Area
under curve (AUC) values of 0.898 and 0.976 for AHP and SIE, respectively,
underscore the latter’s superior predictive capability. This study is instrumental
in aiding stakeholders with decision-making, land-use planning, and
formulating effective mitigation strategies.
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1 Introduction

Growing frequency of anthropogenic activities like expanding transportation
infrastructure, building dams and growing cities in ecologically fragile regions have
accelerated the frequency of natural hazards and their repercussions (Kumar and
Anbalagan, 2016; GNDAR, 2021). According to the prediction of UNDRR (2022) report,
there will be 560 human casualties by 2023 due to natural hazards triggering more
economic losses. Among various geo-hazards landslides represent a serious hazard in
many areas of the world (Guzzetti et al., 2012). A ‘landslide’ is the movement of a mass
of rock, debris or earth down a slope under the impact of gravity (Cruden and Varnes,
1996) and transported material is mostly weathered rock slide (Hungr et al., 2001).
Subaerial and subaqueous landslides are also possible, and a variety of natural
occurrences, such as prolonged or strong rainfall, earthquakes, fast snowmelt, volcanic
activity, and several human acts, can all result in landslides (Cruden and Varnes, 1996) as
well as the frequency of landslides has increased by 3%, causing enormous damage to
infrastructure and human life (GNDAR, 2021; El Jazouli et al., 2019). Topographic
factors like geology, groundwater characteristics, slope, curvature, land use, pedology
(Kumar and Anbalagan, 2016; Van Westen et al., 2008) and triggering factors like
rainfall, earthquakes and over-anthropocentrism (Lazzari and Piccarreta, 2018; Ray et al.,
2009; Sultana, 2020) are also known to have contributed in amplifying the impacts of
landslides. Landslides are more prevalent in mountainous regions around the world, and
they pose a hazard to the communities that live there as well as other infrastructure like
railroads and roadways (Pandey et al., 2019; Wu et al., 2020). The natural surface runoff
process and slope continuity have been altered by the changing mountainous landscape,
which includes a shrinking forest landscape, an increase in urban settlements, and a
pacing up of the provision of transportation facilities, that have raised the threat of
landslides (Chuang and Shiu, 2018; Mcoll, 2022).
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Indian Himalayas are prone to landslides triggered by torrential rain and earthquakes.
Owing to hilly and varied topography, frequent escarpment, faults and pulverised rocks,
the landslide-driven hazards have been become more frequent and disastrous especially
during the monsoon season (Kumar et al., 2017; Martha et al., 2021). Few excerpts of
events from Himalayas such as Sadal Village Landslide (Kumar et al., 2017), Assar
landslide (Singh et al., 2012), Pawari Landslide zone (Kumar et al., 2018), Lanta Khola
landslide (Anbarasu et al., 2010) indicate the activeness of landslide hazard intimidating
the population, exposing communication and transport infrastructure to great loss. A
recent study also indicated the North West Himalayas are the most fatal in terms of
landslide (Parkash, 2011).

Thus, it is necessary to understand the landslide susceptibility of a region like India
Himalayas because the evolution, development process and susceptibility of landslide
assessment are labyrinthine. Previous literature revealed that there are different
quantitative, qualitative, semi quantitative and deterministic model for the landslide
susceptibility assessment (Dikshit et al., 2020). Landslide susceptibility often deals with
spatial distribution of probability of occurrence of landslide considering the conditioning
factors (Reichenbach et al., 2018). Landslide zonation remained vital for the
developmental activities in understanding the topographical factors (Pandey et al., 2020).
Landslide susceptibility mapping have been conducted using multi criteria method
(Intarawichian and Dasananda, 2010; Kumar and Anbalagan, 2016), frequency ratio
(Ding et al., 2017; Addis, 2023), Gaussian theorem (Gao et al., 2022), weight of evidence
(Ilia and Tsangaratos, 2016; Getachew and Meten, 2021), machine learning algorithm
like support vector machine (Pandey et al., 2020, Ballabio and Sterlacchini, 2012),
boosted regression tree (Pandey et al., 2019, Saha et al., 2021), random forest (Hong et
al., 2016, Park and Kim, 2019), index of entropy method (Pourghasemi et al., 2012;
Wubalem et al., 2022) and many more. Various techniques come with their own set of
limitations. For example, machine learning methods may not be dependable for broad
user due to their stringent criteria and the need for powerful computing system.
Multivariate statistical approaches struggle to assess the contribution of individual classes
(Wubalem and Meten, 2020). Nevertheless, bivariate statistical methods offer a
promising solution as they can yield favourable results by pinpointing the class
contribution and are relatively straightforward to manage (Wubalem, 2021). Amongst all
the bivariate method, frequency ratio (FR) along with index of entropy method is widely
utilised, although requires previous landslide data (Wubalem et al., 2022). Presence of
previous landslide database poses no restriction in carrying out this study.

