
 
International Journal of Information and Communication
Technology
 
ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

 
Resilient recognition system for degraded thermal images using
convolutional neural networks
 
Naser Zaeri, Rusul R. Qasim
 
 
Article History:
Received: 22 May 2023
Last revised: 16 May 2024
Accepted: 28 June 2024
Published online: 02 August 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijict
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   50 Int. J. Information and Communication Technology, Vol. 25, No. 5, 2024    
 

   Copyright © The Author(s) 2024. Published by Inderscience Publishers Ltd. This is an Open Access Article 
distributed under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
 
 

   

   
 

   

   

 

   

       
 

Resilient recognition system for degraded thermal 
images using convolutional neural networks 

Naser Zaeri* 
Faculty of Computer Studies, 
Arab Open University, 
P.O. Box 830 Ardiya 92400, Kuwait 
Email: n.zaeri@aou.edu.kw 
*Corresponding author 

Rusul R. Qasim 
Kuwait Technical College, 
P.O. Box 232, Abu-Halifa, 54753, Kuwait 
Email: r.qasim@ktech.edu.kw 

Abstract: For biometric identity applications, thermal infrared face recognition 
technologies have become a powerful alternative to visual systems. However, 
thermal images can undergo degradation in various ways, including noise, 
blurring, reduced spatial resolution, and temperature drift, in addition to being 
affected by changes in pose and facial expression. In this paper, we propose 
using convolutional neural networks (CNNs) to recognise degraded thermal 
face images. The system deals efficiently with poor-quality images resulting 
from various causes. We describe how a CNN structure processes images and 
use ResNet-50 architecture to demonstrate our results, being an essential deep 
learning model that has proven its efficiency in various computer vision and 
machine learning applications. We conduct experiments under different 
conditions and scenarios that tackle quality, reduced spatial resolution, pose, 
and expression variations challenges. To evaluate the performance of the 
proposed method, we conduct thorough experiments and detailed analysis on a 
database of 7,500 images. The results demonstrate that the proposed system 
provides greater discriminability and robustness against such variations, as well 
as higher identification rates under various situations reflecting real-world 
scenarios, compared to other recently published work. 

Keywords: thermal image; face recognition; low resolution; convolutional 
neural networks; CNNs; pose variations. 
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1 Introduction 

Over the last 20 years, face recognition technology has significantly advanced in various 
domains using traditional visible-light images. However, visible-spectrum images are 
very variable due to the fact that they are created by surface reflection, which is highly 
reliant on luminance and the spatial distribution of light sources (Lezama et al., 2017). 
Face identification using visible images could not have the essential resilience in  
real-world scenarios where lighting conditions, weather, or time might alter illumination 
intensities, resulting in poorer identification rates. In addition, the skin tones of various 
ethnic groups affect how differently light is reflected from human faces. Moreover, pose 
variations result in substantial visual appearance changes and diminish face recognition 
performance. Also, automated systems suffer many difficulties, such as distinguishing 
faces in videos, using illegal face disguises, and facial expressions (Iranmanesh et al., 
2018). 

For biometrics identity applications and military enforcement, the thermal infrared 
(IR) facial recognition system has become a powerful alternative modality in response to 
the difficulties of visible facial recognition and the diminished recognition ability of 
algorithms caused by the factors mentioned above. IR technology captures anatomical 
data that contains underlying characteristics believed to be unique to each individual (Lin 
et al., 2019). Thermal emissivity from the facial surface is measured using IR cameras, 
and their images are relatively stable in light variations. Unlike visible light, which is 
more susceptible to dispersion and absorption by smoke and dust, IR energy may be 
detected in any lighting situation. Since thermal IR sensors only detect the heat pattern 
generated by the subject, thermal face images are independent of ambient lighting 
conditions. Depending on their temperature and characteristics, many substances emit 
various types of IR radiation. The human face and body temperature ranges are 
comparable and reasonably homogeneous. This ensures a balanced thermal signature. 
Thermal patterns on the face are formed mainly through the pattern of superficial blood 
vessels underneath the skin. Each individual’s face’s vascular, and tissue structure is 
unique; hence, so are the IR images (Silverthorn, 2015). 

