

International Journal of Information and Communication
Technology

ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

Virtual simulation of game scene based on communication load
balancing algorithm

WenZhen Wang

Article History:
Received: 23 April 2024
Last revised: 22 July 2024
Accepted: 22 July 2024
Published online: 12 September 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijict
http://www.tcpdf.org

 18 Int. J. Information and Communication Technology, Vol. 25, No. 6, 2024

 Copyright © The Author(s) 2024. Published by Inderscience Publishers Ltd. This is an Open Access Article
distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

Virtual simulation of game scene based on
communication load balancing algorithm

WenZhen Wang
Animation Art Department,
Zibo Vocational Institute,
Zibo 255300, Shandong, China
Email: 10557@zbvc.edu.cn

Abstract: In order to improve the service effect of multi-player clustering
server, this paper studies from the perspective of communication load
balancing to improve the classification effect of game resources, and proposes a
load balancing algorithm based on consistent hash by analysing the
characteristics of high concurrency and interactivity of mobile real-time
strategy games. This paper combines the communication load balancing
algorithm to improve the work balance of the game servers, and performs
virtual simulation of the game scenario to judge the balanced load state of the
servers, so as to promote the stable operation of the game system. This paper
verifies through experimental research that the virtual simulation method of
game scene proposed in this paper based on communication load balancing
type algorithm works well. This article effectively adjusts resource
coordination during game scene simulation through load balancing algorithms,
improves system efficiency, and ensures system stability and reliability.

Keywords: communication; load balancing; game scenarios; virtual
simulation.

Reference to this paper should be made as follows: Wang, W. (2024)
‘Virtual simulation of game scene based on communication load balancing
algorithm’, Int. J. Information and Communication Technology, Vol. 25, No. 6,
pp.18–37.

Biographical notes: WenZhen Wang received the Master’s degree from
University of Science and Technology of China in 2018. He obtained the
reputation of an Associate Professor from the Animation Art Department of
Zibo Vocational College where he worked in. His research directions is digital
media technology, virtual reality technology, and computer application
technology.

1 Introduction

With the popularisation and development of computer and network, network battle games
are becoming more and more popular, and the scale of its players is becoming larger and
larger. An excellent network battle game, its simultaneous online players can be as high
as hundreds of thousands or even millions. In front of the huge number of players, the
design of game server is undoubtedly a huge challenge. Through the statistics of major

 Virtual simulation of game scene based on communication load balancing 19

game developers and online game operators, we can see that using distributed server
cluster to provide network services is a good scheme.

The imbalance of game users’ demand for stored resources or the difference of
processing speed caused by different computer hardware configurations for processing
users’ resource requirements may cause some computers responsible for processing
network information interaction to be overloaded and even become ‘hot spot’ resources,
but other computers have no information to process and are idle.

Traditional caching algorithms or only considering improving object hit rates result in
low cache space utilisation; or only consider cache space utilisation, resulting in a low
object hit rate. However, due to the large capacity of some objects and limited cache
space of servers, coupled with limited network bandwidth resources, the utilisation of
cache space has become increasingly important. So it is necessary to balance object hit
rate and cache space utilisation, so that the server can respond quickly.

In order to improve the simulation effect of game scenes, this paper studies from the
perspective of communication load balancing, and improves the classification effect of
game resources and the stability of game running state through communication load
balancing.

This article conducts research from the perspective of communication load balancing,
aiming to improve the classification effect of game resources and enhance the stability of
game operation status through communication load balancing BASED on the analysis of
server requirements, the overall design of high concurrency distributed game servers was
carried out, and experimental research verified that the communication load balancing
algorithm proposed in this paper can play an important role in virtual simulation of game
scenes,

This article effectively adjusts resource coordination during game scene simulation
through load balancing algorithms, improves system efficiency, ensures system stability
and reliability, and is of great significance for subsequent game scene construction,
especially for large-scale game scene construction, providing a reliable foundation.

2 Related work

The idea of cluster architecture is to form a server group through a set of servers with
identical functions, in which each server provides the same functions and services. There
are one or more proxy servers in the cluster that synchronously manage and maintain the
entire cluster. When the client attempts to connect to the cluster server, the proxy server
will select the appropriate node for the client to connect based on the current health status
of each host in the cluster (Havola et al., 2021).

Obviously, using cluster architecture as a game server development architecture has
certain advantages. Clusters have to some extent solved the performance, scalability, and
reliability issues of single server architecture (Gawel et al., 2022); clustering, as a simple
server expansion method, is easy to deploy and cost-effective in practical applications;
moreover, there is no need for too many cumbersome configuration documents and
dependency relationships in expanding server nodes. All server nodes are managed
uniformly by proxy nodes, which to some extent decouples the calling relationships
between server nodes; the proxy server of the cluster serves as a communication
intermediary node between the client and server nodes, which to some extent isolates the
internal and external networks, making it impossible to directly access the server nodes in

 20 W. Wang

the internal network from the external network, effectively ensuring the data security and
operational security of the internal network (Wang et al., 2022). In large-scale cluster
server architectures, complex data exchange and synchronisation between service nodes
invisibly increase the workload of server developers in development and maintenance
(Rojas Ferrer et al., 2020).

