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This study expands our understanding of how undergraduate business
students learn about the behavior of dynamic systems, since the ability to
assess and intervene in changing systems is increasingly important to
effective business decision-making. A computer simulation is tested in a
lower-division social sciences calculus class as a vehicle for improving
students’ effective understanding of dynamic systems. Pre and post
assessments were compared to test the knowledge of the students. Results
suggest that the simulation approach did improve student knowledge of
dynamic systems.

Introduction

Ample research has indicated accelerating paces of change in business, both at the
industry and firm levels (Fine, 2000). With innovation rates averaging nearly 10
percent annually and even faster in technological sectors (Mendelson & Pillai, 1999),
business graduates who are capable of assessing, interpreting, and making effective
decisions in dynamics situations are more likely to succeed than those who cannot
recognize the accumulated implications of varying rates of change. A survey among
top-ranked U.S. graduate business programs revealed that three-quarters of faculty
view systemic thinking as an “essential” part of business education (Atwater, Kannan
& Stephens, 2008). Yet abundant research also suggests that decision-makers perform
poorly when facing tasks characterized by complex dynamics such as delays in cause
and effect further obscured by separation in space and time (Sterman, 1989; Dörner,
1996; Moxnes, 1998). Consequently, many teachers of business mathematics and
other business courses are seeking improved methods of instruction and assessment
regarding dynamic systems.



Some researchers of cognition and learning assert that conveying abstract rules, or
context-free operations and formulae, help students learn more effectively than
concrete instantiations. Kaminski, Sloutsky and Heckler (2008) provide evidence that,
when presented with a novel-situated problem, undergraduate students who received
mathematical instruction using only generic rules, significantly outperformed students
who received instruction on the same principles using concrete examples or even
concrete instantiations, plus a generic statement of the rules. It is unclear, however, if
abstract mathematical statements describing dynamic systems, such as integration and
differential equations, are effective at helping students grasp the consequences of
relationships that may change nonlinearly over time. Sweeney and Sterman (2000)
contend that students, even those with graduate-level mathematics training at elite
institutions, have a poor ability to extrapolate and interpret the situated consequences
of dynamic relationships.

Given the pervasiveness of delays, feedback, and nonlinear influences in day-to-
day business (Fine, 1998; Sterman, 2000), it becomes critical to understand how to
teach students effectively about dynamic systems. The literature providing models and
theories of learning are both broad and diverse. One categorization proposed by
Fenwick (2000) suggests that educators relinquish the premise that “experiential
learning” can be uniquely defined, since every moment is one of experience and thus
all learning is experiential. Additionally, Fenwick (2000) argues that cognition cannot
be contained by a particular theory, but that multiple perspectives add to the overall
understanding of learning and thinking. One of these perspectives, participation,
suggests that the learner is an active participant and that learning is situated and all
knowledge contextual. According to this idea, effective teaching leverages the
contextual knowledge that students bring with them into the classroom setting.

A review of literature defining intelligence, knowledge, and learning (Raymond &
Black, 2004) suggested the utility of using computer simulation as a teaching tool to
link the academic conceptual development of mathematical abstraction skills to
personal prior latent knowledge from common experience. To explore this possibility,
the authors developed a simulation tool to link the concepts of system dynamics to the
common experience of filling a bathtub. Pre and posttests were conducted to evaluate
the effectiveness of the simulation method of supplemental instruction.

The Simulation Exercise

A computer simulation was created with Visual Basic to represent a typical bathtub,
as shown in Figure 1, and was used by the students of an introductory calculus course
(designed for social science majors, rather than engineering majors) in concert with a
structured simulation exercise (shown in Appendix I).

The purpose of the simulation and exercise was to build the student’s
knowledge of dynamic systems in a step-by-step fashion. This approach was based on
the notion that, by “seeing” the mathematical concepts of a familiar situation
dynamically simulated, the students would gain a deeper understanding of the
mathematical concepts.

94 Journal of Business and Management – Vol. 14, No. 2, 2008



Figure 1: Screen Capture of the Bathtub Simulation

Experimental Method

To test the hypothesis that the simulation and the structured exercise would
improve student understanding of system dynamics, a beginning-of-semester pretest
and an end-of-semester posttest were conducted using a set of assessment instruments
provided in Sweeney and Sterman (2000). The four assessment problems are
reproduced as Appendix II. These four problems assessed student mastery of two
concepts of dynamic systems, the accumulation of stocks and rates of change,
commonly known as stocks and flows. These two ideas form the conceptual heart of
integral (accumulation) and differential (rates of change) calculus.

