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Organizations commonly use several different predictors such as ability tests,
personality tests, interviews, and reference checks in selecting employee. In fact, the use
of multiple predictors serves as a good way of triangulating on applicants’ abilities to do
the job and generally provides better prediction of job performance than a single
predictor. However, in using multiple predictors, organizational decision makers are
Jaced with the challenge of how to make sense of the various, and sometimes conflicting,
sources of information about applicants in order to make an informed decision.

Setting a cutoff on a single predictor is relatively straightforward. However, the
subjective procedures used for setting cuttoffs on multiple predictors have not been
satisfactory. This study demonstrates the Jeasibility of a computational Dprocedure for
setting multiple cutoffs. Such a procedure should be more cost-effective and accurate
than the subjective methods currently used, .

Organizations commonly use several different predictors such as ability tests,

personality tests, interviews, and reference checks in selecting employees (Bureau of
National Affairs, 1988; Karren & Nkomo, 1988). In fact, the use of multiple predictors
serves as a good way of triangulating on applicants’ abilities to do the job and generally
provides better prediction of job performance than a single predictor (Gatewood & Feild,
1994). However, in using multiple predictors, organizational decision makers are faced
with the challenge of how to make sense of the various, and sometimes conflicting,
sources of information about applicants in order to make an informed decision. One way
of dealing with data from multiple predictors is to enter them into a regression equation.
The applicant’s scores on each predictor (e.g., tests, interviews, reference checks) are
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weighted and summed to yield a total score (e.g., predicted job performance). The
appropriate regression weights or b values are determined through prior research where
the unique contributions of each predictor score (X;) to predicting job performance (¥)

are investigated.

The multiple regression approach assumes that a low score on one predictor can be
compensated for by a high score on another predictor. Thus, an applicant could do very
poorly in the interview (e.g., receive a score of zero) and still do well if he or she receives
high scores on the tests and the reference check. However, this assumption made by the
nultiple regression model is not necessarily warranted. There might be a minimum level
»f competence required on each of the predictors for the individual to perform acceptably
in the job. For example, a very low interview score might indicate that the applicant has
such poor interpersonal and communication skills that he or she cannot function
acceptably in retail sales, regardless of high cognitive ability and extraversion scores.

When the assumptions of the multiple regression approach cannot be met, an
Jlternative is to use cutoff scores (whether in multiple cutoff, multiple hurdle, or
-ombination methods. See Gatewood & Feild, 1994). Cutoff scores serve as criteria or
thresholds in selection decisions. Applicants who score below the cutoff on any of the
predictors are rejected. Thus, cutoff scores ensure that applicants meet some minimum
level of ability or qualification to be considered for a job. The cutoff approach assumes
that 2 minimum level is required on each of the attributes measured by the predictors for
successful job performance (i.e., it does not assume a linear relationship among the
predictors and job performance). The approach also assumes that the predictors are
noncompensatory (i.e., it is not possible to compensate for a low score on one predictor
with a high score on another predictor).

Setting cutoff scores is relatively straightforward when there is only one predictor.
The usual method involves identifying the proportion of applicants who are to be hired
and determining how stringent the cutoff score should be to select only the desired
number of applicants. First, the expected selection ratio is calculated (number of
individuals to be hired divided by the expected number of applicants). Next, the
distribution of the applicants’ scores on the predictor is estimated by examining the
predictor score distributions of past groups of applicants or of current employees (i.e.,
predictive or concurrent validation data). Finally, the cutoff score is established by
applying the selection ratio to the predictor score distribution in order to determine the
score that only the top applicants (the proportion to be hired) would attain. For example,
if a fire department seeks to hire 5 firefighters and 150 people are expected to apply, the
selection ratio will be .03 (5/150). About 3 percent of expected applicants will be
accepted or, conversely, about 97 percent of expected applicants will have to be rejected.
The cutoff score should therefore be set at the 97™ percentile of the distribution of
predictor scores (plus or minus one standard error of measurement). That is, the cutoff
score is set so that only 3% of applicants would be expected to meet or exceed the score
(or 97% would fall below it). As noted above, this approach is limited to setting cutoffs
for a single predictor.
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When more than one predictor is used, setting cutoff scores is considerably more
difficult (Buck, 1977; Cascio et al., 1988; and Cascio, 1991). Cascio (1991, p. 286) points
out that “in general, no satisfactory solution has yet been developed for setting optimal
cutoff scores in a multiple cutoff model.” Although it is not an ideal approach, ong
method that has been used to set cutoff scores is to use expert judges. There are sever]
ways in which expert judges can be used to establish cutoffs but they differ only slightly
in their methods. We will briefly consider the general approach and readers are
encouraged to consult Cascio (1991), Gatewood and Feild (1994), or Schmitt ang
Klimoski (1991) for more detailed treatments of the various methods. Experienced
employees, supervisors, or managers who know the Jjob well or industrial psychologists
typically serve as expert judges. Essentially, the expert judges are asked to rate the
difficulty of test items (or interview questions) and to indicate what score on each item
should be attained by a minimally competent applicant. These ratings are summed acrosg
items to yield a pass threshold or cutoff score. Cutoff scores can be established in this
manner for each of the predictors used in the selection process.