Distributed architecture is the latest design concept in game server development.
Distributed architecture originated from the practice of web development, and common
distributed frameworks include Dubbo, MapReduce, and CORBA. These frameworks
require developers to split business functions into multiple modules, and modules can call
each other through remote procedure calls (RPC). Distributed architecture effectively
shields the complexity of communication between nodes for each node running on it,
Reduced the difficulty for developers to maintain a single node (Salvini et al., 2022). The
advantages of distributed architecture servers are very obvious, especially in terms of
effective performance improvement. Firstly, each module of the distributed architecture
plays its own role and communicates with each other through efficient network libraries.
By allocating business pressure reasonably to each node, the distributed architecture can
effectively improve the concurrency and communication performance of the server.
Secondly, the distributed architecture has high scalability. By shielding the complexity of
communication between nodes, the entire distributed architecture achieves cohesion and
transparency. Therefore, developers can easily scale the distributed architecture
horizontally without considering communication details, effectively improving
development and maintenance efficiency (Cao et al., 2020). The reliability of distributed
systems is also very high. Due to the system functions being divided into individual
modules, and each functional module having master slave redundancy disaster recovery
for polymorphic hosts, when one of the main nodes of the distributed server cluster
crashes, a backup slave server can be immediately used to replace it. Therefore, the
overall stability of distributed architecture is significantly higher than that of single
machine single server architecture and cluster architecture. However, distributed
architecture also has its drawbacks that cannot be ignored. The early design of distributed
architecture is relatively complex and there are no fixed design rules. Therefore, when
designing a game distributed server architecture, designers need to follow the CAP
principle in theory. In addition, designers need to comprehensively consider the
advantages and disadvantages of existing old architectures and the specific needs of
specific businesses in practice, and define specific functional modules for specific
businesses Expansion methods and communication interfaces (Mondragón Bernal et al.,
2022).

Due to the fact that the logical processing encountered by the server itself is not too
complex, its requirements mainly come from the performance aspect: firstly, it is a data
compression problem. The connection between the network game server and the client
mainly depends on the acceptance and push of communication protocols. In addition, the
conversion of scenarios between servers also requires a large amount of protocol
forwarding. Due to the strict performance requirements of game servers, when their code
logic reaches the bottleneck period, The time consumed by the server for protocol parsing
and sending is crucial. In addition, the size of data directly affects the bandwidth
consumption during data transmission, which is also crucial for the operational cost of
company projects. Traditional transmission formats such as XML and JSON are
inefficient and not suitable (Neroni et al., 2021); the second reason is that each player in
the game will have a large amount of complex and unordered storage data, and also need

 Virtual simulation of game scene based on communication load balancing 21

to meet the short-term high concurrency reference scenarios, which greatly increases the
difficulty of database design (Mystakidis et al., 2022); the third is the performance
requirements for server-side monitoring. The server of online games needs to withstand
high concurrency pressure, and its main task is to continuously monitor the system 24
hours a day. Based on the load status of various regional servers, it recommends, jumps,
and stops registration of regional servers for users who log in, register, or even play
games, in order to alleviate the response pressure of a single server. Even if you enter a
single service area, you will face different game scenarios such as battles, shopping
malls, and emails, which is a huge test for the server (Gabajová et al., 2021).

A new game often experiences explosive growth in registered users upon its launch,
followed by fluctuations in game users due to various factors, ultimately leading to a
decline period. In order to meet the needs of users, we increase the number of virtual
game worlds by adding game servers. However, these virtual worlds are independent of
each other, resulting in the same game map and content in each virtual world. Ultimately,
game users in different virtual worlds cannot communicate with each other, and it is also
difficult for a game user to switch between different virtual worlds, This affects the user
experience (Khan et al., 2021). The fundamental reason for this phenomenon is that the
scalability of the game server architecture cannot meet the constantly changing demands
of the number of users for server performance. The game service architecture is
essentially a distributed system, and achieving a highly available and scalable server
architecture is a highly challenging task (Rahouti et al., 2021). If the scalability of the
server is not strong enough to meet the constantly changing number of users in a virtual
world, game operators can only adjust the number of virtual worlds based on the number
of game users, which also puts high requirements on the company’s operation and
maintenance. There are many design difficulties in the game service architecture, partly
due to distributed systems, and partly due to the business characteristics of the game
itself, including high availability, scalability, high performance, fault tolerance, product
server operation management, anti-cheating, anti-cheating, system security, etc. (Tao
et al., 2021). Scalability is one of the main challenges, as it requires users to perceive the
state of the entire virtual world while also dealing with a large number of concurrent
online users. With the increasing number of game users, virtual elements, and game
content in the game world, the amount of information that needs to be updated and sent
also greatly increases, ultimately limited by network resources and computer processing
power (Akman and Çakır, 2023). The current situation is that developers of system
programming do not have training or experience in distributed computing or concurrent
programming. Even years of game development technicians find it difficult to handle
high concurrency and distributed game servers, and they are better at writing business
modules. So it is meaningful to construct a scalable distributed server architecture that is
as reliable as enterprise level software, while also meeting the requirements for
communication and scalability (Peterson, 2023).