Dikshit et al. (2020) in their analysis of the research gap revealed that Jammu and
Kashmir along with North Eastern states lacked the research in this particular sub-field of
enquiry that is landslide susceptibility. According to Shah et al. (2022), there is decadal
increase in the number of landslides from 136 to 373, severely affecting villagers and
commuters depriving them of basic necessities for a few days. He also reported that
Ramban (38), Kishtwar (34) and Doda (32) have the highest frequency of death totalling
to 1,000 death in the region. He also observed that landslides occur more frequently in
the winter season than in the monsoon. Ali et al. (2022) have also observed those
landslides are the major secondary disaster during the monsoon along the National
Highways isolating the Kashmir Valley from the rest of the India. Thus, the Jammu and
Kashmir experience landslide not only in monsoon but in winters as well. It becomes
imperative as researcher to fill the gap and study the landslide susceptibility in the area
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having region’s one of the highest causalities. To carry out this objective in an area
having dearth of studies on comparative approach, analytical hierarchy process and
FR-Shannon entropy method have been compared and duly validated to check their
prediction.

2 Study area

One of the mountainous districts of Jammu division of Union Territory of Jammu and
Kashmir (UT of J&K) is Doda lying in the south eastern part of the region in the Middle
Himalayas (as shown in Figure 1). The geographical extent lies between 320 51’ to
330 24’ latitude and 750 20’ to 760 14’ longitude having a total area of 2,408 sq. km. It is
surrounded by Kishtwar on the East and North East, Udhampur on the South West and
Kathua in the South, Anantnag in the North and Ramban in the North West. The area
spans across lush green forest, delicate geology, beautiful valleys and glaciers. The
climate varies is subhumid temperate type in the study area (Rashid et al., 2013). The
region had a long history of landslides which Singh et al. (2012) elaborated how one slide
detached one district from accessing resources. Presence of Muree thrust and Panjal
thrust (shown as fault in Figure 2) is also one of the main concerns that on shaking brittle
rocks nearby broke down into pieces (Singh et al., 2012). Patel et al. (2020) reviewed that
2009 landslide detached the whole district by disrupting the road linkages and spiked the
food prices for a month due to stranding vehicles on the roads.

Figure 1 Map of the study area showing national highways, major river system and historical
landslides (see online version for colours)
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Figure 2 Geomorphological feature shown along with lineaments (see online version for colours)
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3 Methods and materials

3.1 Data sources

The secondary data has been used for conducting the study (as shown in the Table 1).
The Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) was used
which was downloaded from US Geological Survey (USGS) Earth Explorer having
resolution 30 metres. The IMD gridded data of resolution (0.5 * 0.5 degree) was utilised
for showing rainfall. The geological data was downloaded from the BHUKOSH, the web
portal of Geological Survey of India. The OSM database was also utilised for
downloading road network. The satellite data like Sentinel-2, Landsat 8 OLI/ TRS and
Gridded Soil database of National Oceanic and Atmospheric Administration (NOAA)
was also utilised in this study.

3.2 Methodology

The methodology adopted for the present study is discussed below and is also shown in
Figure 3.
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Table 1 The conditioning parameter causing landslide
S. no. PARAMETERS SOURCE
1 ELEVATION SRTM DEM (30 m) downloaded from USGS

EARTH EXPLORER

2 SLOPE Derived from SRTM DEM
3 LAND USE LAND COVER SENTINEL 2 Satellite imagery, resolution 10 m
4 LITHOLOGY BHUKOSH portal, Geological Survey of India
5 LINEAMENT DENSITY BHUKOSH portal, Geological Survey of India
6 SOIL MOISTURE Gridded soil Database, NOAA, USA (0.5%0.5 degree)
7 NDVI Landsat 8 OLI/TRS, 30 m resolution
8 RAINFALL IMD gridded data (0.5*0.5 degree)
9 Distance to roads OSM Database

Figure 3 Flowchart of methodology adopted (see online version for colours)
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3.2.1 Preparation of inventory of landslide causing conditioning factors

The formation of inventory is, indeed, the preliminary stage for the landslide assessment
to be conducted as it involves data collection and its processing (Zhou et al., 2018). The
study prepared the inventory by adopting three methods: historical data from the
Geological Survey of India (2015 and above), imageries from Google Earth followed by
field investigation. We carefully considered 625 landslides occurred in the study area
since 2015 for the evaluation and analysing their relationship with causing factors. The
different conditioning factors have been identified based on previous literature and the
availability of data (Siizen and Kaya, 2012) which are as shown in Table 1.