In each of these four problems, students were provided with the initial value of an
accumulated resource, along with a graph delineating the rate at which the resource
flowed into and exited from the system. The students were asked to provide a
corresponding graph of the resource accumulation over time. These four problems
included elementary cash flow and bathtub situations. Each student received only a
single version of the problem. The four problems were distributed randomly among
the students in the pretest, and again at the end of the course following the completion
of the structured learning exercise, as a posttest. No procedures were used to assign
the same problem to a particular student on the pretest and posttests, and the
assessments were conducted with only the students in attendance on a particular date.

The first set of problems (CashFlow1 and Bathtub1) provided a square wave
pattern of inflow (constant inflow with step changes in the rate) with a constant
outflow, while the second set of problems (CashFlow2 and Bathtub2) provided a saw-
tooth inflow pattern (variable inflow) coupled with a constant outflow. The four
problems assumed knowledge of basic arithmetic, Cartesian graphing, and an intuitive
understanding of rates/flows and accumulations/stocks. Algebraic abstraction and
formulation were not required to solve the problems.

The four problems, CashFlow1, Bathtub1, CashFlow2, and Bathtub2, were
assigned randomly across eleven sections of the calculus course. After discarding
responses, due to both scoring and response irregularities, 254 instruments were
coded from the pretest and 187 were coded from the posttest. Demographics including
age, gender, class standing and major were collected from university records to check
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the randomness of the assignment of the four problems. Demographics were not
available for students who added the class after the date of the demographic data
collection.

The experiment’s null hypotheses stated that the students’ performance would be
equal when comparing the pretest results with the results of the posttest. Performance
was measured as the fraction, p, of students who answered each of the problems
correctly. It was assumed that an increase in performance on the posttest could be
explained at least in part by the application of the structured simulation exercise. This
assumption was verified by comparing the pretest and posttest performance with the
performance of an equivalent group of students from the same course in a prior semester
that completed the system dynamics assessments without doing the simulation and the
structured exercise. This comparison is provided in the following section.

Null Hypotheses: Student performance was equal on the pretest and the posttest:
Ho: pPRE = pPOST

Alternative Hypothesis: Student performance was lower on the pretest than on the
posttest:

Ha: pPRE < pPOST

Results

A summary of the demographics is provided in Appendix III. There appeared to be
no biased assignment of the four problems based on these demographic variables. The
random method of distributing the four problems to students attending class on a
particular day prevented ensuring that the same problem was administered to the same
student on both the pretest and the posttest and that the same sample of students
performed both the pretest and the posttest (not all of the students completed the
simulation exercise). Because of this, we limited the hypothesis tests to a subset of
students. Specifically, we focused only on students who completed the online
simulation exercise and the posttest. Table 1 summarizes the results.

Table 1: Results for students who completed the simulation exercise and took the posttest

Hypothesis Test: Ho: pPRE = pPOST, Ha: pPRE < pPOST

The results suggest that the performance difference between the pretest and the
posttest for students who completed the simulation exercise was significant at the α
=0.05 level on the Bathtub1 and CashFlow1 problems. Student performance did not
improve on the Bathtub2 and CashFlow2 problems. To ascertain that the performance
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improvements were due, at least in part, to the completion of the simulation exercise
rather than to other factors (including the completion of the basic calculus course),
the pre and posttest results were also compared to the performance results collected at
the end of a prior semester. This group consisted of 165 similar calculus students who
completed the Bathtub and CashFlow problems but did not complete the simulation
exercise (Table 2). We assumed that completion of a basic integral and differential
calculus course would improve student understanding of dynamic systems.

Table 2: Comparison of Pretest Results to Prior Semester Performance

Hypothesis Test: Ho: pPRE = pPrior; Ha: pPRE < pPrior

These results indicate that completion of the basic calculus class alone did lead
to improvements in knowledge regarding dynamic systems on the Bathtub1 and
CashFlow1 problems, but the performance increases were not significant at α =
0.05. Table 3 shows the posttest results for students completing the basic calculus
course and the simulation exercise, compared to the performance results for
students completing the basic calculus course in the prior semester (with no
simulation exercise).