A service-oriented framework. This framework can define the entire game as a virtual
world, rather than multiple independent virtual worlds. The work tasks of each server
within the cluster group can be planned based on the basic functions of the service and
specific game business functions, such as communication servers specifically responsible
for communication, replica servers specifically responsible for dungeon battles, guild
servers specifically responsible for union related functions, and game map scene map
servers (Keil et al., 2021). This functional division improves the scalability of different
overall services and provides convenience for future service upgrades and additions.

 22 W. Wang

There are three classifications of server architecture based on different server group
architectures: the first is server architecture with routing servers (Lorenzo‐Alvarez et al.,
2020); the second type is a server architecture without routing servers, and the third type
is a world server that serves as the centre of the entire server group. All requests are
forwarded through the central server in a star shaped structure, and specific servers only
need to handle a single logical function (Wan et al., 2021). The third solution achieves
clear division of services, each with specific functions, and the relationships between
services are easily defined. Adding new services does not affect previous services. If a
service is affected by changes in the number of game users, it can adapt to changes by
dynamically increasing or decreasing the number of servers (Segura et al., 2020).

In order to improve the overall performance of the high concurrency server system
and improve the speed of server response to requests, it is necessary to introduce caching
technology. Generally, mobile game server systems use the least recently used (LRU)
algorithm to implement data caching. Cache replacement is based on previous data
access, and the principle is to prioritise replacing the data with the least number of visits
during a certain period of time. The LRU algorithm has a high efficiency in processing
frequently accessed data, but a low hit rate when dealing with occasionally accessed data.
Traditional caching algorithms or only considering improving object hit rates result in
low cache space utilisation; Or only consider cache space utilisation, resulting in a low
object hit rate. However, due to the large capacity of some objects and limited cache
space of servers, coupled with limited network bandwidth resources, the utilisation of
cache space has become increasingly important. So it is necessary to balance object hit
rate and cache space utilisation, so that the server can respond quickly.

3 Game communication load balancing

Congestion is a problem that occurs on a shared network when multiple users compete to
access the same resources (bandwidth, buffers, and queues). In a data packet switching
network, data packets are moved in and out of the buffer and queue of the switching
device as they pass through the network. In fact, data packet switching networks are
commonly referred to as ‘queue networks’. The characteristic of data packet switching
networks is that data packets may arrive in groups from one or more sources. Buffers
help routers absorb burst data packets until they can resolve them on their own. If the
business traffic is too high, the buffer will be filled and new data packets will be
discarded. Increasing the size of the buffer is not the solution, as an excessively large
buffer can cause significant latency.

3.1 Optimisation of load balancing mechanism

By analysing the characteristics of high concurrency and interactivity of mobile real-time
strategy games, a load balancing algorithm based on consistent hash is proposed. In order
to ensure real-time performance, a cache replacement algorithm based on key value
evaluation is proposed to achieve the balance between byte utilisation and object hit rate
as much as possible, and the effect of the algorithm is verified by experiments.

 Virtual simulation of game scene based on communication load balancing 23

Because of the portability of the mobile terminal, it can meet the needs of people
playing games anytime and anywhere, but also easily lead to a surge in concurrency of
the server system, and put forward higher requirements for the concurrency performance
of the system, so it is necessary to optimise the load balancing mechanism.

According to the common Hash algorithm, the consistent Hash algorithm maps the
key corresponding to nodes to a space with a size of 232 to form a closed ring, as shown
in Figure 1.

Figure 1 Schematic diagram of consistent hash algorithm (see online version for colours)

If Node2 is deleted after failure, according to the principle of clockwise migration,
object2 will be migrated to Node3, so that only the mapping position of object2 has
changed, and other objects do not need to be changed, as shown in Figure 2. If a new
node Node4 is added to the cluster, object3 is migrated to Node4, and the adjusted load
balancing is shown in Figure 3.

Therefore, because the mapping space is circular, each object can always be assigned
to a specific node. The consistency of consistent Hash algorithm is mainly reflected in
monotonicity, and the general Hash algorithm will cause many objects to be unable to
correspond to the original nodes. However, consistent Hash algorithm is very suitable for
distributed clusters, avoiding a large number of data migration and reducing the waste of
server resources.

 24 W. Wang

Figure 2 Adjustment diagram after node deletion (see online version for colours)

Figure 3 Adjustment diagram after node addition (see online version for colours)

In Figure 4, the virtual nodes of the Node1 physical node are (v1, v2), the virtual nodes of
the Node2 physical node are (v3, v4), and the virtual nodes of the Node3 physical node
are (v5, v6). Object1 maps to the v5 virtual node, so Object1 object data is allocated to

 Virtual simulation of game scene based on communication load balancing 25

the Node3 physical node. Object2 maps to the v2 virtual node, so Object2 object data is
allocated to the Node1 physical node.