3.2.1.1 Elevation

Elevation is a significant conditioning factor derived from the SRTM DEM having
resolution 30 m. Ranging between 695 m to 4,956 m, at lower elevation, the risk of
landslide remains less pronounced (Intarawichian and Dasananda, 2010) [Figure 4(a)].

3.2.1.2 Slope

The major targeting factor amongst the topographic factors in landslide assessment is
slope (Nourani et al., 2014) which is derived from the SRTM DEM in ArcGIS. The slope
angle map was classified into five classes at an interval of 150 ranging from 00 to 74.210.
Raising slope angle results in increased shear strength, which decreases slope stability,
enhanced the likelihood of landslide in general (Cellek, 2020) [Figure 4(b)].

3.2.1.3 Lineament density

Lineament is generally an expression of geological feature like fault in an area (Arifin
and Adnan, 2021). The possibility of landslides near the lineament is sufficiently high as
the strength to hold the rock during the tectonic movement become weak (Chen et al.,
2017). The lineaments in line format were downloaded from the BHUKOSH, a
web-portal of Geological Survey of India. The density map is prepared by using linear
density tool of the spatial analyst tool [Figure 4(c)]. Ranging from 0 to 11.11 km, the
lineament density is highest near the river flowing through the area.

3.2.1.4 Rainfall

It is considered as a triggering factor whose impact is widely known. Rainfall data was
collected from the Indian Meteorological Department in gridded format and further
processed to form the rainfall map. High rainfall influencing the runoff affects slope
stability and relates to higher occurrence of landslide in space time context (Bui et al.,
2011). The rainfall ranged from 797 mm to 1,224 mm [Figure 4(h)] showing the
enhancing susceptibility.

3.2.1.5 Soil moisture

Soil moisture substantially impacts the occurrence of landslide by increasing the runoff
and enhanced erosion (Fayaz and Khader, 2020). Soil moisture map [Figure 4(e)] is
prepared from the data downloaded in the gridded (0.5*0.5 degrees) format from NOAA,
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USA. It ranged from 357 to 363 mm showing higher susceptibility in the parts having
higher soil moisture.

3.2.1.6 Normalised difference vegetative index (NDVI)

The function of vegetation is indispensable as it maintains soil structure and reduces the
risk of landslide (Peduzzi, 2010). Thus, NDVI is considered and mapped using the

Landsat 8 OLI/TRS satellite image. NDVI is prepared using the following formula
NDVI = (Band 5—Band 4)/(Band 5+ Band 4) )

The value of NDVI ranged from —0.152 to 0.526 [Figure 4(f)] revealing less potential of
landslide in higher NDVI values.

Figure 4 (a) Elevation (b) Slope (c) Lineament density (d) Distance to roads (e) Soil moisture
(f) NDVI (g) Rainfall (see online version for colours)
INDEX

WS*\;&

m High : 4956

(©

INDEX
(in km/sq km)
o High: 1111

e High : 74.217

B Low 695 [

B Low 0

(@ © (®

Y

INDEX INDEX INDEX
(in km) (i m) non-dimensional) & 2
s High : 0.143 oy Hioh 363955 ( ) e S
L o High © 0.526068
- Low:0 B Low: 357,382
B ow: 0152042
(€3]
N
INDEX 20 0 20 40Km WS
(in mm) | | A

High : 1224

Low : 797

3.2.1.7 Distance to roads

This factor is substantial in assessing the risk of landslide hazard as human activities like
transportation facilities have greatly influenced the geological structure and milieu (Guo
et al., 2019). Road network is downloaded from OpenStreetMap (OSM) database and the
distance to road [Figure 4(d)] is prepared from the Euclidean distance tool in ArcGIS
software with an interval of 30 m.
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3.2.1.8 Lithology
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It is another compelling factor in addition to slope because variation in lithological
feature often produces substantial differences in permeability and strength of the rock
(Pradhan et al., 2010). Lithology map [Figure 5(b)] was prepared after downloading from
the BHUKOSH, a web-portal of Geological Survey of India. We identified 23 different
formations but the carbonaceous phyllite with marble and quartzite is dominant in the
central part of the area followed by carbonaceous slate with phyllite and leucratic to

mesocratic biotite granite.