Table 3: Comparison of Posttest Results to Prior Semester Performance

Hypothesis Test: Ho: pPrior = pPOST; Ha: pPrior < pPost

For students completing the Bathtub1 problem, posttest performance was higher
than in the prior semester, but the difference was not significant at the α =0.05 level.
Student performance on the posttest was significantly higher on the CashFlow1
problem when compared to students from the prior semester.

Discussion and Conclusion

Introductory calculus texts often introduce integration by having students
calculate the area under a graphical function on a Cartesian graph and also introduce
differentiation by calculating the slope of tangential lines to a graphical function.
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Apparently this common approach did make some difference in student understanding
of dynamic systems, as noted in Bathtub1 and CashFlow1 results. However, the
concepts, exercises, and exams provided in an introductory social sciences calculus
course did not significantly improve student knowledge of dynamic systems in our
study. What prevented these students from connecting their knowledge of elementary
calculus to observations of state variables and the rates at which they change?

Furthermore, more students completed the Bathtub1 problem accurately than
completed the CashFlow1 problem accurately, even though the mathematical
structure underlying the exercises is identical. Why is this? It may be that in
traditional calculus education, integration and differentiation are often not explicitly
related to physical activities and states until students reach more advanced
engineering-focused courses. But, if students were unable to relate the abstract
language of mathematics to any real-world scenarios, we would expect that the data
would suggest equivalent struggles with the bathtub and cash flow scenarios.

In the learning literature, we see evidence of situational knowledge that may help
us interpret these results. Schliemann (1998) described the mathematical capabilities
of street vendors and cooks and the use of scalar arithmetic in their every day
activities. Their mathematical capabilities were sophisticated within the context of
their work, but not generalizable without additional training. Another contextual
anecdote involved the voting behavior and perceptions of a Brazilian woman. In this
situation, the woman’s interpretation of graphical information was influenced by her
voting preference. Lave (1988) studied the mathematical sophistication of ordinary
people living their day-to-day lives and found that in many instances, mathematical
capabilities were uniquely situated. Lave described individuals who performed poorly
on basic arithmetic tests given in a school environment but performed the same math
calculations accurately and without apparent difficulty in the bowling alley. Shoppers
were also found to demonstrate mastery of basic arithmetic in stores but they
performed poorly in school settings on the same arithmetic operations.

We speculate that more students enrolled in first-semester calculus (usually
undertaken during the first three semesters of college) have tacit, or automatic and
situated knowledge of the dynamics of filling a bathtub with water than do have tacit
knowledge of cash flows through a bank account. Probably very few students have
translated their tacit understanding of stock-and-flow bathtub dynamics into the
abstract language of mathematics. But those students who have developed an explicit
understanding of first-derivative calculus may, with the tips offered in the simulation
exercise, be able to relate their explicit understanding of first-derivative dynamics to
their implicit understanding of bathtub dynamics.

The learning literature also documents the importance of expert/apprentice
mentoring particularly in regards to “tips” or “rules of thumb” that are shared within a
discipline or a knowledge community (Henning, 1998; Gick & Holyoak, 1980).
Individuals do not readily transfer knowledge to new scenarios unless guided or tipped
in advance. Reed, Ernst and Banerji (1974) examined the possibility that individuals
use applicable learning and knowledge from a solved problem to solve an additional
problem. They examined the transferability of the solution of the missionary-cannibal
problem to the solution of the jealous-husband problem. The two problems are similar.
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They found variable support for the hypothesis of learning transfer. In a similar study,
Gick and Holyoak (1980) studied the learning transfer between two analogous
problems, the radiation problem and the attack-dispersion problem. Once again they
found that learning was not transferred from one problem to the next unless the
subjects were prompted to make the connection between the two problems. However,
once prompted, nearly all subjects were able to make the connections.

We propose that completion of the bathtub simulation exercise not only led to
improvement of student performance on the Bathtub1 problem but also led to
improvement on the Cashflow1 problem. Since the simulation exercise used the same
graphical and structural cues, the students were “tipped off” regarding the structure of
the cash flow problem even though the simulation exercise did not mention cash flow
examples. We hypothesize that a wide range of experiences, and many translations
among various levels of abstractions, are required for students to develop a robust
understanding of generalized structures, such as the consequences of accumulating a
rate that changes over time. Students may understand Cartesian coordinates and may
be able to interpret graphs within the context of the graph itself, but translating that
understanding, both into the concrete and physical realm as well as into the pure
abstractions of math equations, apparently poses significant challenges.