Figure 4 Schematic diagram of virtual node (see online version for colours)

Considering that the performance of the server is mainly determined by the
comprehensive conditions such as CPU, memory and bandwidth, ri represents the number
of resources occupied by the actual node i. If we assume that there are N actual nodes and

M virtual nodes in the cluster, the total number of resources in the cluster is
N

i
i 1

R= r
=
 .

The weight of actual node i is ,i
i

rw
R

= and the number of corresponding virtual nodes of

this node is i
i

rv M
R

= ⋅ (Egea-Vivancos et al., 2021).

As the number of requests increases, the load profile of each node varies, with some
nodes having high load pressure while others have low load pressure. Therefore, dynamic
adjustment of load is required considering that the weights of each node are set
differently. The load factor Li represents the percentage of full load occupied by the
actual node i, Lavg represents the average load factor of all servers, the load of the node
with the largest real-time load factor among all servers is Lmax, and the load of the node
with the smallest real-time load factor among all servers is Lmin. When Lmax–Lmin > θ
(where θ represents the load difference threshold and is an adjustable factor), dynamic
adjustment is required as shown in Figure 5.

 26 W. Wang

Figure 5 Flowchart of load dynamic adjustment

The system calculates Lavg, Lmax and Lmin at regular intervals, and performs dynamic
adjustment when it judges Lmax–Lmin > θ. First, the system calculates the transfer threshold
∂ = max{ Lmax–Lavg, Lavg–Lavg }. If the actual node i with load factor Lmax is assumed to
have K virtual nodes, then Vi1, Vi1, …, Vik represents the virtual nodes of the actual node i,
respectively. After that, the system sorts all the virtual nodes corresponding to the actual
node i according to the load rate from the largest to the smallest and initialises the
counters s = 0, j = 1 (s represents the current transferred load value and j represents the
current virtual node number). The system determines that when s < ∂ and j < K, Lmax >
Lmin is true, it transfers the load of virtual node Vij of actual node i to the smallest virtual
node of the actual node with load rate Lmin and updates the counter value, otherwise it
ends the scheduling.

3.2 Optimisation of data caching mechanisms

High latency can lead to communication delays between clients and servers. In response
to this problem, this article starts from the perspective of load balancing technology,
introduces virtual nodes on the basis of consistent hashing algorithm, and implements the
algorithm through node weight allocation and dynamic load adjustment, and tests the
efficiency of the algorithm; a cache replacement algorithm based on key value evaluation
is proposed for caching technology, aiming to achieve a balance between byte utilisation
and object hit rate, thereby improving system efficiency and reducing system latency.

In this paper, we propose a cache replacement algorithm based on key value
evaluation, the basic idea is: calculate the key value evaluation value of each object, the
larger the key value is, the more it needs to be saved in the cache. In order to ensure the
balance between the number of object hits and object byte utilisation, a byte size
threshold Sc is set when calculating the key value. In order to ensure the balance between
object hit rate and byte hit rate, the object whose memory is larger than constant is
logarithm, so as to increase the key value of the object and increase the probability of
saving in the cache and improve the byte hit rate. Saving small objects in the cache does
not improve the byte hit ratio relatively, which is also beneficial to ensure the object hit

 Virtual simulation of game scene based on communication load balancing 27

ratio. The key value evaluation function of the object is designed as shown in equation
(1).

() ()

()

1
log
i i i

i c
i i

i
i i i

i c
i

F C PL S S
S T

K
F C PL S S

S

⋅ ⋅ + − >
=  ⋅ ⋅ + ≤

 (1)

Among them, Ki represents the key value of object i, L is the age factor, and the initial
value is usually set to 0, Fi is the access frequency of object i over a period of time, Ci is
the cost for the system to query object i, Si is the size of object i, and Sc is set to a
constant value, Pi is the number of recent accesses to object i, and Ti is the time of the
most recent time that object i was accessed. For those recently accessed objects, the
probability of being accessed in the next period of time is relatively high, which is in line
with the characteristics of network request access. Thus, equation (1) increases the
priority of those recently accessed objects by subtracting the reciprocal of the most recent
access time, reducing the probability that they will be replaced out of the cache. In
addition, in reality, there may be situations where a request is frequently accessed for
several days, but after this period of frequent access, it will not be accessed again for a
long time. If the cache server does not notice this phenomenon, the object may be stored
in the cache for a long time, resulting in a waste of cache resources. In view of this
situation, it is necessary to introduce recent visit times of Pi into equation (1)

In order to investigate the advantages and disadvantages of cache replacement
algorithm, we need to analyse the following evaluation indexes: average object hit ratio
index α, average byte utilisation index β and hit ratio index γ. For a limited capacity
cache system, N requests received over a period of time are considered, where the
variable mi represents the size of the i(1 ≤ i ≤ N)th request object and the variable qi
represents whether the i(1 ≤ i ≤ N)th request object is in the current cache system. If the
object exists in the current cache set, qi = 1, otherwise qi = 0. There are:

1

N

i
i

q

N
==


α (2)

1

1

N

i i
i

N

i
i

q m

m

=

=

⋅
=



β (3)

1 11

2

1

N N

i i
i i

N

i i
i

q m
wγ
w N

q m

= =

=

⋅= = ⋅
⋅

⋅

 


α
β

 (4)

The hit ratio index γ reflects the strategy of cache replacement algorithm as a whole,
where w1 represents the weight of average object hit ratio and w2 represents the weight of

 28 W. Wang

average byte utilisation. From the result analysis, if the hit ratio index γ is large, it reflects
that small objects request frequently in this time period. On the contrary, if the hit ratio
index γ is small, it reflects that large object requests are more frequent in this time period.

