

International Journal of Artificial Intelligence and Soft
Computing

ISSN online: 1755-4969 - ISSN print: 1755-4950
https://www.inderscience.com/ijaisc

Genetic whale optimisation algorithm for solving travelling
salesman problem

Amit Kumar

DOI: 10.1504/IJAISC.2024.10064270

Article History:
Received: 03 April 2023
Last revised: 23 January 2024
Accepted: 02 April 2024
Published online: 04 July 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijaisc
https://dx.doi.org/10.1504/IJAISC.2024.10064270
http://www.tcpdf.org

 Int. J. Artificial Intelligence and Soft Computing, Vol. 8, No. 2, 2024 109

 Copyright © 2024 Inderscience Enterprises Ltd.

Genetic whale optimisation algorithm for solving
travelling salesman problem

Amit Kumar
Department of Information Technology,
Rajkiya Engineering College,
Ambedkar Nagar, Uttar Pradesh, 224122, India
Email: er.kumaramit2009@gmail.com

Abstract: Travelling salesman problem (TSP) is a hard combinatorial
optimisation problem that has an enormous discrete search space with an
excess of potential solutions. In this condition, it is impossible to carry out an
exhaustive search using merely brute force. Whale optimisation algorithm
(WOA) is a recent nature-inspired metaheuristic algorithm that is widely being
utilised for the modern intelligent solution approach for hard optimisation
problems. It is inspired by the spiral bubble-net hunting strategy of humpback
whales. In this paper, a new discrete genetic operators-based whale
optimisation algorithm (GWOA) has been presented for addressing the TSP.
Further, experiments-based comparison of the GWOA with some recently
proposed discrete particle swarm optimisation algorithms shows that the former
is able to find better quality tours for TSP.

Keywords: travelling salesman problem; TSP; nature-inspired metaheuristic
algorithms; whale optimisation algorithm; WOA; particle swarm optimisation;
PSO.

Reference to this paper should be made as follows: Kumar, A. (2024)
‘Genetic whale optimisation algorithm for solving travelling salesman
problem’, Int. J. Artificial Intelligence and Soft Computing, Vol. 8, No. 2,
pp.109–128.

Biographical notes: Amit Kumar is an Assistant Professor in the Department
of Information Technology at Rajkiya Engineering College Ambedkar Nagar,
Uttar Pradesh, India. He earned his PhD in Computer and Systems Sciences
from Jawaharlal Nehru University, New Delhi, India in 2021. His current
research focuses on swarm intelligence and bio-inspired algorithms

1 Introduction

Combinatorial optimisation solves discrete optimisation problems by determining the
best possible solution from a finite set of possibilities. Any combinatorial optimisation
problem seeks to find the maxima (or minima) of an objective function. TSP is a
well-known NP-hard combinatorial optimisation problem that is significant in operations
research and theoretical computer science (Papadimitriou, 1977). It may be formulated as
the problem of determining the shortest closed tour in a given network that covers every
node. Even in its most basic version, TSP has several uses, including planning, logistics,
and the production of microchips. It shows up in numerous domains, such as DNA

 110 A. Kumar

sequencing, in a slightly modified form as a sub-problem. A common feature of hard
combinatorial optimisation problems like TSP is large discrete search spaces with an
excess of possible solutions. There is no way to conduct an exhaustive search using
merely brute force under these circumstances. Thus, randomised algorithms are required.
Random search algorithms and the word metaheuristic are sometimes used
interchangeably. Metaheuristics are stochastic algorithms that integrate deterministic and
stochastic elements and may be used to solve a variety of optimisation problems with just
minor adjustments (Bianchi et al., 2009). They find optimal solutions within an
acceptable time by iteratively trying to improve a candidate solution among very large
spaces of candidate solutions with regard to a given measure of quality. The inspiration
for them is frequently taken from the natural world. In recent years, nature-inspired
metaheuristic algorithms have received widespread attention in research and these are
being utilised for the modern intelligent solution approach.