However, face recognition based on IR thermography is still a largely unexplored 
field since many facets of thermal IR system performance have yet to be well 
investigated. Besides the effects of pose and expression variations, thermal images can 
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experience degradation in different forms, such as noise, blurring, loss of spatial 
resolution, and temperature drift. Excessive noise can cause image distortion while 
blurring decreases image sharpness. Loss of spatial resolution can impact the level of 
detail in an image, while temperature drift can lead to mistakes in temperature 
measurements over time or due to environmental conditions. Additionally, alignment of 
objects and the configuration of areas in the image can impact the system performance. 
Other important factors include pixel size. In thermal imaging cameras, each pixel 
represents a particular area of the measured temperature. In cases where the captured item 
is small or situated at a considerable distance, the thermal camera could lack adequate 
pixels to produce a comprehensive image, resulting in a blurred visual representation. 
Further, the lens quality used in a thermal imaging system can also affect the sharpness of 
the image. Lower-grade lenses may generate distortions or anomalies that can cause the 
image to appear fuzzy. Also, like any imaging system, thermal cameras must be 
appropriately focused to capture clear images. An incorrect focus of the camera can result 
in an ambiguous image. 

All of the above issues emphasise the necessity of proposing an efficient system that 
can deal with such challenges. In this paper, we investigate the use of CNNs in 
recognising thermal face images experiencing degradation in different forms. We believe 
that the CNN model will be able to provide a powerful recognition capability that can 
cope well with such images. Recently, deep learning and CNNs have made tremendous 
strides in solving various tasks of computer vision problems (Kumar and Singh, 2020). 
CNNs and deep networks extract low, middle and high-level features in an end-to-end 
multi-layer manner, where the number of stacked layers can enrich the ‘levels’ of 
features. They are designed to be invariant to object position and distortion in the scene, 
where they can achieve the complex function approximation through a nonlinear network 
structure. Hence, they are very good in extracting patterns in the input image, such as 
lines, gradients, circles, or even eyes and faces. It is this property that makes CNNs so 
powerful for computer vision. Unlike earlier computer vision algorithms, CNNs can 
operate directly on a raw image and do not need any pre-processing. In this regard, it is 
worthy to note that there are various factors which helped in the improvement of deep 
learning networks performance. The development of parallel computing frameworks and 
the exploitation of new approaches in the design of models’ architecture and training 
methodologies beside the evolution of new techniques to overcome the problem of  
over-fitting using data augmentation and batch normalisation are a few examples of these 
factors. These characteristics and features made deep learning and CNNs very efficient 
candidates for the task in hand (Gonzalez, 2018). 

In this regard, we provide a mathematical analysis to describe how a CNN structure 
processes images and investigate the use of one critical CNN model, the ResNet-50 
architecture (He et al., 2016). The rest of the paper is described as follows. Section 2 
presents recent related works. In Section 3, we discuss the methodology. Section 4 
presents the analytical and experimental results. Finally, the paper is brought to 
conclusion in Section 5. 

2 Related works 

This section provides a brief overview of recent and up-to-date works addressing face 
recognition using thermal imaging. Maeng et al. (2012) used scale-invariant feature 
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transform and multi-scale local binary pattern for thermal image feature extraction. Their 
results indicated that the former has better accuracy compared to the latter. In Bi et al. 
(2016), multiple traits were merged for thermal face characterisation, including Gabor jet 
descriptor, local binary pattern, and down-sampling feature. According to their tests, the 
proposed solution is noise and occlusion resistant and outperforms systems that use a 
single feature. The issues caused by the temporal changes of infrared facial images were 
examined by Vigneau et al. (2017). The temporal variations are primarily caused by 
various environmental factors, physiological changes, and variations in the 
responsiveness of infrared detectors. Kumar and Singh (2020) proposed a CNN 
architecture framework for occluded images by analysing the performance of pre-trained 
models using transfer learning. In order to enhance the system performance, they used 
different decision-level fusion strategies. Their work offered better results compared to a 
single CNN architecture. Lin and Chen (2019) proposed a system using model fusion 
based on a CNN, where a grid of thermal points based on physiological data is extracted 
to compute the support vectors to discover the hyperplane necessary for classification. 