Under the conditions of w1 = 1 and w2 = 1, the system selects the network request log
file on the system line for a period of time as the request access data sample, and sets the
capacity of the cache system to be limited and fixed. Experiments are carried out on LRU
algorithm, first input first output (FIFO) algorithm and cache replacement algorithm
based on key value evaluation proposed in this paper, and the results are shown in
Figure 6 and Figure 7.

Figure 6 Comparison of object hit ratio of three cache replacement algorithms (see online
version for colours)

Figure 7 Comparison of byte utilisation of three cache replacement algorithms (see online
version for colours)

 Virtual simulation of game scene based on communication load balancing 29

Figure 6 reflects the comparison of object hit ratios for the three cache replacement
algorithms over time. It can be intuitively found from Figure 6 that LRU algorithm has
the highest object hit rate, followed by the cache replacement algorithm based on key
value evaluation proposed in this paper, and FIFO algorithm has the lowest object hit
rate. The reason is that LRU algorithm not only considers the access time of objects, but
also considers the recent access frequency of objects, and keeps the recently accessed
objects in the cache as much as possible, which accords with the repetitive characteristics
of web access. Furthermore, Figure 6 reflects the comparison of byte utilisation of the
three cache replacement algorithms over time. As can be seen from Figure 7, the cache
replacement algorithm based on key value evaluation has the highest byte utilisation,
followed by LRU algorithm and FIFO algorithm has the lowest byte utilisation.

3.3 Computing offload strategy in multi-server scenario

The system model is shown in Figure 8. In a certain area, M base station (BS) are evenly
distributed, the BS serial number is m∈{1, 2, …, M}, and MEC servers are deployed
beside each BS. The BS and the BS and the MEC server are connected through optical
fibre links. There are N mobile devices (MD) randomly distributed in the area, such as
mobile phones, tablets or notebook computers. The serial number of MD is n∈{1, 2, …,
N}, and the MD are connected with the BS through wireless links. Because it is a
portable mobile device, each mobile device is moving dynamically, and at the same time,
it will generate multiple tasks that need to be calculated. These tasks can be processed on
the mobile device, that is, locally, or uploaded to MEC server for processing.

Figure 8 Moving edge calculation model diagram (see online version for colours)

 30 W. Wang

If task ()i
nJ t on mobile device n is processed locally that is, 0,i

na = the local

computation delay for task ()i
nJ t is defined as , .i local

nT The local computation delay
, .i local

nT of task ()i
nJ t is directly proportional to the computation amount i

nC of task

()i
nJ t and inversely proportional to the CPU computation power local

nf of mobile device
n which can be expressed as:

,
i

i local n
n local

n

CT
f

= (5)

When the task ()i
nJ t on the mobile device n is processed locally, it will consume the

energy of the mobile device n, and the amount of energy consumption is not only related
to the computation of the task itself, but also related to the chip architecture of the device
itself. Local computing energy consumption is calculated using a recognised energy
consumption statistical model, that is, E = εf3t where ε represents the chip architecture
parameter of the device itself, f represents the computing power of the device CPU, and t
represents the time at which the calculation is performed. The local computing energy
consumption of task ()i

nJ t is defined as , ,i local
nE and the local computing energy

consumption , ,i local
nE of task ()i

nJ t is proportional to the computing amount i
nC of task

()i
nJ t and the CPU computing capacity local

nf of mobile device n, which can be
expressed as:

()2,i local local i
n n n nE ε f C= × × (6)

If the task ()i
nJ t on the mobile device n is unloaded to the MEC server m for processing,

that is, ,i
na m= the task needs to be uploaded to the MEC server m first, and the

uploading delay of the task has a great relationship with the uploading speed. m
nR is

defined as the data upload speed of the mobile device n to the BS m. According to
Shannon formula, the data upload speed m

nR from the mobile device n to the BS m can be
expressed as:

21
m

m m n n
n n

P hR W lb
σ

 ×= × + 
 

 (7)

Among them, m
nW represents the channel bandwidth from the mobile device n to the BS

m, Pn represents the transmission power of the mobile device n and σ2 represents the
noise variance of the channel. m

nh represents the channel gain of the mobile device n to
the BS m, which adopts the Rayleigh channel model.

