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Abstract: With the development of network technology, current network intrusion detection 
models have effectively detected some network intrusion methods. In order to improve the 
detection performance of network intrusion detection models, a new network intrusion detection 
model combining data augmentation technology is proposed. The model incorporates the 
WGAN-GP data augmentation module for data balance enhancement and a stacking learning 
module for model classification accuracy. In the performance comparison analysis of the 
WGAN-GP algorithm, it was found that the accuracy and F1 value of the WGAN-GP algorithm 
were 98.25% and 0.792, respectively, which were superior to the comparison algorithm. The 
above results indicate that the detection performance of the WGAN-GP algorithm is superior to 
that of the comparison algorithm. Therefore, integrating the WGAN-GP algorithm into network 
intrusion detection models can effectively improve its intrusion detection performance and 
promote the development of the field of network intrusion detection. 

Keywords: stacking algorithm; WGAN-GP algorithm; network ID model; WGAN algorithm; 
SMOTE algorithm; ADASYN algorithm. 
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1 Introduction 
Network security is one of the important issues to be solved 
urgently. With the rapid development of the internet, the 
threat of network intrusion is increasing, which brings 
great risks to the information systems of individuals, 
enterprises and countries (Mao et al., 2021). Therefore, the 
development of efficient and accurate network intrusion 
detection (ID) model becomes the key to protect network 
security. In recent years, the rapid development of deep 
learning technology has provided new solutions for network 
ID (Chen and Miao. 2021). Generative adversarial network 
(GAN), as a powerful generative model, has been widely 
used in various fields. However, the traditional GAN model 
has some challenges in network ID, such as unstable model 
training and pattern collapse (Qi et al., 2022). To solve these 
problems, the Wasserstein GAN with gradient penalty 
(WGAN-GP) algorithm is proposed. By introducing a 
gradient penalty term to replace the discriminator loss 

function in traditional GAN, WGAN-GP algorithm 
effectively improves the stability and convergence rate of 
the model (Feng and Dou, 2021). However, it is still 
difficult to obtain satisfactory results using WGAN-GP 
algorithm alone. The learning module of stacking is an 
ensemble learning method that improves the generalisation 
ability of the model by training a meta-classifier with the 
predictions of multiple basic classifiers as inputs. In 
network ID, the learning module can combine the 
predictions of multiple WGAN-GP models to more 
accurately determine whether network traffic has intrusion 
behaviours (Tsakiridis et al., 2019). Therefore, this study 
further combines the WGAN-GP algorithm with the 
stacking learning module to further improve the 
performance of network ID. The network ID model that 
integrates WGAN-GP algorithm and stacking learning 
module proposed in this paper makes an important 
contribution to solving the network ID problem. By 
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improving the stability and generalisation ability of the 
model, the model can more accurately judge whether the 
network traffic has intrusion behaviour, so as to improve the 
network security and accuracy. This paper is divided into 
four parts. Section 2 is to analyse the research status of data 
enhancement technology and network security model. 
Section 3 is to construct the network ID model that 
integrates WGAN-GP algorithm and stacking learning 
module. Section 4 is to compare and analyse the 
performance of the algorithm and the network ID model. 
Section 5 is the conclusions. 

2 Related work 
Nowadays, data enhancement technology is used more and 
more widely. Aiming at the problem that the arc fault 
diagnosis model is difficult to train, Zhang’s team proposed 
an adaptive arc fault diagnosis model incorporating data 
processing technology. It turned out that the model was 
more robust than the traditional arc fault diagnosis model, 
and had a higher accuracy of arc fault diagnosis (Zhang  
et al., 2021a). Wang et al. proposed a power generation 
countermeasure network model combined with data 
processing technology to improve the prediction accuracy of 
NOx emissions from coal-fired power plants. The analysis 
of the simulation example of the model showed that the 
proposed model was more accurate than similar models 
(Wang et al., 2021). Gao’s team also proposed a soft sensor 
data supplement model with the generation of a 
countermeasure network, which was conducive to the use of 
effective data supplement methods. The empirical analysis 
of this method showed that the prediction accuracy of this 
method was better (Gao et al., 2022). To make better use of 
the deep learning algorithm of big data to realise new AI, 
Zhao et al. (2021) proposed a data enhancement method 
with Wasserstein to generate a confrontation network and 
specific deep learning model and used this method to 
provide more accurate data to realise AI. The empirical 
analysis of this method showed that this method provided an 
idea of data enhancement for future research (Zhao et al., 
2021). 