Using the particle swarm optimisation methodology, Hermosilla et al. (2018) 
established a fusion method that integrates thermal and visible descriptors. Weights are 
applied to descriptors to prioritise particular areas of a fused image. The system uses 
descriptors generated by different combinations of local matching descriptors: local 
binary pattern, local derivative pattern, and oriented gradients histograms. Lin et al. 
(2020) obtained thermal image features using random forest, deep learning, and ensemble 
learning to build a face model. The proposed feature extraction method divides the facial 
image into blocks before generating the feature matrix. Pini et al. (2021) used VGG16, 
ResNet-18, and InceptionV3 for feature extraction, where they compared probe and 
gallery depth maps using cosine similarity. Authors in Hermosilla et al. (2021) proposed 
using generative adversarial networks to create high-quality synthetic thermal images and 
obtain training data to build the recognition models. They aimed at generating synthetic 
thermal images by training neural models using a distribution of input data in order to 
generate new data that resemble the original ones. Kakarwal et al. (2020) applied 
backpropagation and Levenberg-Marquardt algorithms on visible and thermal fused 
imagery. The backpropagation algorithm achieved an accuracy of 92.86%, whereas the 
Levenberg-Marquardt accuracy was 83.92%. 

3 Methodology 

As discussed in Section 1, we approach the solution to the problem by using a CNN 
architecture. To retain the spatial information of an image, CNNs are typically utilised in 
image processing as a deep learning method that uses supervised learning (Gonzalez, 
2018). It comprises layers of convolution, activation, and pooling. In a CNN, tens of 
these steps may be linked together in a chain. Architectures for CNNs vary not just in the 
number of stages but in the definition and usage of components inside each. Input maps, 
feature maps, and pooled maps make up the three volumes that constitute a CNN stage. 
All maps are two-dimensional arrays whose sizes vary depending on volume; however, 
within a given volume, all maps are similar. Convolutional and pooling layers are added 
between the original CNN’s input and output layers for improved data processing 
performance. Convolution work extracts high-level features from input data. Pooling 
work, like the convolutional layer, is responsible for lowering the spatial size of the 
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convolved feature (He et al., 2016; Wu, 2017). The computer power required to process 
the data is reduced through dimensionality reduction. For each input image, the CNN’s 
output is fed into a deep, fully connected network (FCN) whose goal is to convert a set of 
two-dimensional features into a class label. The capacity to learn the operational 
parameters of each network layer using sample training data is crucial. 

Let us suppose t is the corresponding target (ground-truth) value for the input x1, then 
a cost or loss function can be used to measure the discrepancy between the CNN 
prediction xL and the target t. For example, a simple loss function could be 

21
2

Lz = −t x  (1) 

Eventually, the second layer receives x2, and the process continues to the following 
layers. Finally, xL ∈ ℝC is obtained, which estimates the posterior probabilities of x1 
belonging to the C categories (classes). The CNN prediction is expressed as 

arg max L
i

i
x  (2) 

The model parameters are learned using stochastic gradient descent (SGD) technique. 
The loss z is a supervision signal, guiding how the parameters of the model should be 
modified (updated). The SGD modifies the parameters by 

i i
i

zη ∂← −
∂

ω ω
ω

 (3) 

In every update the parameters are changed by a small amount of the negative gradient, 
controlled by a learning rate (η > 0), usually set to 0.001. The gradient is computed using 
error back propagation. In a convolution layer, multiple convolution kernels are usually 
used. Assuming D kernels are used and each kernel is of spatial span H × W, we denote 
all the kernels as f. Thus, the convolution procedure can be expressed as 

+1 +1 +1 +1, , , , , + , + ,
0 0 0

l

l l l l l l
l

H W D
l

i j d i j d d i i j j d
i j d

y f x
= = =

= ×  (4) 

Equation (4) is repeated for all 0 ≤ d ≤ D = Dl+1, and for any spatial location (il+1, jl+1) 
satisfying 0 ≤ il+1 < Hl – H + 1 = Hl+1, 0 ≤ jl+1 < Wl – W + 1 = Wl+1. Finally, rectified linear 
unit (ReLU) layer is used to increase the nonlinearity of the CNN. The ReLU function is 
a nonlinear function that maintains the input’s original size, so xl and y have similar sizes. 
One way to think of it is as a separate truncation for each element in the input 

