Study on quality evaluation of online and offline mixed teaching reform based on big data mining Online publication date: Mon, 02-Sep-2024
by Guoxia Hu; Suntai Sun; Zhongxiao Sun
International Journal of Continuing Engineering Education and Life-Long Learning (IJCEELL), Vol. 34, No. 5, 2024
Abstract: In order to improve the accuracy of the reform quality research and shorten the overall research time, the reform quality research is carried out based on the big data mining technology. First, the local density information of the data is calculated and the required samples are mined. Secondly, the probabilistic undirected graph model is used to remove the noise in the mining samples and improve the accuracy of the sample data. Finally, the PCA algorithm in big data is used to calculate the contribution rate of the sample data, and the reform evaluation model is constructed. The test results of different indicators show that the accuracy rate of the research method is 92.6%, and the evaluation time is only 12.7 s, which can effectively improve the evaluation accuracy and shorten the evaluation time.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Continuing Engineering Education and Life-Long Learning (IJCEELL):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com