Nowadays, more and more attention is paid to network 
information security, and various methods are applied to 
network ID models to protect network information security. 
Dong’s team proposed an ID model with correlation 
analysis. The empirical analysis of this model showed that 
the accuracy rate of this model was 82.15%, which was 
superior to other models (Dong et al., 2020). To improve the 
efficiency of wireless sensors, Han et al. (2019) integrated 
game theory into the ID model. The simulation experiment 
showed that the test model can effectively predict attacks 
and reduce energy consumption (Han et al., 2019). 
Balamurugan’s team put forward an ID model with the 
DNN to solve the problem of cloud computing being 
vulnerable to attacks. The performance evaluation of the 
model showed that the performance of the model can 
improve the security of cloud computing in all aspects 
(Balamurugan et al., 2022). Rahman et al. (2020) proposed 

a detection model incorporating joint learning to settle a 
dispute about insufficient security of the internet of things. 
The empirical analysis of the model showed that the 
accuracy of the model was close to that of the centralised 
method, which can effectively improve security 
performance (Rahman et al., 2020). To design an optimal 
intrusion model for monitoring malicious activities on the 
network, Gayathri’s team used the naive Bayesian model 
and the Gaussian model to detect the anomalies of the ID 
system. The simulation experiment showed that the model 
had higher accuracy, F1 score, and accuracy value (Gayathri 
and Pramila, 2022). 

The aforementioned research findings demonstrate the 
widespread use of data enhancement technology in 
numerous fields. Additionally, the results highlight the 
various methods utilised in network ID models. However, 
there is a scarcity of studies that combine data enhancement 
technology and ID. Therefore, the research applies data 
enhancement technology to the network ID model and 
optimises the network ID model using WGAN-GP and 
stacking algorithm, hoping to improve the accuracy of the 
network ID model in this way. 

3 Construction of a network ID model combining 
data enhancement technology 

3.1 Construction of an improved network ID model 
based on stacking algorithm 

With the increase of our country’s emphasis on information 
security, network ID technology has also developed and 
grown (Siddiqui and Boukerche, 2021). ID technology 
refers to an active defence method that collects and analyses 
key information such as hosts, security logs, and sent 
messages. Defence means to ensure the security of network 
information (Zhang et al., 2021b). The ID model is a 
network security model that uses ID technology to identify 
the source and intent of intrusion attacks and adopts 
effective strategies to ensure information security. This 
model can respond to malicious intrusions in a timely 
manner, prevent intrusions and avoid the influence of the 
invasion is further expanded (Alqahtani, 2022). Figure 1 is 
the schematic diagram. 

The event generator module installs monitoring 
programs in multiple locations in the network, actively 
obtains events from various network segments, and passes 
the events to the detection model in the event analyser 
module through sensors. The main function of the event 
analyser module is to analyse and judge the information 
provided by the event generator and judge whether there is 
an intrusion situation at present. If there is, the response unit 
will be activated. If not, the result will be transmitted to the 
behaviour database in the event database module. The 
function of the response unit is to respond to different 
intrusion situations to a corresponding degree. The response 
methods are mainly divided into three types: alarm 
response, network interruption, and administrator warning. 
Among them, network interruption is a strong response 
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method, while alarm response and administrator warning 
are weak response methods. The event database module in 
the ID model is the basis of the whole model, which is 
mainly divided into the behaviour database and intrusion 
database. The data in the behaviour database is transmitted 
from the normal records in the event analyser, and the data 
in the intrusion database is transmitted from the abnormal 
records in the event analyser. At present, the traditional ID 
model has a poor detection effect on intrusion behaviour. To 
improve the detection effect of the ID model on network 
intrusion behaviour, the study adopts an ID model that 
combines improved WGAN-GP and stacking algorithms. 