In nature, a large number of insects and other small organisms are generally organised
in hierarchies, e.g., ants, bees and fish, etc. These natural intelligent swarms solve many
problems in nature like finding sources, division of labour among nest mates, building
nests etc. For example, ants find the shortest path between their nest and the food source
even if subjected to the varying environment or despite the failure of individual ants via
stigmergy (Theraulaz and Bonabeau, 1999). It is a form of indirect communication
mediated by change in the environment. While searching for food ants leave behind a
substance called pheromone which attracts other ants. Similarly, another example is bees
looking for a new location for their beehive. Communication among bees regarding the
characteristics of food sources takes place in the dancing area. This dance is called a
waggle dance (Tereshko and Loengarov, 2005). At the outset, numerous scouts scope
potential locations. Subsequently, upon returning, they perform a distinctive dance that
expresses in code the direction of the new found site. The intensity of the bee’s dance
reveals the excitement for the particular location. When several scouts select the same
location, the entire swarm moves. The problems that the natural intelligent swarms solve
in nature have significant counterparts in numerous engineering fields of the real world.
Biologists and natural scientists are constantly simulating the behaviour of natural
swarms into novel numerical optimisation techniques. As a result, swarm intelligence is
transpiring all the time more important research area for researchers from engineering,
economics, bioinformatics, operation research and many other disciplines. By mimicking
nature-inspired swarming behaviour in computing methodologies, techniques emerge for
hard optimisation problems that are robust, scalable and easily distributed. A list of
various swarm intelligence-inspired algorithms is shown in Table 1.

Population-based meta-heuristic algorithms exhibit a common characteristic
irrespective of their nature. They split the search process into two phases: exploration and
exploitation (Hu et al., 2019). The optimiser should embrace operators to globally
explore the search space: during this part, movements (i.e., perturbation of style
variables) ought to be randomised as much as possible. The exploitation part follows the
exploration part and might be outlined as the method of investigating the promising
area(s) of the search area. Therefore, exploitation pertains to the native search capability
within the promising regions of search space found within the exploration part. Finding a
correct balance between exploration and exploitation is the most difficult task in any
meta-heuristic algorithmic rule due to the random nature of the optimisation method.

 Genetic whale optimisation algorithm 111

Table 1 Different swarm intelligence inspired algorithms

Name of the algorithm Based on technique
Ant colony optimisation (Dorigo et al., 1991) Foraging behaviour of ants.
Particle swarm optimisation (Kennedy and
Eberhart, 1995)

Intelligent, experience-sharing, social flocking
behaviour of birds

Bee system (Sato and Hagiwara, 1997) Bees’ foraging principles
Honey bee algorithm (Nakrani and Tovey,
2003)
BeeHive (Wedde et al., 2004)
Bee colony optimisation (Teodorović and
Dell’Orco, 2005)
Bees algorithm (Pham et al., 2005)
Artificial bee colony (Karaboga, 2005)
Bees swarm optimisation (Drias et al., 2005)
Honey bee foraging (Baig and Rashid, 2007)
Fish swarm algorithm (Li et al., 2002) Fish school
Glow-worm swarm optimisation
(Krishnanand and Ghose, 2005)

Behaviour of insects that are called
glowworms

Bacterial foraging optimisation (Passino,
2002)

Group foraging behaviour of bacteria such as
E. coli and M. xanthus

Cat swarm optimisation (Chu et al., 2006) Two major behavioural traits of cats. These
are termed ‘seeking mode’ and ‘tracing
mode’.

Monkey search (Mucherino and Seref, 2007) Monkey’s trees climbing behaviour
Firefly algorithm (Yang, 2008) Flashing behaviour of fireflies
Cuckoo search (Yang and Deb, 2009) Brooding behaviour of some cuckoo species
Mosquito host-seeking algorithm (Feng et al.,
2009)

Host-seeking behaviour of mosquitoes

Bumble bee mating optimisation (Marinakis
et al., 2010)

Inspired by the mating behaviour of the
bumble bees

Bat algorithm (Yang, 2010) Echolocation behaviour of micro bats
Eagle strategy (Yang and Deb, 2010) Eagle’s hunting strategy: random search by

Lévy flight and intensive chase by locking its
aim on the target

Krill herd algorithm (Gandomi and Alavi,
2012

Herding behaviour of krill individuals

Wolf search algorithm (Tang et al., 2012) Imitates the way wolves search for food and
survive by avoiding their enemies

Social spider optimisation (Cuevas et al.,
2013)

Foraging strategy of social spiders, utilising
the vibrations on the spider web to determine
the positions of preys

Grey wolf optimiser (Mirjalili et al., 2014) It mimics the leadership hierarchy and hunting
mechanism of grey wolves (Canis lupus)in
nature

 112 A. Kumar

Table 1 Different swarm intelligence inspired algorithms (continued)