Although expert judges are able to determine cut-off scores to ensure minimal
competence on each of the predictors, they have tremendous difficulty setting optimal
cut-off scores for several predictors so that the desired number of applicants is selected
(Bazerman, 1986). That is, they must not only determine what scores would indicate
minimal competence on each predictor but also what scores on each predictor would
generate the desired number of selectees. Rank ordering scores for each predictor is
inadequate for these purposes because the rank ordering of each applicant will differ
across predictors. For example, an applicant who is ranked 1st on one predictor might be
ranked 20th on another predictor and 59th on a third predictor. Clearly, a computational
process is the only efficient means of setting multiple cut-off scores.

The purpose of this study is to explore the feasibility of a computational approach to
setting multiple cutoff scores. Such an approach would be more objective and more
efficient than using expert judges. Moreover, we expect that this approach will generate
cutoff scores which will optimize the prediction of successful job performance.

FORMULATION

Assume a matrix of k columns and » rows. This matrix contains scores
s fori=1K ,n j=1K  k, representing the score of candidate i in test j. The matrix
1

also contains a vector g; fori=1K ,n indicating whether a candidate’s job performance

is acceptable ( g, =1) or unacceptable ( g; =0). The problem is to find k cutoff scores, so

that a candidate is classified as “acceptable” if he or she is above (or equal to) the cutoff
score in at least k-p of the scores, and is classified as “unacceptable” if he or she misses
the cutoff it more than p times. (The number p may be zero if a candidate is classified as
“acceptable” if he meets the cutoff in all tests.) The objective is to minimize the number
of incorrect classifications of candidates. ,
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For each column j the 5; are sorted in increasing order and n; distinct values
s <K < s are obtained. n; < n because there may be ties in the scores. Each column
1 o -
jdefmes a set of n, 0-1 variables xl(f) K ,xt?, If the score is below the cutoff point, then
P J

x =0, and if the score is above the cutoff point, then x\ =1. In order to guarantee
" s
that the x’s define a cutoff score, we define the set of constraints for each J:

() () 0 \
0 =x" K<x, )]
This set of inequalities guarantees that the vector x“’starts with a sequence of
uninterrupted zeroes and continues with a sequence of uninterrupted ones. It is possible to
have either no zeroes at the beginning in which case all the x"’s are equal to one, or no

ones at the end of the vector in which case all the x’s are equal to zero. The cutoff
point is between the two values where the zeroes end and the ones start (or the

firstxt) =1). If x =0, then the score is below the cutoff point for column j, and if
xY ) = 1, the score is above the cutoff point. Once a solution is obtained, the cutoff points
can be determined by examining the solution x¢”.

For each score s there exists an index ¢ (i, j) such that s, = s The variable
i J i #(.7)

@)

X5i. /) determines whether. this score is above the cutoff for that column or not.

k
Therefore, the number of tests which are above the cutoff point for row i is 2 x;{? .
L

J=1

k
If Z x;él) 52 k- p, the candidate is classified as “acceptable”, otherwise the
=

candidate is classified as “unacceptable”. Consider the expression (recall that ;=1

means an acceptable candidate and g, = 0 means an unacceptable one):

k k
g{k - p- Zx;{,{,-)] +(1- g»[Zx;{,{,) ~k+p+ 1] @
=1 =1

1. If candidate 7 is acceptable (g, = 1), the second term in (2) is zero.

e Ifhe or she is classified as “acceptable” the expression (2) is non-positive
e If he or she is classified as “unacceptable” the expression (2) is positive (is at
least one)
2. If candidate i is unacceptable ( g; =0), the first term in (2) is zero.