Table 2 Geology age and lithology in the study area
S. no. Lithology Formation Group Age
1 Leucocratic to mesocratic Kaplas Granite/ Palaeozoic
biotite granite Kazinag/Hant/
Pipra*
2 Alluvium, moraines, hillwash Undifferentiated Pleistocene to
and scree quaternary Holocene
3 Biotite gneiss and Sangra and Gaimbal = Suru  Palaeoproterozoic
quartz/garnetiferous mica Parkachik crystalline
schist (Undiff)
4 Sillimanite/garnetiferous Parkachik Gaimbal = Suru  Palaeoproterozoic
augen gneiss and schist crystalline
5 Kyanite/andalusite schist, Sangra Gaimbal = Suru  Palaeoproterozoic
gneiss and amhibolite crystalline
6 Diamictite, arenite with Agglomeratic Pir Panjal Late Carboniferous
phyllite and ash beds Slate to Early Permian
7 Andesitic and basaltic lava ~ Panjal Volcanics Pir Panjal Permian
flows
8 Carbonaceous slate, phyllite, Chamba Vaikrita Proterozoic
quartzite (Undiff)
9 Carbonaceous phyllite with Salkhala Proterozoic
marble and quartzite (Undiff)
10 Diamictite, shale, slate, Manyjir = Neoproterozoic
sandstone, limestone Langera
11 Slate, Phyllite, quartzarenite, Katarigali Neoproterozoic
limestone, metabasics
12 Slate, phyllite, schist, Ramsu Hapatnar Neoproterozoic
quartzite, conglomerate
13 Arenaceous slate, phyllite, Machhal Hapatnar Neoproterozoic
carbonaceous phyllite
14 Calcareous shale and Zewan Vihi Late Permian
crystalline limestone
15 Limestone, sandstone, shale Khunamuh, Vihi Permian to
and calcareous bands Khreuh and Triassic
Wuyan (Undiff)
16 Arenite/Greywacke with Lolab Pohru = Sind Cambrian

siltstone and shale




32 L. Sharma et al.

Table 2 Geology age and lithology in the study area (continued)

S. no. Lithology Formation Group Age
17 Phyllite, slate, carbonaceous Ramban Neoproterozoic
shale and limestone
18 Grey argillite, quartzite, Sincha Neoproterozoic
limestone and dolomite

19 Metabasites/metabasics Salkhala Proterozoic
(Undiff)

20 Marble band Salkhala Proterozoic
(Undiff)

21 Calcareous sandstone, shale Salooni, Kukti, Tandi Permian to

and limestone Gamgul Jurassic
22 Fossiliferous limestone with Dalman Triassic

shale partings

23 Gravel, pebble, sand, silt and
clay

24 Slate, phyllite, quartzite,
limestone and schist

Undifferentiated Pleistocene to
quaternary Holocene

Bhaderwah Neoproterozoic

Figure 5 (a) LULC (b) Lithology (see online version for colours)
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3.2.1.9 Land use land cover

Land use land cover (LULC) represents a decisive conditioning factor that increase or
decrease the risk of any hazard (Kanungo et al., 2006). It was prepared using Sentinel-2
satellite image having 10 m resolution and was classified into seven classes: waterbody,
vegetation, grassland, agricultural land, snow cover, barren land and built-up area
[Figure 5(a)].

3.2.2 Application of analytical hierarchy process-multicriteria decision method

Multicriteria decision method is a common approach in hazard monitoring in which
analytical hierarchy process (AHP) is widely used for evaluating criteria based on
importance scale (Table 3) and identifying weights. It is Saaty in the year 1980s who
developed this approach. This approach entails expert participation and orientation for
comparing between the criteria keeping objective at the top. This approach involved a
preparation of pairwise matrix table of criteria and computation of normalised weights.
The consistency ratio is finally computed for accuracy check which is found to be less
than 10%.

Consistency index (CI) = }L‘“Lgl )
n f—
Consistency ratio (CR) = CI/RI 3)

whereas RI — random index (shown in Table 4).