{ }, , , ,max 0, l
i j d i j dy x=  (5) 

with 0 ≤ i < Hl = Hl+1, 0 ≤ j < Wl = Wl+1, and 0 ≤ d < Dl = Dl+1. A more detailed discussion 
about the above analysis can be found in Wu (2017) and Zaeri and Qasim (2023). 
Pooling, or subsampling, is essentially a lower resolution feature map. When pooling 
data, it is a usual practice to use the average value of each neighbourhood to replace the 
original values in the feature maps. Compared to the feature maps, the pooled maps that 
result from using a 2 × 2 neighbourhood are half as large in each spatial dimension. As a 
result of pooling, substantial data reduction occurs, which aids in processing speed. The 
design of a CNN is affected, in a manner analogous to that of activation functions, by the 
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type of pooling that is used. In addition to the method of neighbourhood averaging, 
another method of pooling is known as max pooling. This method replaces the values in a 
neighbourhood with the highest value among its members. Max pooling has been shown 
to be specifically successful at classifying large image datasets, with the added benefit of 
speed and simplicity. 

Feature maps amount present at each stage of a CNN (as well as whether or not 
pooling occurs at that level) define the fundamental architecture of that stage. Indicated 
as well are the kernel size and the pooling size, in addition to the convolution stride, 
which can be regarded as the number of incremental shifts in the kernel position that 
occur between each convolution operation. For example, for a stride of two, the 
convolution operation will be performed at every other spatial location in the input maps. 
The output maps are then passed into an FCN, aiming to categorise the input into one of a 
predetermined number of classes. This occurs during the last stage of a CNN. An FCN 
comprises layers of units known as artificial neurons, with each neuron’s output in one 
layer coupled to the input of every neuron in the following layer. The number of neurons 
in the output layer equals the number of pattern classes in a specific application. 

Actually, the architecture of a CNN can vary based on the specific requirements of 
the recognition task and the characteristics of the input image. These requirements and 
characteristics can be explained as follows: 

• Size of the input image: the dimensions of the input image (e.g., width, height, colour 
channels) influence the choice of network architecture, particularly the size and 
number of layers. 

• Complexity of the recognition task: tasks like image classification, object detection, 
segmentation, etc., may require different architectures. For instance, more complex 
tasks might need deeper networks with additional layers. 

• Texture and patterns: the presence of specific textures, patterns, or structures in the 
image, which may require the network to have specialised layers or filters to detect 
them effectively. 

• Amount of available data: the size and quality of the available dataset can determine 
the depth and complexity of the network. More data might allow for more extensive 
networks with more parameters. 

• Performance requirements: the desired accuracy, speed, and efficiency level can 
influence the architecture choice. For real-time applications, a lighter architecture 
might be preferred. 

• Computational resources: the hardware available for training and inference, such as 
CPU capabilities, can impact the choice of architecture. Larger networks require 
more computational resources. 

• Memory constraints: in scenarios where memory usage is a concern, such as 
deploying models on mobile devices, architectures with fewer parameters and lower 
memory footprint are favoured. 

• Robustness: the ability of the network to perform well under various conditions, such 
as changes in lighting, scale, rotation, and occlusion. 
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• Scalability: the ability of the network to handle larger datasets or more complex 
tasks without a significant decrease in performance. 

• Generalisation: the capability of the network to perform well on unseen data, 
indicating its ability to learn meaningful features and patterns rather than memorising 
specific examples. 

