Gabor fully convolutional network and ellipse fitting technique for foetal head segmentation and biometry measurement Online publication date: Fri, 23-Aug-2024
by Ahmed Zaafouri; Hanene Sahli; Radhouane Rachdi; Mounir Sayadi
International Journal of Biomedical Engineering and Technology (IJBET), Vol. 45, No. 4, 2024
Abstract: This paper introduces a new approach for foetal head segmentation and biometry measurement based on Gabor fully convolutional networks (G-FCN) along with the ellipse fitting technique. A fully convolutional network (FCN) training process based on Gabor features is presented. The new approach tends to accelerate the training stage and gives successful results. The Gabor wavelets with their steerable properties (i.e., their scales and orientations) are able to reinforce the robustness of G-FCN and reduce the training complexity. The proposed model is applied for foetal US image segmentation and foetal head circumference (HC) measurement using the elliptical fit technique. Our datasets are provided from a radiographic sequence of the foetus during different periods of pregnancy. An experimental study is conducted to prove the usefulness of the proposed algorithm for foetal biometric purposes. In addition, the automated approach makes it easier for doctors to diagnose US images.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Biomedical Engineering and Technology (IJBET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com