From Figure 2, the network ID model with  
WGAN-Stacking is divided into three different stages. 
Firstly, to balance the original unbalanced intrusion dataset, 
the majority and minority data are separated. Next, the 
symbolic features of both types of data are encoded, 
followed by ensuring a correlation between each numerical 
feature through normalisation. The second stage is to use 
the WGAN-GP data enhancement module to perform data 
enhancement on the pre-processed minority class data, 
generate data enhancement samples that are closest to the 
real samples, and mix the enhanced minority class data and 
majority class data to get a more balanced training data set. 
The final step of the model involves inputting the enhanced 
training dataset into the ID module using the stacking 
algorithm. All learners at different levels are trained and 
their hyperparameters are tuned to classify the intrusion 
data. The results are then evaluated to determine the 
classification effectiveness. The stacking algorithm is a 
common learning method, whose main principle is to 
classify different samples by training multi-level learners, 
so it is essentially a multi-level machine learning model 
(Cheng et al., 2021). In this study, the stacking algorithm is 
used to classify the enhanced data set to increase the 
accuracy of intrusion data detection. The common stacking 
algorithm is the two-layer stacking algorithm. Figure 3 is 
the flow chart. 

In Figure 3, the stacking algorithm first uses the initial 
data set to train different base classifiers to obtain different 
secondary training sets. In the training process, if the 
training set obtained by the base classifier is directly used as 
the secondary training set, the risk of overfitting the 
obtained data is high. To avoid this problem, the study 
adopts the method of k-fold cross-validation to train the 
base classifier and generate a secondary training set. In the 
Stacking algorithm, the key to its learning performance is 
the selection of the base learner and the meta-learner. 
Through comparison, the research selects a model with a 
large difference as the base learner and selects the logistic 
regression model as the meta-learner to reduce the training 
cost and the risk of overfitting in the process. The study puts 
the enhanced data set through the WGAN-GP model into 
the Stacking algorithm for learning and classification, 
thereby improving the detection accuracy of the network ID 
model. 

3.2 Construction of WGAN-GP model in ID model 
GAN model and its optimisation model 

GAN model is a deep learning model that is mainly used for 
unsupervised learning on complex distributions (Liu et al., 
2021). The model mainly consists of a generative model 
(GM) and a discriminative model (DM). The GAN model 
alternately learns real samples through the GM and the DM 
to generate new samples. The specific process is shown in 
Figure 4. 

In Figure 4, the generated data is acquired by inputting 
random variables into the GM. Subsequently, both the real 
and generated data are input into the DM. The DM 
discriminates between the input data and compares the 
generated data by providing feedback to the DM. This 
process is repeated until the optimal discriminant model is 
achieved. In this process, the GAN model has a loss value, 
and the expression of its loss function is shown in  
formula (1). 

[ ]( )

~ ( )

~

( , ) [log ( )]
+ log(1 ( ( ))Z

x Pdata X

p

V D G E D x
E D G

=

−ββ β
 (1) 

In formula (1), x is the real sample, β is the random 
Gaussian noise, G(β) is the generated sample of input β of 
the GM, D(x) is the probability that the DM judges x as the 
real sample, and D(G(β)) is the probability that the DM 
judges G(β) as the real sample. In the GAN model, the goal 
of the discriminant model is to accurately judge the real 
sample and the generated sample, and the goal of the 
generated model is to make the generated sample fit the real 
sample to a large extent. So after unifying the optimisation 
goals of the two models, the min-max problem is shown in 
formula (2). 