Since many students do not appear to make connections readily between the
abstractions of their math courses to their real-world experiences, we propose that
simulations can offer intermediate abstractions. By providing interactive and visual
experiences with rapid feedback, simulations can help students translate their tacit
understanding of the dynamics in various circumstances into more general (and
mathematically representable) structures that facilitate analytical understanding to
complement intuitions that may or may not prove accurate. The learning literature
supports this approach of “dual coding” provided through visual and interactive
experiences (James & Galbraith, 1985; Carnevale et al., 1990; Gagne, 1977; Johari,
1998; Shu-Ling, 1998).

Student performance on the Bathtub2 and CashFlow2 problems, with linearly
changing rates of inflow, suggests that even very simple dynamics systems are not well
understood. It is uncommon in businesses that outflows will remain constant while
only inflows change, or vice-versa. To be effective, business decision-makers must
understand the difference between flows (such as annual profits) and stocks (such as
retained earnings). In our experience, many undergraduate upper-division business
students do not understand that income statement entries (sales, profits, expenses) are
measured per time period (monthly, quarterly, or annually) and so are akin to the flow
of water into and out of a bathtub. Similarly, they do not comprehend that balance
sheet entries are stocks (snapshots of the accumulated business resources at a
particular point in time) analogous to a bathtub’s accumulated water. A resource-based
view of business requires that decision-makers distinguish between stocks and
activities measured per time period. Focusing on accumulated customers for a word-
of-mouth marketing campaign will yield different and better results than focusing only
on the rate of customer acquisition. Likewise, a business manager who does not
understand that the accumulated customer base, rather than the new-customer
acquisition rate, drives demands for after-sales service and maintenance risks losing

99Raymond and Black



customers dissatisfied by staffing inadequate to meet customers’ needs.
This study provides some support for the assertion that targeted simulation

exercises can improve student understanding of stocks and flows in dynamic systems.
The results were tempered, however, by concerns regarding the student sampling
procedures. Future studies are needed to refine the simulation exercises and the
experimental methods. Even so, the experiment’s results raise provocative questions
about how students learn (and do not learn) about dynamic systems:

• Why did students who completed a basic integral and differential calculus course
perform poorly on tests of understanding regarding dynamic systems?

• How did the simulation exercise administered in this study improve student
performance on tests of understanding regarding dynamic systems?

• Why did the performance results vary between the mathematically equivalent
Bathtub and CashFlow problems?

• Why did performance not improve on the Bathtub2 and CashFlow2 problems
(the ones with variable input flows)?

It has been demonstrated (Sterman, 1989; Dörner, 1996) that people’s decision-
making abilities deteriorate as system complexity (as indicated by the number of
relationships among variables, and the delays between action and consequence)
increases. Since the pace of change in businesses and markets is increasing over time,
our educational endeavors will benefit from further research on how students learn,
and fail to learn, to assess dynamic situations, so that we can improve the effectiveness
of the instructional activities we provide.
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Appendix I

Bathtub Stocks and Flows Structured Learning Assignment

Consider the bathtub shown below. Water flows in at a certain rate, and exits through
the drain at another rate. If the water in the tub exceeds 252 liters, then the excess
inflow runs out through an overflow drain.

The purpose of this exercise is to build your conceptual understanding of rates of
change (flows) and accumulations (stocks). You will use a computerized simulation
of a bathtub to assist you in this exercise.

Familiarity – To start you need to become familiar with the controls and data displays
of the simulator.

Start the simulation clock, water inflow must be >= zero

Pause the simulation clock, resume after pausing

Exit the simulation

Reset the simulation to the beginning zero values

Input Parameters – are used to set initial values before starting the simulation clock.
Each of the input parameters is increased/decreased by clicking the left button of
the mouse on the up arrow or down arrow of the spinner control.
Water Inflow Rate (liters/min) – Use the spinner control to increase/decrease the
rate at which water will flow into the bathtub; this control is a real-time control that
can be used anytime during the simulation to change the rate at which water is
flowing into the bathtub. The inflow rate must be greater than zero to start the
simulation clock.
Initial Water in Tub (liters) – Use this control to start the simulation with up to
200 liters of water in the tub.
Drain Flow Rate (liters/min) – Set the initial drain rate of water from the tub.