e Ifheis classified as “unacceptable” the expression (2) is non-positive
e Ifhe is classified as “acceptable” the expression (2) is positive (is at least one)
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3. Therefore, if the classification is it correct, expression (2) is non-positive, and if the
classification is wrong, expression (2) is at least one.
4. The maximum possible value for expression (2) is k-p if g, =1 and p+1 if g =0

This is the same as g, (k- p)+(1- g )} p+1).
n additional 0-1 variables v, for i=1,K ,nare added to the formulation. v, indicateg
whether the classification is correct ( ¥, =1), or incorrect ( ¥, =0). The objective is tg

H
maximize Z y,
A
i=1

By the above discussion, y, is defined by the constraint:

k k

g{k— p- Z x;{,.)’j)}+ 1- g,.){z x;‘é,.)’j) -k+ p+ 1} <lgk-p+ (- g)p+D)1- )
J=l =1

Rearranging terms leads to:

(1-28)2. 53, + [ (k- p)+ (- g)(p+ Dy, < k(1-g) )

The complete formulation is:

iy
wy v
subject to: x{” < x{/ <K < x{/ 4)
(- 2gi)/Z,:]: X0t g k- p)+ (1- g)(p+ Dy, < k(1- g,)
25, & .{0,1}.
DISCUSSION

The Case p=0

In our investigation we found that for p=0: when y;only are required to be 0-1

variables and x” may be real numbers, we usually obtain integer values for the x’s as

well. We did not find an example where this is not true, but it cannot generally be proven.
This makes the formulation “integer friendly” for the values of the x’s and only » integer
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yariables are required. We propose to solve the problem with only the requirement that
the n’s are integer, and only if non-integer values are obtained for the x’s, to resolve the
roblem requiring that it all variables are integers. The reason for this property is as
follows. Consider the second constraint in (4). There are four possibilities for the values
of g, and y, summarized in Table 1.

Examining Table 1 shows that when y, =0 the constraint is superfluous because it is
always satisfied whether the x’s are fractions or integers. This should be expected
because y, can only be 0 or 1 and since we maximize the sum of the y’s, . will be equal
to 1 at the maximum unless the constraint involving it is not satisfied. In this case, if the
constraint for y, = 0 is not satisfied, we have an infeasible solution. On the other hand, if
g =1 and y, =1, then all the x’s on the left hand side of this constraint must all equal to
1. All the constraints for which g = y, = 1 force many x’s to be equal to 1. Therefore, a
constraint for which g =0 =1 will usually have some of its x’s on the left hand side
equal to one because of other constraints. If k-7 of them are equal to 1, then the remaining
one must be equal to zero. By this reasoning many of the x’s are forced to be zero or one
(mostly one). The only case where we may get non-integer x’s is when for a constraint of
the type g, =0, y, =1 fewer than -/ x’s are fixed to zero or one by the above reasoning
by other constraints. And even then it is possible that the solution will be zero or one for
these “free” x’s. We would also like to note that for practical problems (and especially
near the optimum) there are many y, =1 because y =1means that we predict correctly
candidate i and we expect to predict correctly many of them. That means that the majority
of the constraints will be for y =1which yields many “non-free” x’s that are forced to
get the value zero or 1.
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Table 1: Possible Constraints

g ¥, Constraint
k
0 0 Z x5y S k
, J=1
0 1 25y < k-p-1
‘ J=t . ‘
1 0 2 x0,20
J=1
k
1 | Zl X y2 k= p
Vi

This argumentation is not effective for p>0 because even for a constraint of the type
g = ¥, = 1 nox’s are surely fixed to 1.

Computational Experience

The integer programming formulation was programmed in AMPL (Fourer et al.,1993)
and given in the appendix. The program is available from the first author.

We constructed two illustrative problems: one problem with #n=30 candidates and =5
tests, and the other with #n=100 candidates and *=3 tests. The first problem was
investigated more extensively. The raw data for the first problem have been already
sorted for each test and common scores grouped into one variable. We had nine different
scores among the 30 candidates for each test. The data used are given in Table 2.