Table 3 Importance scale given by Saaty (1980)

Intensity of relative

S. no. Explanation importance
1 In case of criteria A and B are equally important 1
2 In case of criteria A is moderately important than B 3
3 In case of criteria A is strongly important than B 5
4 In case of criteria A is very strongly important than B 7
5 In case of criteria A is extremely important than B 9
6 In case of intermediate judgements 2,4,6,8
Table 4 Random index as given by Saaty
N 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49

3.2.3 Application of Shannon information entropy method

For objective based weight assigning methods, Claude Shannon happened to have
propounded the information entropy theory (Shannon, 1948; Lianxiao and Morimoto,
2019). In this study, frequency ratio (FR) was first calculated using following formulas:
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No. of pixel of landslide in class

_ No.of total pixel in class
z total landslide pixel in class

z total pixel in class

FR

“

Entropy is calculated using FR of each class present in layer utilising following
equations.

The specific gravity Vj;, among the n indices of the i evaluation item of the index, j
is as follows:

; (&)

Among Y' is the frequency ratio calculated using equation (4).
Information entropy is calculated using E; is as follows:

Bj=-KD__ Vi*In(Vi) (©)
whereas k = 1/In(n), assured when V;; = 0, In(Vj;) = 0.
Utility value Dj for index j is calculated as follows:
Dj = 1 - E_] (7)

in which the entropy value E; is higher, smaller value D; is calculated.
The weight of each layer is calculated using following equation:

W; =D;/> D, ®)

3.2.4 Constructing landslide hazard vulnerability map

After evaluating the weight of all thematic layers, they were overlayed to prepare
landslide vulnerability map by utilising following formula:

LHVM = z; w; *H;

whereas wi — weight of respective layer and H; — classified conditioning layer.

3.2.5 Validation using area under receiver operating characteristic

For validating the final landslide map, area under receiver operating characteristic
(AU-ROC) curve was utilised to observe the accuracy of the map by comparing the
landslide inventory map and AHP and Shannon information entropy (SIE)-based final
map. El Jazouli et al. (2019) discussed in detail the importance and role of AU-ROC
curve in prediction. ROC curve is frequently used curve to estimate the probability of
occurrence of events. AU-ROC curve value range from 0 to 1 in which values above 0.6
are considered satisfactory and values above 0.8 and 0.9 represents the good and
excellent predictive value. In this study, we took 250 landslide and non-landslide points
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utilising the imagery and field methodology and divided the data into 70% training
dataset and 30% testing dataset randomly for the validation.

4 Results

4.1 Analysis of historical database

The landslides have previously devastated the study area with its frequent occurrence. A
look at Table 5 revealed the movement, types and their distribution. Debris slide and rock
cum debris slide have dominantly stressed the area accounting for 78% of the previous
occurrence. Their movement was shallow translational in nature. Out of the considered
landslides, 41.87% showed advancing and 54.14% possessed retrogressive distribution.

Table 5 Types, movement as well as the distribution of historical landslides
S. no. Description Percentage
Types of landslides
1 Rock cum debris fall 1.07
2 Rock fall 7.06
3 Debris fall 0.61
4 Rock cum debris slide 25.92
5 Rock slide 11.35
6 Debris slide 52.61
7 Composite rock slide 1.38
Types of movement
1 Shallow translation 98.01
2 Deep translational 1.99
Types of distribution
1 Advancing 41.87
2 Advancing and retrogressive 0.31
3 Confined 0.15
4 Enlarging 1.53
5 Retrogressive 54.14
6 Widening 1.99

4.2 Contribution of conditioning factors

Estimating the contribution of factors and subfactors is a significant step in removing the
irrelevant input and improving the accuracy of predicting ability of a model
(Pourghasemi et al., 2021). Both AHP and SIE approaches were applied in this
investigation to calculate their contribution in affecting landslides. Utilising AHP, slope,
rainfall, lithology and lineament density were determined to have significantly higher
contribution in generating the landslide susceptibility map (LSM) (as shown in Figure 6)
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whereas in case of SIE, distance to roads, rainfall, elevation, lithology and slope were
contributing maximum in creation of LSM.

Figure 6 Predictive capabilities of individual factors computed by AHP and SIE (see online
version for colours)
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In addition, the weights for layers and sub-layers of the factors are as much significant for
improving the LSM that are computed and are shown in Tables 6 and 7. The consistency
ration for AHP pairwise matrix was found to be 0.922.