Name of the algorithm Based on technique
Elephant herding optimisation (Wang et al.,
2015)

It is inspired by the herding behaviour of
elephant group

Raven roosting optimisation algorithm
(Brabazon et al., 2016)

Social roosting and foraging behaviour of one
species of bird, the common raven

Lion optimisation algorithm (Yazdani and
Jolai, 2016)

Based on simulation of the solitary and
cooperative behaviours of lions such as prey
capturing, mating, territorial marking, defence
and the other behaviours

Whale optimisation algorithm (Mirjalili and
Lewis, 2016)

It mimics the social behaviour of humpback
whales. The algorithm is inspired by the
bubble-net hunting strategy

Grasshopper optimisation algorithm (Saremi
et al., 2017)

It mimics the behaviour of grasshopper
swarms in nature for solving optimisation
problems.

Salp swarm algorithm (Mirjalili et al., 2017) The swarming behaviour of salps when
navigating and foraging in oceans

Swarm intelligence algorithms, drawing inspiration from the cooperative behaviours
observed in social insects and other natural systems, offer a powerful approach to address
intricate optimisation challenges, including the renowned travelling salesman problem
(TSP) (Wu and Duan, 2023; Tohid and Özlem, 2022; Panwar and Deep, 2023; Özer
et al., 2022; Mzili et al., 2023; Gong et al., 2023).

Researchers routinely tailor the parameters and strategies of these algorithms to align
with the distinctive features of the TSP. Demonstrating notable success, these algorithms
have proven effective in discovering solutions that approach optimality for diverse
instances of the TSP.

Whale optimisation algorithm (WOA) is a swarm-based metaheuristic algorithm
(Mirjalili and Lewis, 2016). WOA copies the pattern followed by the humpback whale
during hunting. It is inspired by the spiral bubble-net hunting strategy. In WOA
algorithm, the hunting behaviour of whale to chase the prey and using a spiral way for
bubble-net attacking mechanism is simulated. In this paper, we study how to solve TSP
by WOA, and propose a new discrete WOA for discrete optimisation problems based on
genetic operators of genetic algorithm. This paper is structured as follows for the
remaining sections: original WOA is briefly described in Section 2 while the suggested
discrete genetic operators-based whale optimisation algorithm (GWOA) for addressing
TSP is presented in section 3. Results acquired using GWOA are covered in Section 4.
The article is concluded in Section 5 by describing its potential future

2 Whale optimisation algorithm

WOA was proposed by Mirjalili and Lewis in 2016. This algorithm is a simulation model
of the whale’s unique characteristics like territorial defence, territorial takeover,
laggardness exploitation and pride. From a theoretical perspective, WOA is often thought
of as a worldwide optimiser as it includes exploration/exploitation ability (Mirjalili and
Lewis, 2016). Furthermore, the projected hypercube mechanism defines a search space

 Genetic whale optimisation algorithm 113

within the neighbourhood of the most effective solution and permits different search
agents to take advantage of this best record within that domain. Adaptive variation of the
search vector Q allows the WOA algorithm to smoothly transit between exploration and
exploitation: by decreasing Q, some iterations are devoted to exploration (|Q| ≥ 1) and the
rest is dedicated to exploitation (|Q| < 1). Remarkably, WOA includes only two main
internal parameters to be adjusted (Q and P). Three main concepts of the whale
optimisation algorithm are encircling prey, bubble net attacking and the search for prey.
These are discussed below:

2.1 Encircling prey

Humpback whales acknowledge the position of the prey and then encircle them (Mirjalili
and Lewis, 2016). Since the position of the best solution within the search space is not
evident a priori, WOA rule assumes that the best candidate solution is the target prey or is
near to the optimum. After the simplest search agent is outlined, the opposite search
agents can therefore try and update their positions towards the simplest search agent. This
behaviour is modelled by the subsequent equations.

() ()∗= ⋅ −
   
L P Y t Y t (1)

1)(() ∗+ = − ⋅
  

Y tt Y Q L (2)

where t indicates the current iteration, Q and P are coefficient vectors, Y* is the position
vector of the best solution obtained so far, Y is the position vector, | | is the absolute
value, and · is an element-by-element multiplication. It is worth mentioning here that Y*
should be updated in each iteration if there is a better solution.

The vectors Q and P are calculated as follows:

12= ⋅ −
   Q m r m (3)

22= ⋅
 P r (4)

where a is linearly decreased from 2 to 0 over the course of iterations (in both exploration
and exploitation phases) and r is a random vector in [0, 1].