The first problem is based on 45 x-variables and 30 y-variables. There are 40
constraints of the first type and 30 constraints of the second type.

We solved the problem for p=0, 1, 2, 3, 4 by linear programming (no integrality
constraints), only 0-1 »’s and all integer variables. The solution for this particular
problem was obtained in a couple of seconds of computer time on a 486 33MHz
computer. The response was so fast that we did not notice a difference in run time
between the linear programming solution, only 0-1 y’s solution, and all integer solution.
The results are summarized in Table 3. :
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Table 2: The First Example Problem

Testl Test2 Test3 Test4 Test5

i &;

1 0 2 4 6 3 1
2 1 4 5 7 9 4
3 0 3 7 4 5 1
4 0 5 2 2 1 9
5 1 7 3 6 8 7
6 0 6 7 2 7 2
7 0 3 7 7 2 1
8 0 1 7 1 5 3
9 1 6 1 2 9 4
10 0 3 7 3 2 8
11 1 8 7 5 3 5
12 1 5 6 3 7 6
13 1 1 7 4 8 9
14 0 5 9 5 4 2
15 1 8 8 6 6 1
16 1 9 3 9 6 3
17 1 9 1 9 8 6
18 0 2 6 7 1 4
19 0 3 7 8 3 8
20 0 3 4 2 5 9
21 0 5 8 1 6 2
22 1 9 9 4 6 7
23 0 4 3 3 8 4
24 1 5 3 8 9 6
25 0 1 6 7 1 3
26 0 4 5 4 2 9
27 0 9 1 9 2 6
28 0 3 6 1 5 9
29 1 8 7 5 7 1
30 0 5 8 6 3 1

For p=0, 27 candidates were categorized correctly (the objective function is 27, and
all y =1 except 9, 11, 23). The cutoff points were 1, 1, 3, 6, 1, respectively, for the five
tests. These cutoff scores were determined by checking the solutions for the x’s. For j=1,
2, and 5 all the x’s were equal to 1 and therefore the cutoff score is the lowest value. For
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J=3 the first two x’s were equal to 0 and the rest equal to 1, and for j=4 the first five x’s
were equal to 0. A candidate is classified “acceptable” if he scored at least these values in
all five tests and is classified “unacceptable” if he failed to get at least the particular score
on any of the five tests. Note that tests #1, #2 and #5 can be discarded from consideratiop
because the “passing” score is the minimum possible score and all candidates (whether
“acceptable” or “unacceptable”) passed these tests successfully. The testing procedure
can be simplified to include only tests #3 and #4 because the other three tests do not
provide any information that helps to distinguish between acceptable and unacceptable
candidates. They are dominated by tests #3 and #4.

The same solution was obtained when we require only the y’s to be integer for all ps
except for p=1. For p=1 we obtained the same ¥’s but some of the x’s were non-integer,
The linear programming solution was non-integer in all cases.

Table 3: The First Example Problem Solved by Linear and Integer Programming

p=0 p=1 p=2 p=3 p=4
L.P. Solution (z) 294 20575 29.667 29.5 294
0-1y Solution 27 29 29 28 27
Are X’s Integer? yes no yes yes yes
All integer 27 29 29 28 27
¥ =0 9,11,23 9 27 12,27 12,13,27
Cutoff Points 1,1,36,1 464,63 510464 6,104,810 7,10,9.9,10

The second problem with 100 candidates and three tests is about the largest problem
that can be solved by the students’ version of AMPL which can handle problems with up
to 300 variables and 300 constraints. The full-size version of AMPL can efficiently
handle much larger problems. The data for the second problem are given in Table 4. In
order to prepare the data for AMPL, the scores for each test were sorted, and the lowest
score was entered as “1”, the second lowest as a “2” and so on.