Table 6 Pairwise matrix computed for conditioning factors

EL SL  LULC Li LD SM  NDVI R DTR NW

EL 1.00 0.20 0.33 0.17 1.00 2.00 0.50 0.20 2.00 0.05
SL 5.00 1.00 4.00 2.00 1.00 2.00 5.00 2.00 5.00 0.23
LULC  3.00 0.25 1.00 1.00 1.00 1.00 1.00 0.50 2.00 0.09
Li 6.00 0.50 1.00 1.00 1.00 3.00 5.00 0.33 5.00 0.15
LD 1.00 1.00 1.00 1.00 1.00 3.00 3.00 0.33 4.00 0.12

SM 0.50 0.50 1.00 0.33 0.33 1.00 2.00 0.20 2.00 0.06
NDVI  2.00 0.20 1.00 0.20 0.33 0.50 1.00 0.20 3.00 0.05
R 5.00 0.50 2.00 3.00 3.00 5.00 5.00 1.00 3.00 0.22
DTR 0.50 0.20 0.50 0.20 0.25 0.50 0.33 0.33 1.00 0.03

Note: EL— elevation, SL — slope, Li — lithology, LD — lineament density, SM — soil
moisture, R — rainfall, DTR — distance to roads, NW — normalised weights.
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Table 7 Weights computed for sub layers of conditioning factors
Percentage
Percentage . .
S. no.  Layers Sub-layers of area of czfea szghts Weights
under class . nder (AHP)  (entropy)
landslides
1 Lithology = Leucocratic to mesocratic 16.934 7.400 0.045 0.046
biotite granite
Alluvium, moraines, hillwash 3.166 4.175 0.119 0.138
and scree
Sillimanite/garnetiferous 1.583 0.000 0.024 0.000
augen gneiss and schist
Kyanite/andalusite schist, 5.118 4.554 0.049 0.093
gneiss and amhibolite
Diamictite, arenite with 0.035 0.000 0.026 0.000
phyllite and ash beds
Andesitic and basaltic lava 1.105 0.000 0.026 0.000
flows
Carbonaceous slate, phyllite, 16.611 13.852 0.049 0.087
quartzite
Carbonaceous phyllite with 40.571 67.742 0.076 0.175
marble and quartzite
Diamictite, shale, slate, 1.917 1.328 0.052 0.073
sandstone, limestone
Slate, phyllite, quartzarenite, 2.240 0.380 0.052 0.018
limestone, metabasics
Slate, phyllite, schist, 3.449 0.000 0.026 0.000
quartzite, conglomerate
Arenaceous slate, phyllite, 1.954 0.000 0.026 0.000
carbonaceous phyllite
Calcareous shale and 0.175 0.000 0.026 0.000
crystalline limestone
Limestone, sandstone, shale 0.851 0.000 0.026 0.000
and calcareous bands
Arenite/greywacke with 1.975 0.000 0.026 0.000
siltstone and shale
Phyllite, slate, carbonaceous 0.655 0.000 0.026 0.000
shale and limestone
Grey argillite, quartzite, 0.457 0.000 0.026 0.000
limestone and dolomite
Metabasites/metabasics 0.004 0.000 0.027 0.000
Marble band 0.100 0.190 0.132 0.198
Calcareous sandstone, shale 0.363 0.190 0.062 0.055
and limestone
Fossiliferous limestone with 0.169 0.190 0.130 0.118

shale partings
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Table 7 Weights computed for sub layers of conditioning factors (continued)
Percentage
S. no.  Layers Sub-layers Pe(:fc ZZZIge OL{ ng:f V;/jg]li;s (Zzetif)};)l;)
under class landslides
Gravel, pebble, sand, silt and 0.023 0.000 0.026 0.000
clay
Slate, phyllite, quartzite, 0.544 0.000 0.026 0.000
limestone and schist
2 Slope 0-14 8.659 1.905 0.062 0.058
14-28 39911 26.984 0.097 0.179
28-40 42.011 56.984 0.160 0.358
40-56 9.221 14.127 0.263 0.405
56-74 0.197 0.000 0.419 0.000
3 Elevation 695-1,609 13.353 59.206 0.046 0.770
1,609-2,213 34.013 32.540 0.096 0.166
2,213-2,788 34.954 5.397 0.136 0.027
2,788-3,513 13.524 2.857 0.256 0.037
3,513-4.,956 4.156 0.000 0.466 0.000
4 Rainfall 797-926 4.337 0.000 0.045 0.000
926-1,013 4.681 0.000 0.079 0.000
1,013-1,074 29.146 33.446 0.144 0.396
1,074-1,127 42.925 59.797 0.262 0.481
1,127-1,224 18.910 6.757 0.470 0.123
5 NDVI (-0.15)-0.05 9.166 3.175 0.071 0.073
0.05-0.015 28.900 45.238 0.430 0.331
0.015-0.22 14.214 24.127 0.148 0.359
0.22-0.28 33.085 19.206 0.225 0.123
0.28-0.52 14.635 8.254 0.125 0.119
6 LULC Waterbody 0.506 1.429 0.042 0.223
Vegetation 51.752 2.143 0.049 0.003
Agricultural land 1.348 4.821 0.180 0.283
Built up area 9.374 36.607 0.105 0.309
Bareland 0.594 0.357 0.324 0.048
Snow cover 3.437 0.179 0.044 0.004
Grassland 32.988 54.464 0.255 0.131
7 Lineamen 0-2.2 59.141 84.393 0.471 0.501
t density 2244 25803  9.827 0268  0.134
4.4-6.6 10.679 3.083 0.143 0.101
6.6-8.8 3.583 2.697 0.075 0.264