( )

~ ( )

~

min max ( , ) [log ( )]

+ [log(1 ( ( ))]Z

x Pdata X
G D

p

V D G E D x

E D G

=

−ββ β
 (2) 

The optimal DM D can be obtained through formula (2), 
and then the GM is trained through the DM to obtain the 
optimal generative model G. Through continuous 
optimisation iterations throughout the process, the final G 
samples generated by the GM are close to the data 
distribution of real samples, so the G data generated by the 
GM can be used to enhance the data of minority categories. 
Because the ID data set has the characteristics of mixing 
continuous and discrete features, the GAN model is difficult 
to apply in the field of network ID data (Xie et al., 2021). In 
addition, the GAN model still has problems such as gradient 
disappearance and gradient explosion in the actual 
application process. To solve the above problems of the 
GAN model, the gradient penalty item is introduced into the 
generative confrontation network model, and the 
Wasserstein distance is used instead of the JS divergence 
pair. The distance of the data distribution is measured. The 
WGAN-GP model used in the study is shown in Figure 5. 

 

 



4 X. Zhou  

Figure 1 Working principle of ID model (see online version for colours) 
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Figure 2 Network ID model with WGAN-stacking (see online version for colours) 
Unbalanced 

training data set

Data preprocessing 
module

Minority data
Most types 

of data

Data enhancement 
module based on 

WGAN-GP

Intrusion Detection 
Module Based on Stacking

Effect 
evaluation

More balanced 
training data set

Data preprocessing 
module

Unbalanced 
training data set

 

Figure 3 Stacking algorithm flow (see online version for colours) 
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Figure 4 GAN network framework (see online version for colours) 
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Figure 6 DCN model structure (see online version for colours) 
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In Figure 5, the biggest improvement of the model is the 
introduction of Wasserstein distance and gradient penalty 
term. Among them, the GM and the DM borrow the deep 
cross network (DCN) model that can automatically learn 
feature interaction for sparse and dense inputs. The model 
starts with embedding and stacking layers, and then 

connects the parallel cross network and deep network, and 
finally combines output through the combined output layer. 
Figure 6 shows its structure. 

As shown in Figure 6, the DCN model is mainly 
composed of four parts: embedding and stacking layer, 
cross network, deep network and combined output layer. 
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The operation process of the model is shown as follows. 
The DCN model first converts the discrete features of the 
input into low-dimensional dense vector representation 
through the embedding layer in the embedding layer to 
capture the correlation between the features. Then, these 
embedding vectors are stacked by stacking layers to form a  
high-dimensional feature vector. Secondly, multi-layer 
cross-operation is carried out in the cross-network part to 
learn the higher-order interaction between features, and then 
generate new feature vectors. Then, in the deep network 
part, linear transformations and activation function 
operations are performed on the input feature vectors to 
learn more complex feature representations. Finally, the 
output of cross network and deep network is combined in 
the combined output layer to get the final prediction result. 
In the embedding and stacking layer, the one-hot encoding 
method is usually used for feature classification. This 
method will lead to high-dimensional sparse features. To 
solve the problem, the embedding process is added in this 
process, and the encoding of sparse features is converted 
into an embedding vector. The expression of this process is 
shown in formula (3). 

, ,embed i embed ix W=  (3) 

Embedding vector Wembed,i in formula (3) represents the 
corresponding embedding matrix xembed,i. After optimisation, 
the embedding vector and the dense vector xdense will be 
superimposed to form a new vector. The expression of the 
new vector is shown in formula (4). 

0 ,1 ,2 ,, , , ,T T T T
embed embed embed k densex x x x x=     (4) 

In the cross-network layer of the DCN model, the cross 
network performs feature crossing in a specific way, and the 
output value expression of each cross layer is shown in 
formula (5). 