The upload delay caused by the task ()i
nJ t uploading from the mobile device n to the

BS m is defined as ,
, ,i up

n mT and the upload delay ,
, ,i up

n mT of the task ()i
nJ t is directly

proportional to the data amount i
nD of the task ()i

nJ t and inversely proportional to the

data upload speed m
nR of the mobile device n to the BS m, which can be expressed as:

 Virtual simulation of game scene based on communication load balancing 31

,
,

i
i up n

n m m
n

DT
R

= (8)

When task ()i
nJ t arrives at MEC server m, MEC server m first allocates its own

resources to task ()i
nJ t , and then starts to execute the task. If the size of computing

resources allocated by MEC server m for task ()i
nJ t is , ,i

n mf and ,
,
i exe

n mT is defined as the

execution delay of task ()i
nJ t in MEC server m, then the execution delay ,

,
i exe

n mT of task

()i
nJ t is directly proportional to the calculation amount i

nC of task ()i
nJ t and inversely

proportional to the size , ,i
n mf of computing resources allocated by MEC server m for task

()i
nJ t , which can be expressed as:

,
,

,

i
i exe n

n m i
n m

CT
f

= (9)

,i unload
nT defined as the edge computation delay of task ()i

nJ t . The edge computation

delay ,i unload
nT is equal to the sum of task upload delay ,

,
i up

n mT and task execution delay
,
, ,i exe

n mT which can be expressed as:

, , ,
, ,

i unload i up i exe
n n m n mT T T= + (10)

At time t, if MEC server m has processed all the tasks assigned to it before time t, then
the computational resources of MEC server m are all the computational power of MEC
server m, that is, .server

mf If MEC server m has not processed all the tasks assigned to it
before time t, some of the tasks are still being processed waiting for the completion of the
processing and transmission of the results back. At this time, the computational resources
of MEC server m are not .server

mf At time t, define the task queue of MEC server m as
Qm(t), which denotes the sum of resources that the current MEC server m still needs to
process. Specifically, Qm(t) is the queue of the amount of resources that have not been
processed before moment t–1, that is, Qm(t–1), plus the amount of newly added task
resources at moment t–1, and then subtracts the amount of task resources that have been
completed during the time period t–1+τ. The task queue recursion relation for MEC
server m at time t can be expressed as follows:

() (1) (1) (1)add done
m m m mQ t Q t Q t Q t= − + − − − (11)

Among them, (1)add
mQ t − is the amount of new task resources added by MEC server m at

time t–1, and (1)done
mQ t − is the amount of task resources completed by MEC server m in

time period t–1+τ. This resource is the sum of the amount of task resources that can be
accomplished by the new tasks generated at time t–1, and the amount of old task
resources that can be accomplished in time period t–1+τ. It can be expressed as:

 32 W. Wang

()1

,
1 1

(1)
nK tN

add i
m n m

n i

Q t f
−

= =

− =  (12)

()1

,
1 1

(1) (2)
nK tN

add i i
m n n m m

n i

Q t O f Q t
−

= =

− = + −  (13)

Among them, i
nO is defined as a flag of whether task (1)i

nJ t − is completed in a single

time slot. If task (1)i
nJ t − can be completed in a single time slot, then 1,i

nO = whereas if

task ()i
nJ t cannot be completed in a single time slot, then 0i

nO = can be expressed as:

,
,1,

0,

i exe
i n m
n

T τO
others

 ≤= 


 (13)

4 Server design and scene simulation

On the basis of consistent hashing algorithm, this paper introduces virtual nodes and
addresses the problem of performance differences between nodes that traditional
consistent hashing algorithms cannot solve. It sets weight allocation and realises dynamic
load adjustment. Virtual nodes are copies of actual nodes in Hash space, where a physical
node corresponds to several virtual nodes. After introducing a virtual node, it is necessary
to first insert the hash value of the object into a virtual node middleware, and then map it
to a physical node.

4.1 Game server design

Based on the analysis of server requirements, the overall design of high concurrency
distributed game server is carried out. The overall architecture diagram of the server is
shown in Figure 9. Based on the different development technologies, the architecture of
the server is divided into network data transmission service layer, data access service
layer, communication service layer, general component layer, load balancing component
and game service layer from bottom to top.

4.2 Results

The experiment uses the average load rate as the indicator of load balancing. The load
rate represents the percentage of actual nodes occupying full load, while the average load
rate represents the average of all actual node load rates. Prepare a cluster of 8 servers for
load balancing testing in an online environment. The total number of virtual nodes in the
cluster is 80, with an average of 10 virtual nodes controlled by each physical node.
Simulate sending 10,000 long connection requests to the test cluster simultaneously using
another server program.

In this paper, the server is composed of multiple server groups. As shown in
Figure 10, there are multiple service modules in each server group, including GateServer

 Virtual simulation of game scene based on communication load balancing 33

node group, login service module, player matching service module, game scene service
module, RabbitMQ server and DBServer.

Figure 9 Overall architecture diagram of high concurrency distributed game server (see online
version for colours)

Figure 10 Topology diagram of high concurrency distributed game server (see online version
for colours)

 34 W. Wang

Figure 11 Schematic diagram of virtual simulation of game scene (see online version for colours)

Figure 11 shows the application of the communication equalisation algorithm in the
virtual simulation of the game scene, and the experimental research is carried out in the
following.