Output Variables – display the current state of various aspects of the simulation.
These values provide feedback about what is happening in the bathtub.
Water In Tub (liters) – Displays the amount of water in the bathtub in liters.
Water Depth (cm) – Displays the depth of the water in the bathtub in centimeters.
Overflow Rate (liters/min) – Displays the rate at which water is flowing through
the overflow of the bathtub in liters per minute.
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Activity I: Constant rates flowing into and out of the tub

• Before starting the simulation, use the spinner controls to set the inflow rate at 50
liters/min; the water in the tub to 75 liters, and the drain flow rate to 25 liters/min.

• Given the information above, at what rate will water be accumulating in
the tub? ________

• Plot the constant net accumulation rate on the graph below over a 4 minute
time period.

• Calculate the amount of water in the bathtub at the times shown below and enter
your calculated results in the indicated row of the table. The first value is provided
for you.

Hint: accumulation at TimeNew =
initial accumulation in liters + [(rate of inflow in liters/minute) * (TimeNew –
TimeStart in minutes)] y = f(x) = 75 + 25x where y = the liters of water in the tub and
x = the elapsed time in minutes.

• Now start the simulation and pause the simulation at the times shown in the table
to verify your calculations. Enter the values for the liters of water in the tub in the
row for actual water in the tub. Are the actual values the same as the values you
calculated? Why or why not?
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• If the Actual Water in Tub differed from your calculated amounts at any of the 4
times above, why is that? Re do your calculations and the simulations as often as
you need until you understand how to calculate the effects of a constant rate on the
accumulated water in the tub. You can experiment with changing the values of the
inflow and drain rate to check your understanding.

• Using the graph below plot the four values for the actual amount of water in the tub
at the four times noted above and the changes between those four points, along with
the beginning value at time zero.

Is the graph linear or curved? Why?

Is it increasing or decreasing? Over what time periods?

If your graph is linear, calculate the slope of each line segment by considering how
much the y value changes for each unit of x (i.e., use the traditional “rise/run”
calculation). The x and y values for the first segment along with the required
calculations are provided below as an example. Fill in the rest of the table.

Note that the slope indicates the rate of change in the water in the tub. If water is
accumulating, the slope is positive (and the line on the graph is increasing). If water
is draining from the tub, the slope is negative (and the line you graphed is
decreasing).
Are the slopes of the line segments you calculated the same value as the rate at
which water is accumulating in the tub when you ran the simulation? You can run
the simulation again, to make sure.
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If the simulation continued to run would the bathtub eventually be full i.e. excess
water would run out the overflow drain? If so, calculate the time at which the tub
would be full. Run the simulation to verify your calculated answer.

Hint: Total Volume in liters = depth * length * width = (30 cm * 140 cm * 60
cm)/1000 = 252 liters

Activity II: Changing accumulation of water in the tub

In the previous exercise, the inflow and outflow from the tub were constant. This time
you will be changing the flows of water into, and draining from, the tub as time passes.

• The table below lists the initial values (0 min: 00 sec) and the changing inflow and
outflow values. Before running the simulation calculate the net flow of water
accumulating in or dispersing from the tub as well as the water in the tub.

Calculated Values (do these calculations prior to starting the simulation)

• Plot the net accumulation rate on the graph below over the 4 minute time period.

• Now start the simulation and pause the simulation at the times shown in the table
to adjust the inflow and drain rates; enter the simulation actual values at each time
to verify your calculations.
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Actual Values (read from simulation)

Did you calculate the volume of water in the tub at each point in time correctly?
If not, continue experimenting with the controls on the simulator until you have
an understanding of how

Inflow Rate – Drain Rate = Net Accumulation Rate,

and how, for each segment of time,

Net Accumulation Rate * Duration + Previous Volume in Tub = New Volume in Tub

• Using the graph below, plot the actual amount of water in the tub.

Calculate the slope of each line segment by considering how much the y value
changes for each unit of x (i.e., use the traditional “rise/run” calculation). In each
time segment (0 – 1 min, 1 – 2 min, 2 – 3 min, 3 – 4 min) verify that the slope of
your graph is equal to the Net Accumulation rates noted in the table above.