The same idea is extended to a search space with n dimensions and therefore the
search agents can move in hyper-cubes around the solution obtained to this point. As
mentioned in the previous section, the humpback whales conjointly attack the prey with
the bubble-net strategy.

2.2 Bubble-net attacking

The bubble-net attacking behaviour of humpback whales can be described by two
techniques as follows (Mirjalili and Lewis, 2016):

2.2.1 Shrinking encircling mechanism
This behaviour is achieved by decreasing the value of m in equation (3). Note that the
fluctuation range of Q is also decreased by m. Q is a random value in the interval
[–m, m] where a is decreased from 2 to 0 over the course of different iterations. Using

 114 A. Kumar

random values for Q in [–1, 1], the new position of a search agent can be defined
anywhere in between the original position of the search agent and the position of the
current best search agent.

2.2.2 Spiral updating position
This approach measures the distance between the whale located at (Y, Z) and the prey
located at (Y*, Z*). A spiral equation is made between the position of whale and prey to
copy the helix-shaped movement of humpback whales as follows:

(1) cos(2) ()∗⋅′+ = ⋅ +
  

blY t L πl Y te (5)

where | () ()|∗′ = −
  
L Y t Y t and indicates the distance of the ith whale to the prey (best

solution obtained so far), b is a constant for defining the shape of the logarithmic spiral, l
is a random number in [–1, 1], and · is an element-by-element multiplication.

The humpback whales swim round the prey along a shrinking circle and on a spiral
shaped path at the same time. To model this coincidental behaviour, it is assumed that
there is an equal likelihood of deciding between either the shrinking peripheral
mechanism or the spiral model to update the position of whales throughout optimisation.
The mathematical model is as follows:

() if 0.5(1)
cos(2) () it 0.5

∗

∗

 − ⋅ <+ =  ′ ⋅ ⋅ + ≥

 
 

bl

Y t Q L pY t
L e πl Y t p

 (6)

where p is a random number in [0, 1]. In WOA, the humpback whales find prey
randomly. The mathematical model of the search is as follows.

2.3 Search for prey

WOA uses Q with random values greater than 1 or less than –1 to force the search agents
to go far away from a reference whale. |Q|> 1 emphasises exploration and allows the
WOA algorithmic program to perform a worldwide search. The mathematical model is as
follows:

= ⋅ −
   

randL θ P Y Y (7)

(1)+ = − ⋅
  

randY t Y Q L (8)

where Yrand is a random position vector (random whale) chosen from the current
population of the whales.

WOA cannot be utilised to directly resolve discrete optimisation problems because it
was developed for continuous optimisation where it can converge quickly on the best
solution or solutions in the high dimension. TSP, however, is an NP-hard discrete
problem. Since the variables are integers, the arrangement of their values in the various
dimensions indicates a distinct solution with a different objective function value. As a
result, in order to solve TSP efficiently, the typical whale optimisation technique must be
adjusted to account for the unique requirements of the issue. Researchers have suggested
many DWOA algorithm variations in the literature (Zamani and Nadimi-Shahraki, 2016;
Abdel-Basset et al., 2017; Mafarja and Mirjalili, 2017; Hussien et al., 2018; Reddy et al.,

 Genetic whale optimisation algorithm 115

2018; Hussien et al., 2019). In Zhang et al. (2021), a discrete whale optimisation
algorithm with variable neighbourhood search was proposed to address the TSP. In this
paper a new discrete GWOA is presented to address TSP, which is discussed next.

3 GWOA for TSP

TSP is a well-known NP-hard problem in optimisation in the disciplines of computer
science and operations research. It asserts that given a set of cities and distances between
each pair of cities, a salesperson must visit each city precisely once and return to the city
where he began his tour. What is the shortest possible path that the salesman must take to
finish his tour? The solution to the problem can be found out by comparing each
round-trip route to find the shortest one. But with the growing number of cities, the
number of possible roundtrips outpaces the capacity of even the most powerful
computers. Therefore, classical mathematical methods can not be used to address the
TSP. A wide variety of alternative solutions have also been developed in an effort to
discover the optimal solution as quickly as feasible. Nature-inspired algorithms have been
successful in finding the solutions that are very near to the optimal. In this paper, TSP is
solved using GWOA algorithm and its performance is compared with discrete particle
swarm optimisation (PSO) algorithms on the basis of tour length.

