Demand response-based dynamic economic load dispatch in a microgrid with modified red deer algorithm Online publication date: Wed, 24-Jul-2024
by Pothula Jagadeesh; Asapu Siva; Nakka Srinivas; M. Mohamed Thameem Ansari
International Journal of Powertrains (IJPT), Vol. 13, No. 2, 2024
Abstract: On-site generation microgrids may be a viable option for powering remote areas without grids. These microgrids differ from electricity grid-connected ones. Microgrids without main grid connections employ the same energy management technologies as those connected, including economic dispatch and unit commitment modules. Dynamic economic load dispatch (DELD) in isolated microgrids is the study's goal. These microgrids use load shedding as a last resort to balance supply and demand, allowing responsive loads and renewable electricity to be curtailed. The quantity of electricity made by dispatchable distributed generators (DGs), power cut by renewable DGs, power shed, and demand cut are determined for each time period. The well-known modified red deer optimisation (MRDO) approach is utilised to solve the DELD problem. In a microgrid with two renewable DGs and four dispatchable DGs, MRDO beats PSO, and demand response considerably lowers microgrid maintenance costs.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Powertrains (IJPT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com