Researchers have recently proposed different sets of architectures (Hermosilla et al., 
2018). In this work, we adopt the ResNet-50 (He et al., 2016), which has proven its 
efficiency in dealing with vast amounts of data with varying complexities. It offers 
several benefits and advantages. From a depth point-of-view, it is deeper compared to 
other CNN architectures such as VGG or AlexNet. Its depth allows it to learn more 
complex features, leading to better performance in tasks such as image classification and 
object detection, especially in harsh applications like ours. Moreover, ResNet-50 
introduces residual connections, which help address the vanishing gradient problem. 
Allowing the network to learn residual functions makes it easier for the network to 
propagate gradients during training, enabling the training of deeper networks without 
suffering from degradation in performance. This specific advantage further enables more 
accessible training of deeper networks. With residual learning, the network can 
effectively learn from both the identity mapping and the residual mapping, which 
facilitates smoother training and faster convergence. Further, the proposed method 
maintains computational efficiency despite its depth due to residual connections, which 
reduce the number of parameters and computational costs compared to an FCN of similar 
depth. These benefits contribute to its ability to learn highly discriminative features that 
compensate for the low-quality nature of the thermal image we are dealing with. This 
eventually will lead to excellent performance on challenging datasets. 

In more detail, ResNet-50 is a 50-layer CNN that forms a network by stacking 
residual blocks, where each individual weight layer is implemented as a 3×3 convolution. 
There are no FCN layers until the final layer. Residual networks use a skip connection or 
a ‘shortcut’ between every two layers along with using direct connections among all the 
layers. This allows it to take activation from one layer and feed it to another layer, hence 
sustaining the learning parameters of the network in deeper layers. An important effect of 
using the residual blocks is that they solve the ‘vanishing gradient’ problem, where the 
gradient signal diminishes in layers that are farther away from the end of the network. 
Eventually, the network learns the difference between the input and output, and the 
overall accuracy is increased. In other words, all the layers in the network will always 
produce the optimal feature maps, that is; the best case feature map after the convolution, 
pooling and activation operations. This optimal feature map contains all the pertinent 
features that can classify the image to its ground-truth class. 

Since ResNet-50 uses 1 × 1 convolutions, the number of parameters and matrix 
multiplications are reduced. This enables much faster training of each layer. This 
architecture not only decreases the complexity of the model, but it is also efficient since it 
can deal with repeated patterns effectively. Moreover, this architecture can detect and 
capture the complex and global patterns in images, while maintaining a low error rate. To 
summarise, the ResNet-50 consists of 50 layers: 

• Convolutional layers: 
a The majority of the layers in ResNet-50 are convolutional layers. These layers 

apply convolutional filters to extract features from the input image. 
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b The activation function commonly used in these layers is the ReLU. 
c ReLU helps introduce nonlinearity into the network and allows it to learn 

complex representations. 

• Pooling layers: 
a ResNet-50 includes average pooling/max pooling layers. 
b These layers do not have an explicit activation function; they simply aggregate 

information from the previous layer. 

• Fully connected layer: 
a The final layer of ResNet-50. 
b Uses the softmax function as the activation function which converts raw scores 

into class probabilities. 

4 Experimental analysis and results 

Due to the immaturity of the work using thermal images, researchers have no  
well-constructed framework or consensus about the best thermal database structure, 
especially when it comes to the definition of ‘degraded images’. A thermal image 
database should depict individuals with varying facial expressions and poses. 
Additionally, the images must be captured throughout time under practical life scenarios. 
In order to compare our work with a ground-truth reference that targets similar 
circumstances and goals, we have utilised the original dataset used in Zaeri (2020) to 
implement the proposed technique. The dataset was built using a thermal imaging system 
that employs a micro-bolometer with an image resolution of 320 × 240 focal plane array. 

Subjects were instructed to exhibit three distinct expressions, where Expression 1 
indicates a ‘neutral’ expression, Expression 2 represents an ‘angry’ expression, and 
Expression 3 represents a ‘happy’ expression. Five images were captured at five different 
angles for each facial expression: 0°, 45°, 90°, 135°, and 180°. The image at 0° portrays a 
person gazing over his/her right shoulder. In addition, an image at 90º reflects the frontal 
pose, while an image at 180° depicts a person gazing over his/her left shoulder. Twenty 
distinct persons have participated in image capture sessions, and each is characterised by 
75 different images (5 images × 5 poses × 3 expressions). This generates a dataset of 
1,500 images. All the images were cropped to size 180 × 160. We refer to this dataset as 
the original image dataset. Figure 1 illustrates thermal images of a few participants in five 
positions. It should be highlighted that the dataset includes images of individuals wearing 
eyeglasses. This creates an additional barrier for the dataset, as eyeglasses block a 
sizeable portion of the thermal radiation emitted from the eyes’ area. In addition, 
acquisitions occurred at varying stages across a few months. 