8.8-11.1 0.795 0.000 0.044 0.000
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Table 7 Weights computed for sub layers of conditioning factors (continued)

Percentage

Percentage of area Weights ~ Weights

S. no.  Layers Sub-layers of area nder (AHP)  (entropy)
under class landslides
8 Distance 0-1.1 50.301 92.293 0.471 0.844
to roads 1.1-2.8 28.672 6.744 0.268 0.108
2.8-52 10.315 0.771 0.143 0.034
5.2-8.8 6.600 0.193 0.075 0.013
8.8-143 4.111 0.000 0.044 0.000
9 Soil 353.58-358.59 24.786 23.333 0.044 0.192
moisture 358.77-359.77 22.026 23.000 0.075 0.213
359.77-361.01 18.971 37.000  0.143 0.399
361.01-362.27 17.631 13.333 0.268 0.155
362.27-363.95 16.586 3.333 0.471 0.041

4.3 Landslide susceptibility assessment

The modelling results indicated that LSM generated from AHP and SIE (as shown in
Figure 7) have been categorised into five based on natural break method: very low, low,
moderate, high and very high susceptibility. The AHP model indicated that 83.33% and
8.6% of the area come under high and very high susceptibility class respectively. The SIE
model indicated that 20.79%, 25.74%, 17.74%, 22.52%, and 13.20% of Doda District fell
under very high, high, moderate, low and very low classes respectively. The area under
different classes computed by both methods is shown in Figure 8. It is significant to note
that only 46% of the area was falling under high and very high susceptibility classes in
SIE approach which accounted for 1,120 sq. km of the total study area whereas total of
2,000 sq. km was falling under high landslide susceptibility. The very high and high
susceptibility areas were found in the central part of the study area in proximity to river
and roads and heavy concentration of built-up area.

4.4 Spatial relationship between factors and landslide

An attempt is made to decipher the spatial relationship between factors and the landslide
in the district Doda. The relationship was understood through factors and classes of LSM
falling under the high and very high susceptibility. It was understood that occurrence of
landslide was highly recorded in the elevation between 1,609-2,788 m whereas in
between 609-1,609 m, very high susceptibility was also observed by SIE. The slope of
140 to 400 was coincided with high susceptibility to landslides. Majority of the landslides
fell under the rainfall of 1,013 m to 1,224 m in the study area. It was noticed that
calcareous phyllite with marble and quartzite formation along with fossiliferous
limestone with shale partings and alluvium, moraine, hill wash and scree were the major
formation predisposed to landslides. Major land use like agricultural land, built up area,
grassland and bare land were prone to landslide. Not only this, NDVI ranging between
0.05 to 0.28 revealed the high occurrence of landslides in the study area. Soil moisture,
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distance to roads and lineament density revealed the decreasing trend in the values
showing the occurrence of landslides.

Figure 7 Landslide susceptibility map using (a) AHP and (b) SIE (see online version for colours)
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Figure 8 Proportion of area under the different landslide classes (see online version for colours)
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4.5  Validation

No study is completed until it is validated. In this study, validation of output LSM map
was evaluated using AU-ROC curve (as shown in Figure 9) which indicated that value of
AU-ROC curve for AHP was 0.898 and for SIE was 0.976. The value of curve showed
that predictive ability of maps under AHP and SIW was good for the both the models.