In order to verify the accuracy of the load balancing algorithm, four servers are
started, and the server configurations are not very different, and the four servers are using
DELL 490 workstations, dual-channel Intel Quad-core Xeon E5405 CPUs, with a total of
8 cores, a main frequency of 2GHz, and a memory of 16GiB. Moreover, each server is
initially assigned different levels and numbers of tasks, and each server calculates the
load and uploads it to the load controller every 3s, which uses the predictive adaptive
load balancing algorithm proposed in this paper to count the load redundancy of each
server node. Start 4 clients, each client sends a task with different difficulty and execution
time, the tasks are A, B, C, D level, the client cycle sends to ensure that the server
uninterrupted processing. At this time, the load balancer is also in a busy state. At a
randomly selected time, the loads in the text of the four server records are written into
Table 1 at 2s intervals according to this moment.
Table 1 Statistics of server load

Server A Server B Server C Server D
44.804 363.853 121.422 202.576
80.921 212.948 152.126 172.256
111.847 141.986 132.058 121.846
152.025 121.877 121.331 162.469

The efficiency of the communication framework’s network layer processing and the
accuracy of the proposed load balancing algorithm based on the predictive adaptive
mechanism are unilaterally tested through the previous aspects. In order to verify the
overall efficiency of the communication framework and its practical application in the
game server requirements, this communication framework is used for efficiency testing,

 Virtual simulation of game scene based on communication load balancing 35

comparing the processing delay of the communication framework applying the weighted
polling method and the algorithm in this paper, and the result records are plotted as a line
graph in Figure 12:

Figure 12 Comparison of processing delay (see online version for colours)

4.3 Analysis and discussion

From the Figure 3, The test hardware is as follows: The server workstation is a dual Intel
quad-core Xeon E5405 CPU with 8 cores, 2GHz main frequency and 16GiB memory.
Test software: The operating system is CentOS 6.4.

From the Table 1, it can be seen that the predictive adaptive algorithm combining
dynamic and static can even out the load imbalance as much as possible when there is a
load imbalance in the server. By assigning tasks in a fuzzy predictive manner, it can
make the server under pressure more evenly, and strongly avoids the situation where a
node is assigned a large number of tasks per unit of time because of its better processing
performance, resulting in a spike in load.

From the Figure 12, it can be seen that the processing delay of the communication
framework adopting the weighted rotation method algorithm is slightly larger than that of
the algorithm adopted in this paper. The reason for this is that it fails to average the node
load of the game server group well, and when the server load increases and the number of
concurrent requests increases, the processing efficiency will obviously decline, which
leads to an increase in latency. However, the algorithm proposed in this paper takes a
load balancing fuzzy prediction approach at the scheduling layer. Although the accuracy
is slightly off, it can predict the load increase of each node more realistically by testing
close to the real load consumption.

Through the above research, it is verified that the communication-based load
balancing algorithm proposed in this paper can play an important role in virtual
simulation of game scenes, promote the load balancing of servers and improve the
running efficiency of the system.

This article conducts research from the perspective of communication load balancing,
aiming to improve the classification effect of game resources and enhance the stability of

 36 W. Wang

game operation status through communication load balancing Based on the analysis of
server requirements, the overall design of high concurrency distributed game servers was
carried out, and experimental research verified that the communication load balancing
algorithm proposed in this paper can play an important role in virtual simulation of game
scenes.

5 Conclusions

The overall performance of cluster architecture is determined by the upper limit of agent
node performance, which leads to the upper limit of scale-out ability of cluster server
architecture. That is to say, when the server-side architecture is extended to a certain
extent, adding new service nodes will not have obvious performance improvement. In
order to improve the simulation effect of game scene, this paper studies from the
perspective of communication load balancing, and improves the classification effect of
game resources and the stability of game running state through communication load
balancing. Based on the analysis of server requirements, this paper designs a highly
concurrent distributed game server, and verifies that the communication-based load
balancing algorithm proposed in this paper can play an important role in virtual
simulation of game scenes through experimental research.

Through the experimental study, it is verified that the communication-based load
balancing algorithm proposed in this paper can play an important role in virtual
simulation of game scenes, promote the load balancing of servers and improve the
running efficiency of the system.

This article effectively adjusts resource coordination during game scene simulation
through load balancing algorithms, improves system efficiency, ensures system stability
and reliability, and is of great significance for subsequent game scene construction,
especially for large-scale game scene construction, providing a reliable foundation.

The mobile real-time strategy game server system designed and implemented in this
article has been applied to enterprise online projects. However, when facing more
complex and ever-changing demand scenarios in the future, the system still needs to be
further improved. The game server system may face the problem of cheating by cheats. In
order to ensure the security of this system, game monitoring modules will continue to be
developed in the future to prevent players from cheating.

References
Akman, E. and Çakır, R. (2023) ‘The effect of educational virtual reality game on primary school

students’ achievement and engagement in mathematics’, Interactive Learning Environments,
Vol. 31, No. 3, pp.1467–1484.

Cao, S., Nandakumar, K., Babu, R. and Thompson, B. (2020) ‘Game play in virtual reality driving
simulation involving head-mounted display and comparison to desktop display’, Virtual
Reality, Vol. 24, No. 3, pp.503–513.