( )+1 0 + + , ,T
l l l l l l lix x x w b x f x w b= =  (5) 

In formula (5), xl and xl+1 are column vector, xl is the cross 
layer output of layer l, xl+1 is the cross layer output of layer  
l + 1, wl is the weight of layer l, and bl is the offset value of 
layer l. In the cross-network layer, the characteristic  
high-order cross can be obtained through the unique 
structure of the cross network. The deep network layer of 
the DCN model is mainly to make up for the insufficient 
number of cross network parameters and to better replenish 
high-order nonlinear cross features through the deep 
network layer. The output expression of each deep network 
layer is shown in formula (6). 

( )+1 +l l l lh f w h b=  (6) 

In formula (6), hl is the hidden layer of the lth layer, hl+1 is 
the hidden layer of the l + 1th layer, wl and bl is the weight 
and bias value of the lth deep network layer. The final output 
result is obtained by combining the output of the  
cross-network layer and the deep network layer, and then 
outputting to the combined output layer. Both the GM and 
the DM use the DCN model to improve the performance of 

the model. In the traditional GAN model, the DM is 
optimised according to the loss function shown in  
formula (2), and the expression shown in formula (7) is 
obtained. 

[ ]( , ) ( ) log( ( ) + ( ) log(1 ( )r gV D G p x D x p x D x dx= −  (7) 

The expression of the optimal discriminator can be obtained 
from formula (7) as shown in formula (8). 

( )
( ) + ( )

r

r g

PD x
P x P x

∗ =  (8) 

Substituting the optimal discriminator into formula (7) 
simplifies to get formula (9). 

( )max ( , ) 2 ( ) ( ) 2 log 2r g
D

V D G JS p x p x= −  (9) 

From formula (9), it can be obtained that if the generator is 
to be optimal, the JS divergence needs to be the smallest, 
but in the traditional GAN model, the JS divergence is fixed 
at log2. To obtain a better GM, the study uses the 
Wasserstein distance instead of the JS divergence to obtain 
the WGAN model. The expression of Wasserstein distance 
is shown in formula (10). 

( )
( ) ( , )

Π ,
, inf

r g
r g x y

τ p p
W p p E x y

−
=  −    (10) 

In formula (10), Π(pr, pg) represents the set of joint 
distribution of pr and pg. τ represents any joint distribution. x 
is the real sample and y represents the generated sample. 
Therefore, the loss function expression of the WGAN model 
can be obtained as shown in formula (11). 

~ ~min max ( , ) [ ( )] + [ ( )]gx pr x p
G D

V G D E D x E D x=  (11) 

In the actual training process, the WGAN model is still 
prone to gradient disappearance or explosion. To solve the 
problem, the WGAN-GP model is obtained by introducing a 
gradient penalty term into the WGAN model. The study 
discriminates the relationship between the discriminator 
gradient and K by adding a loss function. The loss function 
of the WGAN-GP model is shown in formula (12). 

( )
~ ~

2
~

[ ( )] [ ( )]

+ ( ) 1

g

penalty

x p x pr

x P x

L E D x E D x

λE D x

= −

 ∇ − 
 (12) 

In formula (12), x~Ppenalty represents the random 
interpolation of the sum line between pg and pr, ∇xD(x) is 

the normal form of D(x). ( )2
~ ( ) 1penaltyx P xλE D x ∇ −   

represents the gradient penalty term. Through the data 
enhancement of the WGAN-GP model, it can ensure that 
the generator can generate generated sample data that 
approximates the real sample distribution, thereby 
increasing the accuracy of network ID. To test the 
performance of the network ID model proposed in the 
research, the research selects accuracy rate, recall rate, 
precision rate and F1 value as indicators, and the accuracy 
rate expression is shown in formula (13). 
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+
+ + +

TP FNAcc
TP FP TN FN

=  (13) 

The precision rate expression is shown in formula (14). 

+
TPP

TP FP
=  (14) 

Recall rate is shown in formula (15). 

+
TPR

TP FN
=  (15) 

F1 value expression is shown in formula (16). 