Suppose there are n cities and the sequence of cities that shall be visited serves as the
coding for the solution. Since each element in the solution is represented by a city
number, any solution X can be represented as (x1, x2, x3, …, xn), where xj ∈ [1, n] and any
xi ≠ xj. The following fitness function is used to calculate the tour length for the TSP:

() ()
1

1 1
1

, ,
−

+
=

= +
n

i i n
i

f d x x d x x (9)

where d(xi, xi+1) is the distance between the cities xi and xi+1 · d(xn, x1) is the distance
between the city xn and the city x1.

3.1 Proposed GWOA

In ElMousel et al. (2021), a novel discrete WOA was proposed for solving the
capacitated vehicle routing problem. In this paper this discrete WOA has been modified
to apply it on TSP. Similar to humpback whales hunting in groups, GWOA starts with a
random population of TSP solutions as whales. The following three steps make up the
hunting procedure.

1 Encircling the target prey: during hunting, humpback whales explore the ocean to
identify the whereabouts of their prey. As soon as they locate the prey, they start
enveloping them. Since, we are solving TSP, we are looking for some solution that
will be the shortest route feasible among others. In this case, the search space which
consists of all feasible TSP solutions, corresponds to the ocean. Each solution of the
TSP is representing a unique whale agent. Furthermore, it is believed that the current
best TSP solution is near the target prey, or the best solution, as the location of the
ideal prey is not known beforehand. All the other whales update their positions in
accordance with the best whale agent.

 116 A. Kumar

2 Bubble-net attacking: this is the exploitation phase of WOA where humpback whales
exhibit two possible types of movements: either travelling in a narrowing circle
around their target prey or travelling in a spiral path. In the first case, each whale’s
new position can be specified anywhere between its initial position and the position
of the best whale at the time. The second choice, however, updates the spiral location
in accordance with how far apart each whale is from its target prey.

3 Searching for prey: this is the exploitation phase of WOA where the position of a
search agent is updated based on a randomly selected search agent rather than using
the best search agent found thus far.

The objective function of the TSP, which is shortest possible tour length that the
salesman must cover to visit each city precisely once and return to the city where he
began his tour, is used to determine each whale’s fitness.

WOA was originally proposed for continuous optimisation that allows the updating of
whales’ positions in a continuous domain. TSP is a combinatorial optimisation problem
that can not be addressed by the original WOA. So, a discrete WOA that updates the
position of whales on the basis of the crossover operator of the genetic algorithm is
presented. Two different crossover operators: partially mapped crossover and order
crossover operators are used which are described next.

3.1.1 Partially mapped crossover (PMX) operator
Step 1 Choose two parents to mate.

: 1 2 3 4 5 6 7 2 : 5 4 6 7 2 1 3P P

Step 2 Using crossover points, choose a substring at random from the parents.

Step 3 Implement the two-point crossover.

Step 4 Identify mapping relationships using substrings

 Genetic whale optimisation algorithm 117

Step 5 To legitimise offsprings in unselected substrings, use the mapping.

1: 3 5 6 7 2 1 4 2 : 2 7 3 4 5 6 1O O

3.1.2 Ordered crossover operator
It is a variation of PMX with a different repairing procedure. It creates offsprings by
picking a parent’s subtour and keeping the relative order of the other parent’s bits.

1: 1 2 3 4 5 6 7 2 : 5 4 6 7 2 1 3P P

Step 1 Select a substring from a parent at random.

Step 2 Copy the substring into the corresponding location of it to create a proto-child.

1: 3 4 5 6 2 : 6 7 2 1O O

Step 3 Remove the cities from the second parent that are already in the substring. The
cities that the proto-child requires are included in the resulting sequence of
cities.

Step 4 In order to make offspring, place the cities in the unfixed positions of the
proto-child from left to right in the prescribed order of the sequence.

1: 2 1 3 4 5 6 7 2 : 4 5 6 7 2 1 3O O

The exploitation phase: this phase achieves the local minimum by updating the whales’
positions using either the spiral model or the declining encircling process with an equal
probability.

()
()

1

2

(), () , if 0.5
(1)

(), () , if 0.5
′ < + =  ′ ≥  

best

best

f X t X t p
X t

f X t X t p
 (10)

where f1 and f2 are partially mapped crossover operator and order crossover operators
respectively between the current whale and the best whale. p′ is a random number
between 0 and 1. The fitter of the two offspring produced by the crossover operator is
chosen as the updated solution.