The student version of AMPL (Fourer et al., 1993) found a solution to the second
problem in a couple of seconds. The cut-off points are 99, 28, and 52.Ninety seven of the
applicants were classified correctly. Only applicants #6, #11, and #20 were classified
incorrectly. Both cases when only the y’s are integer or all the variables are integer were
solved in about the same computer time and yielded the same solution. The linear

programming relaxation of the problem resulted in a solution with an objective function
of 99.
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CONCLUSION

Our program was able to quickly generate multiple cutoff scores with a very high
degree of accuracy. This computational method requires considerably less time and effort
than the usual expert judgement approach and has the potential of providing substantial
savings to the hiring organization. Moreover, this approach is more likely to provide
accurate cutoff scores because it is keyed to job performance scores rather than subjective
judgements made by job experts.
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Table 4: The Data for the Second Problem

# Scores g | # Scores g # Scores
I [130 51 56| 1 34|95 33 60| 0 67 | 114 43 69
2 8 40 71| 0 35| 95 48 67| 0 68 | 120 40 54
3 1100 37 77| 1 136 92 42 39| 0 69 | 122 46 56
4 90 52 58| 0 {37131 43 63 1 70 | 99 43 53
5 105 42 69| 1 38110 38 63 1 71 | 131 45 59
6 91 39 79| 1 139|103 39 73 1 72 1 134 35 66
7 (114 39 751 1 140121 34 61 1 73 | 114 45 65
8 | 129 43 82| 1 141 | 8 22 52| 0 74 | 111 38 60
9 1120 33 54| 1 {42100 42 51 0 75 | 119 38 63
10 [ 122 44 52| 1 |43]102 50 76 1 76 | 136 41 61
1] 94 28 66| 1 |44 |103 36 75 1 77 | 113 37 60
12 1120 53 72| 1 145|115 40 66 1 78 | 117 39 61
13 1122 32 73| 1 {46| 9 40 8| 0 79 | 101 34 56
14 1103 39 63| 1 §47| 99 29 69 1 8 | 8 32 73
15118 39 731 1 {48124 43 62 1 81 1 125 43 72
16 [ 100 44 43 | 0 |49 | 131 46 68 1 82 | 127 38 76
17192 44 471 0 {50 | 128 30 59 1 83 | 117 30 57
18199 34 62| 1 |51 91 38 175 0 84 | 132 37 85
102 46 66 | 1 |52 | 131 40 72 1 85 | 112 30 81

19

2001 92 40 71| 1 |53|105 43 177 1 8 | 111 40 68
21 1101 49 62 ] 1 |54] 90 33 68| 0 87 | 122 41 42
22 1 8 31 74| 0 |55 83 35 71 0 88 | 94 35 54
23 1111 33 69| 1 | 561|143 39 47| 0 89 | 123 40 73
24 1120 35 54| 1 |57 (136 49 70 1 9 | 84 45 54
2519 S50 63| 0 |58 113 37 75 1 91 | 101 28 71
26 | 119 38 76| 1 |59 (114 46 72 1 92 | 131 40 76
27 {113 50 65| 1 | 60| 115 38 62 1 93 | 102 37 64
28 | 103 41 64 | 1 |61 {103 34 65 1 94 | 110 40 71
29 1125 46 73| 1 (62| 8 39 77| o0 95 | 140 38 55
301105 43 53| 1 {63117 40 61 1 9 | 98 34 52
31 {102 35 50| 0 |64|107 34 52 1 97 | 116 42 67
32 | 118 45 68 1 [ 65| 117 48 173 1 98 | 112 38 78
3319 41 46 0 | 66119 40 66 1 99 [ 113 54 87
100 | 119 47 65
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APPENDIX: THE AMPL PROGRAM AND DATA FILE

The AMPL program:
option solver cplex;
param n;

param k;

param p;

set K := {(1..k};

set I = {l..n};

param g {i in I};

param s {i in I, j in K};

param N {j in K};

set M {j in K} := {1..N[3j]};

var x {j in K, i in M[]j]} integer >=0 <=1;

var ¥ {i in I} integer >=0 <=1;

maximize objective: sum (i in I} y[i]:

subject to

constl {Jj in K, i in M[j]: i<N[3j]1}: x[j,i] <= x[j,i+1];
const2 {i in I}: (1-2*gfil])*(sum {J in K} x[j, s[i,j]])
+{({k-p) *g[il+(p+1) *(1-g[i]) ) *y[i] <= k¥ (1l-g[il);

Note that if one is interested in a solution with continuous x variables, then one should
just remove the definition “integer” from the variable definition of x.

The data file for the first example problem is:

param n=30;
param k=5;
param p=0;
param g :=
10
21

w N
O\C)GJg

R WNRET WRNN
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