21
2 + +

TPF
TP FP FN

∗=
∗

 (16) 

4 Performance analysis and comparative 
experiment of WGAN-GP model 

To verify the effectiveness of the network ID system with 
the WGAN-GP Stacking model, the NSL-KDD data set was 
selected as the data set of this experiment. The research 
analysed the effectiveness of samples generated by the 
WGAN-GP-Stacking model and the actual performance of 
the WGAN-GP algorithm in the model and the classic 
SMOTE algorithm, ADASYN algorithm, and WGAN 
algorithm in the oversampling technology. 

To verify the effectiveness of the generated samples, the 
study compared the scatter plots of the mean and  
standard deviation of the features generated by the  
WGAN-GP-Stacking model and the real samples and 
calculated the Pearson correlation coefficient of the mean 
and standard deviation. A scatterplot of the mean and 
standard deviation of the generated and real samples is 
shown in Figure 7. 

Figure 7 draws a scatter diagram of the  
mean and standard deviation of the WGAN-GP-Stacking 
model-generated samples and real samples. In Figure 7(a), 
the real samples and generated samples are very close to 
each other, and the Pearson correlation coefficient of the 
mean value is 0.9931, which shows that the mean value of 
the generated sample is highly similar to the real sample. In 
Figure 7(b), the scatter points of the real sample and the 
generated sample are also very close, and the mean value of 
the Pearson correlation coefficient is 0.9928, which shows 
that the standard deviation of the generated samples is also 
highly similar to the real samples. In summary, the 
generated samples of the WGAN-GP-Stacking model 
followed the data distribution of the original samples. 
During the performance comparison experiment of the 
WGAN-GP model, the test set in the NSL-KDD dataset was 
used for testing, and the three indicators of accuracy, 
precision-recall, and F1 value were selected as evaluation 
indicators. The study repeated 12 comparison experiments 
and recorded all data in the 12 comparison experiments. 
Two representative comparative experiments were selected 
to analyse the precision-recall (PR) curves of the four 

algorithms. The PR curve represents the relationship 
between accuracy and recall. Generally, recall is set to the 
horizontal axis and precision is set to the vertical axis.  
The PR curves of the two representative comparative 
experiments are shown in Figure 8. 

Figure 7 Scatter of mean and standard deviation of generated 
samples and real samples, (a) mean scatter chart,  
(b) scatter plot of standard deviation (see online 
version for colours) 
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Figure 8(a) shows the PR curves of the four algorithms in 
one of the representative comparative experiments. The area 
under the curve of the WGAN-GP algorithm is larger than 
that of the WGAN algorithm, and the area under the curve 
of the WGAN algorithm Greater than the SMOTE 
algorithm. The ADASYN algorithm has the smallest area 
under the curve. Figure 8(b) shows the PR curves of the 
four algorithms in another representative comparison 
experiment. The area under the curve of WGAN-GP 
algorithm is still larger than that of WGAN algorithm, and 
the area under the curve of WGAN algorithm is larger than 
that of SMOTE algorithm, while the area under the curve of 
ADASYN algorithm is the smallest. To sum up, from the 
PR curves, WGAN-GP algorithm has the best performance. 
In addition, the accuracy curves of the four algorithms in 12 
comparative experiments are shown in Figure 9. The 
accuracy curve in Figure 9 is intended to show the variation 
of the accuracy rate between different experimental times. 
The smaller the fluctuation ranges of the curve and the 
higher the overall position, the better the accuracy 
performance of the algorithm. 
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Figure 8 Accuracy recall curve of four algorithms, (a) the first 
comparative experiment, (b) the second contrast 
experiment (see online version for colours) 
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Figure 9(a) shows the accuracy comparison curves of the 
four algorithms in the first six comparison experiments. 
From it, in the first six comparison experiments,  
WGAN-GP algorithm has the highest accuracy. And its 
average accuracy rate is 98.25%. The accuracy rate is 
second only to the WGAN-GP algorithm. The WGAN 
algorithm has an average accuracy rate of 95.38%. Among 
the four algorithms, the algorithm with the lowest accuracy 
rate is the ADASYN algorithm. 89.13%. Figure 9(b) shows 
the accuracy comparison curves of the four algorithms in 
the last six comparison experiments. From it, in the last six 
comparison experiments, WGAN-GP algorithm has the 
highest accuracy. The average accuracy of WGAN-GP 
algorithm, WGAN algorithm, SMOTE algorithm, and 
ADASYN algorithm is 98.59%, 95.89%, 91.24%, and 
87.56% respectively. From the above results, it can be 
concluded that from the perspective of model accuracy, the 
performance of the WGAN-GP algorithm is better than the 
other three algorithms. Figure 10 is a scatter comparison 