Furthermore, these original images are down-sampled to smaller sizes to obtain 
lower-resolution versions of the dataset. More precisely, the images are down-sampled to 
90 × 80, 45 × 40, 22 × 20, and 18 × 16. Eventually, we end up with 7,500 images (where 
for each of the five different resolutions we have 1,500 images). Testing the proposed 
method on such a vast and challenging dataset should demonstrate the rigidity 
performance of the system and prove its efficiency. In our experiments, a 90 × 80 image 
is denoted as an image of 0.5-resolution (since the original image has been reduced by 
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half (50%) of its rows and columns). Similarly, the 45 × 40, 22 × 20, and 18 × 16 are 
denoted as quarter (0.25), one-eighth (0.125), and one-tenth (0.1), respectively. Figure 2 
shows examples of these images for one subject at the five poses. 

Figure 1 Examples from the thermal image dataset showing different expressions and poses 

 

  

Figure 2 Examples of original (left-most image), 0.5, 0.25, 0.125, and 0.1 (right-most image) 
resolution for one participant: (a) frontal images, (b) pose = 45°, (c) pose = 135°,  
(d) pose = 0°, (e) pose = 180° 

  
(a) 

  
(b) 
( )

  
(c) 

 
(d) 
( )

  
(e) 

We have implemented different experiments to investigate the system’s performance. We 
started with the original dataset to find how the system responds to changing the training 
set size. We implemented various training scenarios (hence, experiments), as in Table 1. 
The images used in the training sets are randomly chosen for each training set. For 
example, for the 10% training set size, 150 images are randomly selected from the 1,500 
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images, and the rest 1,350 images are used for testing. Every training scenario is executed 
for five epochs. In artificial neural networks, an epoch refers to a cycle over the whole 
training dataset. Typically, training a neural network requires many epochs. 
Table 1 Training scenarios for a single dataset 

Percentage (%) 5 10 15 20 30 40 50 60 70 80 
Corresponding number of 
training images 

75 150 225 300 450 600 750 900 1,050 1,200 

Figure 3 shows the system accuracy (correct recognition rate) versus the training set size. 
The figure shows that the system has a correct recognition rate of almost 60% when 
trained using only 5% of the dataset. However, this rate increases remarkably by only 
utilising 10% of the dataset to achieve 84.5% and continues to increase to 98.1% when 
20% of the dataset is used. Eventually, the system’s accuracy reaches 100% when the 
system uses 60% of the dataset for training (after five epochs). The above experiments 
have been repeated for the other datasets of lower resolution. Figure 4 shows the system 
accuracy versus the training set size corresponding to the 0.5-resolution dataset. The 
figure reveals that the performance measures remain almost identical to the original 
dataset case. Figure 5 shows the system accuracy for the 0.25-resolution dataset. This 
figure shows that the system presents a correct recognition rate of 50% when trained on 
5% of the dataset. This rate, however, increases to 81% when 10% of the dataset is used 
and keeps increasing to 97% when 20% of the dataset is used. Ultimately, the system’s 
accuracy reaches 100% when using 60% of the dataset for training (again after five 
epochs). Almost the same observations can be noticed when examining Figures 6 and 7, 
corresponding to 0.125-resolution and 0.1-resolution datasets, respectively. The accuracy 
of the system for these two datasets saturates at 99.6%. 

To get a deeper insight into system performance, we present studies on the accuracy 
rate and the corresponding loss versus the number of epochs. Due to space limitations, we 
only present the results for the training set size of 20%. Figure 8 shows system accuracy 
versus the number of epochs for the original dataset case, whereas Figure 9 demonstrates 
the corresponding loss. As can be noticed from these two figures, the face recognition 
accuracy reaches 98% by epoch 4. The system maintains the same performance for the 
cases of 0.5-resolution and 0.25-resolution, as seen in Figures 10–13. The accuracy 
slightly lowers down for 0.125-resolution and 0.1-resolution, reaching 96% and 94% (by 
epoch 4), respectively, as shown in Figures 14–17. 