Through the curve, SIE method was best fit among the two to represent landslide hazard
zone map.
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Figure 9 (a) validation curve for AHP (b) Validation curve for SIE (see online version for

colours)
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5 Discussion

Multitude of studies has carried out on landslide susceptibility assessment using
comparative approach involving multi criteria with statistical analysis, within different
machine learning algorithm, or combining machine learning algorithm with statistical
analysis to find out the best fit method (Chen et al., 2017; Ding et al., 2017; Pandey et al.,
2020). In the present attempt, we incorporated the multi criteria AHP and Shannon
information entropy method to evaluate the best approach among them since Shannon
entropy has never utilised in such comparative study. This study revealed that around
45% of study area was comprised of landslide prone area as per SIE approach when
validated found in excellent category as per area under curve whereas 83.33% of areca
found highly vulnerable in accordance with AHP approach. This huge difference was
attributed to subjectivity bias of multi criteria method and dominance of weights of slope,
rainfall and lithology computed by AHP enhancing the inconsistency in the results. The
findings revealed that mainly lower slope, higher rainfall, moderate elevation along with
closer distance to roads and fault were the major determinants in the occurrences of the
landslides. The weak lithological nature of the region exhibiting carbonaceous phyllite
with marble, carbonaceous slate with phyllite underneath the low vegetation section of
the region have enhanced the likelihood of landslide. The understanding can be gained
from the weak lithology that how the intrusion of construction activities along this
lithological bed could threaten the area. El Jazouli et al. (2019) had even considered
slope, lithology and distance to lineament as the major causative factors but distance to
road as well as land use could have a triggering impact and have had the potential to
activate the landslide under the definite condition. The insights can be gained from the
study of Singh et al. (2012) that the slide in the study area was induced due to
construction of the reservoir. Another factor included was soil moisture owing to the
reason cited by the study conducted by Singh et al. (2012), stated that rock had poor
absorption capacity. The study was quite in contrast to Singh et al. (2012) as it found the
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high susceptible region in 140 to 400 slopes whereas another study by Kumar et al.
(2017) explains this fact that clay and sandstone have weakness at 100 to 400 towards
slope failure. The computed results provided the highest weight to ‘distance to road’
under SIE approach which can be proved through the excerpt from the Patel et al. (2020)
review study stating that the 2009 landslide on NH 1B road impacted many lives by
blocking the road and enhancing the food security problem over a month. The rainfall,
which has been found the major determinant under both the methods, cannot be ignored
being the major triggering factor as Kumar et al. (2017) established the strong
relationship between the rainfall and occurrence of landslide.

It is concluded from the results that the SIE have the better capability because of
utilisation of contribution of each conditioning factor using the past location of landslide
which is not possible in AHP. The computed value of AUC has found to be higher than
the performance of machine learning algorithms, i.e., 0.976 authenticating the SIE model
as one of the best fitted models. The insight from Ding et al. (2017) and Pourghasemi
et al. (2021) displayed the average value of AUC to be 0.900 proving the worth of the
study. The difference of 7.8

% in between the performance of the model was attributed to larger portion of higher
area under high susceptibility under AHP method. The study had even gained an
advantage from historical database of national government that helped in improving the
results of study.

The primary drawback of the study is that downscaling and upscaling of the available
data, as few sources have higher scale, could have exacerbated the discrepancies in the
findings. Furthermore, the study’s future potential lies in evaluating soil physical and
chemical attributes, which would enhance its ability to make predictions about the future.

6 Conclusions

Since the frequency of landslides is surging every year, the mountainous landscape is
changing abruptly owing to rainfall induced landslides in alliance with increased human
interventions. This study aimed to investigate the susceptibility of landscape through the
comparative perspective involving analytical hierarchical process and Shannon
information entropy models. The study evidenced that Shannon entropy approach is a
good predictor of likelihood of landslide computing 46% of the total area under high and
very high susceptibility whose performance is validated using AUC value. The analysis
found rainfall, slope, lithology, distance to roads and lineament to be the major
conditioning factors contributing to occurrences of landslides. Major occurrences were
located in proximity to the roads, and stream endangering the concentrated built-up area
on the slopes. The outcome will provide insights to the disaster response team to prepare
for evacuation process. It will aid in restricting the future construction activities in the
very high and high susceptibility zones. The strategy of reforestation can have huge
impact in preventing the future landslides. Furthermore, construction of retaining wall
and avoiding overloading of slopes should be adopted to prevent excess soil erosion and
mishap from forthcoming disaster. Lastly, this study will also support stakeholders in
decision making, land use planning and formulating mitigation strategies for taking
prompt action.
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