diagram of the F1 values of the four algorithms in 12 
comparison experiments. 

Figure 9 Accuracy curve off our algorithms, (a) accuracy of four 
algorithms in the first six comparative experiments,  
(b) accuracy of four algorithms in the last six 
comparative experiments (see online version  
for colours) 

 

1 2 3 4 5 6
40

50

60

70

80

90

100

SMOTE
ADASYN

Number of comparison experiments

A
cc

ur
ac

y 
（

%
）

WGAN
WGAN-GP

 
(a) 

7 8 9 10 11 12
40

50

60

70

80

90

100

SMOTE
ADASYN

Number of comparison experiments

A
cc

ur
ac

y 
（

%
）

WGAN
WGAN-GP

 
(b) 

Figure 10 F1 value scatter diagram of four algorithms in 
comparison experiment (see online version  
for colours) 
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Figure 10 is a scatter diagram of F1 values of WGAN-GP 
algorithm, SMOTE algorithm, ADASYN algorithm, and 
WGAN algorithm in 12 comparison experiments. From 
Figure 10, the F1 of the WGAN-GP algorithm is higher than 
that of the other three algorithms, and in 12 comparison 
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experiments, the maximum F1 of the WGAN-GP algorithm 
is 0.798, and the minimum F1 value is 0.0783, the average 
F1 is 0.792; among the four algorithms, the F1 value of the 
SMOTE algorithm is only higher than that of the ADASYN 
algorithm. Its average F1 value is 0.724, while the 
ADASYN algorithm has the lowest F1 with an average of 
0.698. From the F1 value dimension, the WGAN-GP 
algorithm is the best. According to the comparison results of 
the above dimensions, the WGAN-GP algorithm has better 
performance than the SMOTE algorithm, ADASYN 
algorithm, and WGAN-GP algorithm, and it has a better 
data enhancement effect on ID data. 

5 Conclusions 
Traditional network protection methods cannot effectively 
protect network security. To solve the problem of 
insufficient network protection means, a new network ID 
model combining the WGAN-GP algorithm and stacking 
algorithm is proposed. In this model, these two data 
augmentation techniques can improve the accuracy of 
generated data and the accuracy of classification to improve 
the accuracy of ID. Performance comparison experiments 
were carried out with SMOTE algorithm, ADASYN 
algorithm, and WGAN algorithm. The research compared 
the performance of the WGAN-GP algorithm with the 
SMOTE algorithm, ADASYN algorithm, and WGAN 
algorithm. The average accuracy rate of the WGAN-GP 
algorithm was 89.25%, higher than 81.24% of the SMOTE 
algorithm, 79.13% of the ADASYN algorithm and WGAN 
algorithm. The average F1 value of WGAN-GP algorithm 
was 0.692, higher than 0.624 of the SMOTE algorithms, 
0.624 of the ADASYN algorithms, and 0.643 of the WGAN 
algorithm. In addition, in the validity experiment of the 
generated samples of the WGAN-Stacking model, it was 
found that the samples generated by the model were highly 
similar to the real samples. The above results showed that 
the new network ID model integrated with data 
enhancement technology had a high ID accuracy. Although 
the model has good ID performance, deficiencies still need 
to be improved. During this experiment, the WGAN-GP 
algorithm can enhance the data of minority samples. 
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