Further, we assess the performance of the system using the confusion matrix. The 
confusion matrix is one of the critical indicators suggested in recent years to better 
understand the system’s performance (Ruuska et al., 2018). A confusion matrix is found 
by calculating the number of correctly identified class data (true positives), the number of 
correctly identified data that do not belong to the class (true negatives), and data that 
were incorrectly assigned to the class (false positives) or that were not recognised as class 
data (false negatives). Hence, a confusion matrix for k-class classification is a k × k 
contingency table whose cells [i, j] (i = 1, …, k, j = 1, …, k) present frequencies of 
observations with real class Ci and inferred class Cj. Confusion matrix analysis has 
various benefits, including resistance to data distribution and relationship type. 
Additionally, it gives a thorough evaluation of validity and more details on the many 
kinds and causes of errors. Figure 18 shows the resulting confusion matrix for the 
original dataset corresponding to the case of 20% training set size. As Figure 18 reveals, 
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only a few images from certain classes have been misclassified as other classes. The 
number of the misclassified images marginally changes in other datasets, as can be 
observed in Figures 19–22, which show the confusion matrices for the 0.5-resolution, 
0.25-resolution, 0.125-resolution, and 0.1-resolution datasets, respectively. 

Furthermore, the system performance is evaluated using other metrics including 
recall (sensitivity), specificity, precision, and F-score. Recall is defined as the number of 
properly recognised positive examples divided by the number of positive examples in the 
dataset. High recall indicates that the model is good at identifying positive instances from 
the total actual positive instances in the dataset. Specificity illustrates how successfully a 
classifier recognises negative labels, while Precision gives the number of correctly 
classified positive cases divided by the number of all instances labelled by the system as 
positive. High precision indicates that when the model predicts a positive result, it is 
likely to be correct. The F-score provides a combination of the recall and precision 
metrics. Precision and recall are crucial aspects of a model’s performance, but they can 
sometimes be at odds. For instance, increasing precision may lower recall and vice versa. 
The F-score is a measure that balances both precision and recall. It is the harmonic mean 
of precision and recall, providing a score that considers false positives and false 
negatives. In many real-world scenarios, the classes in the dataset are imbalanced, 
meaning one class has significantly more instances than the other(s). In such cases, 
accuracy alone can be misleading, as a model could achieve high accuracy by predicting 
the majority class most of the time. 

In some applications, false positives and false negatives have different costs or 
consequences. For example, in medical diagnosis, a false negative (failing to diagnose a 
disease) can have more severe consequences than a false positive (incorrectly diagnosing 
a healthy person). By incorporating both precision and recall, the F-score provides a 
holistic measure of performance that considers the costs associated with different types of 
errors as it helps to give a complete picture of how well a model is performing, making it 
easier to compare different models or tune hyperparameters. Equations (6)–(9) represent 
the aforementioned metrics. 

Recall (Sensitivity)
+
TP

TP FN
=  (6) 

Specificity
+

TN
TN FP

=  (7) 

Precision
+

TP
TP FP

=  (8) 

2F-score
2 + +

TP
TP FP FN

=  (9) 

where TP, TN, FP, and FN values are the number of true positives, true negatives, false 
positives, and false negatives, respectively. Actually, we have implemented an exciting 
and rigorous experiment to test the metrics represented in equations (6)–(9). We 
combined all datasets of different resolutions to form one colossal dataset of all 7,500 
images and found recall, specificity, precision, and F-score for different training datasets. 
Moreover, the training set is taken randomly from all resolutions for each class. As such, 
the training set will have various numbers from different resolutions. Eventually, the rest 
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of the images for the corresponding class are used for testing. Figures 23–26 show the 
corresponding results for different training sets. As can be deduced from Figure 23, the 
system ‘recall’ is 0.88 when 5% of the set is used for training. This value increases even 
more and eventually reaches 0.99 when only 30% of the set is used for training. 
Regarding the ‘specificity’, we can see from Figure 24 that the results are very solid and 
range between 0.99 to 1. The same conclusion can also be concluded from Figures 25 and 
26 when analysing the system’s ‘precision’ and ‘F-score’. Finally, Table 2 illustrates the 
performance of baseline systems that employ the infrared spectrum for applications 
involving the recognition of faces. The featured publications examine diverse 
methodologies and approaches employed by numerous research groups. Table 2 clearly 
demonstrates that the proposed method attains exceptional outcomes. The findings 
indicate that this method has balanced performance and is robust when handling thermal 
images of low quality resulting from various causes. 