Note that the slope indicates the rate of change in the total volume of the water in
the tub. If water is accumulating, the slope is positive (and the line on the graph
is increasing). If water is draining from the tub, the slope is negative (and the line
you graphed is decreasing). Are the slopes of the line segments you calculated the
same value as the rate at which water is accumulating in the tub when you ran the
simulation? You can run the simulation again, to make sure.
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In the last time period if the simulation continued to run would the bathtub
eventually be empty? Is so, calculate the time at which the bathtub would be
empty. Run the simulation to verify your calculated answer.

Activity III: Constantly changing accumulation of water in the tub

This time you will be changing the flows of water into, and draining from, the tub in
very short time segments (every ten seconds). After working through a few time
periods, you should be able to predict the shape of the curve for additional time periods.

• The table below lists the initial values (0 min: 00 sec) and the changing inflow and
outflow values. Before running the simulation, calculate the net flow of water
accumulating in or dispersing from the tub as well as the water in the tub.
Remember to convert liters/min to liters/sec when calculating the water volume.

Calculated Values
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• Plot the net accumulation rate in liters/minute on the graph below over the 160
second time period.

• Now run the simulation pausing at the times shown in the table to verify your
calculations.

Actual Values (read from simulation)

Were the amounts you calculated for each cell validated by the simulation? For any
cells that differ, please make sure you understand the source of discrepancy and make
sure you can calculate the correct value for each cell.
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• Using the graph below plot the amount of water in the tub (time in seconds). Note
the broken vertical axis.

In this final exercise the rate of change of water in the tub varies between each time
segment. We can therefore make some observations about the rate of change in the
rate of change. When the Net Accumulation Rate is increasing, but by less each time
segment (we call that “increasing at a decreasing rate,” the graph approaches a peak,
or local maximum. Similarly, when the Net Accumulation Rate is decreasing, but by
less each time segment (decreasing at a decreasing rate), the graph approaches a
local minimum.
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Appendix II

Four problems for assessing dynamic system knowledge.
(Used by permission of the author.)

Bathtub 1: Square Wave Pattern1

Consider the bathtub shown below. Water flows in at a certain rate, and exits
through the drain at another rate:

The graph below shows the hypothetical behavior of the inflow and outflow rates
for the bathtub. From that information, draw the behavior of the quantity of water
in the tub on the second graph below.

Assume the initial quantity in the tub (at time zero) is 100 liters.

1Adapted from Sweeney, L.B. and Sterman, J.D. See references.
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Bathtub 2: Sawtooth Pattern2

Consider the bathtub shown below. Water flows in at a certain rate, and exits
through the drain at another rate:

The graph below shows the hypothetical behavior of the inflow and outflow rates
for the bathtub. From that information, draw the behavior of the quantity of water
in the tub on the second graph below.

Assume the initial quantity in the tub (at time zero) is 100 liters.

2Adapted from Sweeney, L.B. and Sterman, J.D. See references.
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Cash Flow 1: Square Wave Pattern3

Consider the cash balance of a company. Receipts flow into the balance at a certain
rate, and expenditures flow out at another rate:

The graph below shows the hypothetical behavior of receipts and expenditures.
From that information, draw the behavior of the firm’s cash balance on the second
graph below.

Assume the initial cash balance (at time zero) is $100.

3Adapted from Sweeney, L.B. and Sterman, J.D. See references.
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Cash Flow 2: Sawtooth Pattern4

Consider the cash balance of a company. Receipts flow into the balance at a certain
rate, and expenditures flow out at another rate:

The graph below shows the hypothetical behavior of receipts and expenditures.
From that information, draw the behavior of the firm’s cash balance on the second
graph below.

Assume the initial cash balance (at time zero) is $100.

4Adapted from Sweeney, L.B. and Sterman, J.D. See references.

113Raymond and Black



Appendix III

Demographics of the Student Population:

Demographics are provided for the entire course population, along with the
demographics for the four problem assignment groups on both the pretest and the
posttest. The course population was defined as the students enrolled on the 15th class
day, and the sample of students who actually took the pretest and the posttest
depended on attendance on that particular class day.

Self-reported ethnicity of the respondents was obtained from university records; as
shown below the majority of the population was Caucasian.

• Asian: 5
• Hispanic: 7
• Native American: 4
• Other: 3
• Missing Data: 24
• Caucasian: 340

Table AIII-1: Age Distribution
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Table AIII-2: Gender of Respondents

Table AIII-3: Class standing of respondents

Table AIII-4: Academic major of the respondents
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