Egea-Vivancos, A. and Arias-Ferrer, L. (2021) ‘Principles for the design of a history and heritage
game based on the evaluation of immersive virtual reality video games’, E-learning and
Digital Media, Vol. 18, No. 4, pp.383–402.

Gabajová, G., Krajčovič, M., Matys, M., Furmannová, B. and Burganová, N. (2021) ‘Designing
virtual workplace using unity 3D game engine’, Acta Tecnología, Vol. 7, No. 1, pp.35–39.

 Virtual simulation of game scene based on communication load balancing 37

Gawel, A., Strykowski, S. and Madias, K. (2022) ‘Implementing sustainability into
virtual simulation games in business higher education’, Education Sciences, Vol. 12, No. 9,
pp.599–606.

Havola, S., Haavisto, E., Mäkinen, H., Engblom, J., and Koivisto, J. M. (2021) ‘The effects of
computer-based simulation game and virtual reality simulation in nursing students’
self-evaluated clinical reasoning skills’, CIN: Computers, Informatics, Nursing, Vol. 39, No.
11, pp.725–735.

Keil, J., Edler, D., Schmitt, T. and Dickmann, F. (2021) ‘Creating immersive virtual environments
based on open geospatial data and game engines’, KN-Journal of Cartography and
Geographic Information, Vol. 71, No. 1, pp.53–65.

Khan, N., Muhammad, K., Hussain, T., Nasir, M., Munsif, M., Imran, A.S. and Sajjad, M. (2021)
‘An adaptive game-based learning strategy for children road safety education and practice in
virtual space’, Sensors, Vol. 21, No. 11, pp.3661–3668.

Lorenzo‐Alvarez, R., Rudolphi‐Solero, T., Ruiz‐Gomez, M.J. and Sendra‐Portero, F. (2020)
‘Game‐based learning in virtual worlds: a multiuser online game for medical undergraduate
radiology education within second life’, Anatomical Sciences Education, Vol. 13, No. 5,
pp.602–617.

Mondragón Bernal, IF., Lozano-Ramírez, N.E., Puerto Cortés, J.M., Valdivia, S., Muñoz, R.,
Aragón, J., ... and Hernández, G. (2022) ‘An immersive virtual reality training game for power
substations evaluated in terms of usability and engagement’, Applied Sciences, Vol. 12, No. 2
pp.711–720.

Mystakidis, S., Besharat, J., Papantzikos, G., Christopoulos, A., Stylios, C., Agorgianitis, S. and
Tselentis, D. (2022) ‘Design, development, and evaluation of a virtual reality serious game for
school fire preparedness training’, Education Sciences, Vol. 12, No. 4, pp.281–290.

Neroni, M.A., Oti, A. and Crilly, N. (2021) ‘Virtual reality design-build-test games with physics
simulation: opportunities for researching design cognition’, International Journal of Design
Creativity and Innovation, Vol. 9, No. 3, pp.139–173.

Peterson, M. (2023) ‘Digital simulation games in CALL: a research review’, Computer Assisted
Language Learning, Vol. 36, Nos. 5–6, pp.943–967.

Rahouti, A., Lovreglio, R., Datoussaïd, S. and Descamps, T. (2021) ‘Prototy** and validating a
non-immersive virtual reality serious game for healthcare fire safety training’, Fire
Technology, Vol. 57, No. 6, pp.3041–3078.

Rojas Ferrer, C.D., Shishido, H., Kitahara, I. and Kameda, Y. (2020) ‘Read-the-game: system for
skill-based visual exploratory activity assessment with a full body virtual reality soccer
simulation’, PloS One, Vol. 15, No. 3, pp.e0230042–e0230052.

Salvini, G., Hofstede, G.J., Verdouw, C.N., Rijswijk, K. and Klerkx, L. (2022) ‘Enhancing digital
transformation towards virtual supply chains: a simulation game for Dutch floriculture’,
Production Planning and Control, Vol. 33, No. 13, pp.1252–1269.

Segura, R.J., del Pino, F.J., Ogáyar, CJ. and Rueda, A.J. (2020) ‘VR‐OCKS: a virtual reality game
for learning the basic concepts of programming’, Computer Applications in Engineering
Education, Vol. 28, No. 1, pp.31–41.

Tao, G., Garrett, B., Taverner, T., Cordingley, E. and Sun, C. (2021) ‘Immersive virtual reality
health games: a narrative review of game design’, Journal of Neuro Engineering and
Rehabilitation, Vol. 18, No. 2, pp.1–21.

Wan, B., Wang, Q., Su, K., Dong, C., Song, W. and Pang, M. (2021) ‘Measuring the impacts of
virtual reality games on cognitive ability using EEG signals and game performance data’,
IEEE Access, Vol. 9, No. 2, pp.18326–18344.

Wang, J., Liang, H.N., Monteiro, D., Xu, W. and **ao, J. (2022) ‘Real-time prediction of simulator
sickness in virtual reality games’, IEEE Transactions on Games, Vol. 15, No. 2, pp.252–261.