Figure 3 System accuracy versus training set size corresponding to the original dataset  
(see online version for colours) 
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Figure 4 System accuracy versus training set size corresponding to the 0.5-resolution dataset  
(see online version for colours) 
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Figure 5 System accuracy versus training set size corresponding to the 0.25-resolution dataset 
(see online version for colours) 
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Figure 6 System accuracy versus training set size corresponding to the 0.125-resolution dataset 
(see online version for colours) 
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Figure 7 System accuracy versus training set size corresponding to the 0.1-resolution dataset  
(see online version for colours) 
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Figure 8 System accuracy versus the number of epochs for the original dataset (see online 
version for colours) 

 

Figure 9 System loss versus the number of epochs for the original dataset (see online version  
for colours) 

 

Figure 10 System accuracy versus the number of epochs for the 0.5-resolution dataset (see online 
version for colours) 

 

Figure 11 System loss versus the number of epochs for the 0.5-resolution dataset (see online 
version for colours) 
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Figure 12 System accuracy versus the number of epochs for the 0.25-resolution dataset  
(see online version for colours) 

 

Figure 13 System loss versus the number of epochs for the 0.25-resolution dataset (see online 
version for colours) 

 

Figure 14 System accuracy versus the number of epochs for the 0.125-resolution dataset  
(see online version for colours) 

 

Figure 15 System loss versus the number of epochs for the 0.125-resolution dataset (see online 
version for colours) 
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Figure 16 System accuracy versus the number of epochs for the 0.1-resolution dataset (see online 
version for colours) 

 

Figure 17 System loss versus the number of epochs for the 0.1-resolution dataset (see online 
version for colours) 

 

Figure 18 The confusion matrix corresponding to the original dataset (see online version  
for colours) 
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Figure 19 The confusion matrix corresponding to the 0.5-resolution dataset (see online version 
for colours) 

 

Figure 20 The confusion matrix corresponding to the 0.25-resolution dataset (see online version 
for colours) 
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Figure 21 The confusion matrix corresponding to the 0.125-resolution dataset (see online version 
for colours) 

 

Figure 22 The confusion matrix corresponding to the 0.1-resolution dataset (see online version 
for colours) 
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Figure 23 System recall vs. training set size (see online version for colours) 
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Figure 24 System specificity vs. training set size (see online version for colours) 
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Figure 25 System precision vs. training set size (see online version for colours) 
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Figure 26 System F-score vs. training set size 
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Table 2 Baseline systems’ performance based on accuracy rate 

Publication Year Best accuracy (%) 
Gong et al. (2017) 2017 85.6 
Bhowmik et al. (2019) 2019 97.4 
Zaeri (2020) 2020 95 
Lin et al. (2021) 2021 96.7 
Assiri and Hossain (2023) 2023 93.9 
Proposed method 2024 99.6 

5 Conclusions 

Face recognition utilising IR technology can surpass the drawbacks of visible light 
systems since it is insensitive to changes in facial skin and expression. The anatomical 
data that IR technology can obtain include underlying traits that are unique to each 
individual. In this work, we explored CNNs as an emerging area for machine vision and 
developed a robust system to identify faces in degraded thermal images. The proposed 
method that implements ResNet-50 architecture can deal efficiently with thermal images 
that suffer degradation in various ways, including noise, reduced spatial resolution, and 
temperature drift, in addition to being affected by pose and facial expression changes. 
The system’s performance was evaluated using different measures, including accuracy 
rate, amount of loss, confusion matrix, recall, specificity, precision, and F-score. The 
experimental results show that the system has a stable performance and is robust when 
handling thermal images of low quality resulting from several origins. 
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