The exploration phase: this phase improves the ability of the global search by choosing a
random whale from the population and applying a crossover operator between this
random whale and the current whale. Again, the fitter of the two offspring produced by
the crossover operator is chosen as the updated solution.

()3 ((1) (),)+ = randX t f X t tX (11)

 118 A. Kumar

where f3 represents the ordered crossover operator between the randomly chosen whale
and the current whale.

Balancing probability: GWOA strikes a balance between the exploration phase and the
exploitation phase by comparing the balancing probability (pb) with a random number
r ∈ (0, 1). If r ≤ pb, the exploitation phase is used to update the solution, otherwise, the
solution is updated by using the exploration phase. Balancing probability is calculated as
follows:

2

max
1  = −  

 
b

iterp
iter

 (12)

where iter is the current iteration and itermax is the total number of iteration.

2-opt mutation: 2-opt mutation (Croes, 1958) is a local search strategy for TSP to precise
solutions quickly. In the proposed GWOA, the concept of 2-opt mutation is used so as to
modify the original WOA for TSP. 2-opt mutation is applied on the best whale in each
iteration.

Figure 1 The routes for TSP before and after 2-opt

The pseudo-code of the GWOA is shown in Figure 2.
Initially, the number of whale search agent in the population are defined as ps and a

termination criterion is set as the maximum number of iterations. A random tour is
assigned to each of the whale in the population. Then, fitness value (i.e., tour length) of
each whale search agent is computed. The best whale Xbest in the population is
determined. In each iteration step, the position X(t)of each whale is updated based on the
position of the best whale using the crossover and 2-opt mutation operators discussed
above. The fitness value of each new whale is computed. The best whale search agent is
updated if possible. Finally, the best whale Xbest is returned as the outcome of the whole
optimisation procedure.

The flow chart of GWOA algorithm is also shown in Figure 3.

 Genetic whale optimisation algorithm 119

Figure 2 Pseudo-code of the GWOA

Figure 3 Flowchart of GWOA

No

Yes

 120 A. Kumar

4 Illustrative example: tackling TSP with GWOA

Consider the fully connected graph of five vertices as depicted in Figure 4.

Figure 4 Fully connected graph with five vertices (see online version for colours)

In TSP, the aim is to find the shortest Hamiltonian cycle in a fully connected graph. In
this example, the number of different Hamiltonian cycles is (5 – 1)!/2 = 12. The possible
tours and respective costs are shown in Table 2.
Table 2 Possible TSP tours and respective costs

Sr. no. Tour Cost
1 (1, 2, 3, 4, 5) 25
2 (1, 5, 3, 4, 2) 29
3 (1, 4, 3, 2, 5) 21
4 (1, 3, 2, 4, 5) 27
5 (1, 2, 5, 4, 3) 21
6 (1, 3, 5, 2, 4) 23
7 (1, 4, 3, 5, 2) 21
8 (1, 2, 3, 5, 4) 23
9 (1, 3, 5, 4, 2) 27
10 (1, 3, 4, 2, 5) 25
11 (1, 4, 5, 2, 3) 19
12 (1, 4, 2, 3, 5) 27

Let the population size ps = 6. A population of six whales is initialised randomly from the
available fully connected graph shown in Table 3.

 Genetic whale optimisation algorithm 121

Table 3 Initial population of six whales

Whale (i) Position (Xi)
1 (1, 5, 3, 4, 2)
2 (1, 3, 2, 4, 5)
3 (1, 3, 5, 2, 4)
4 (1, 4, 3, 2, 5)
5 (1, 3, 4, 2, 5)
6 (1, 4, 5, 2, 3)

The fitness, i.e., tour length of each of the six whales is computed, as shown in Table 4.
Table 4 Fitness or tour length of six whales

Whale (i) Position (Xi) Fitness (tour length)
1 (1, 5, 3, 4, 2) 29
2 (1, 3, 2, 4, 5) 27
3 (1, 3, 5, 2, 4) 23
4 (1, 4, 3, 2, 5) 21
5 (1, 3, 4, 2, 5) 25
6 (1, 4, 5, 2, 3) 19

The best whale in the population with the shortest possible tour length is Xbest = (1, 4, 5,
2, 3).

Now, for each whale of the population in position Xi(t) the next position Xi(t + 1) is
computed.

The first iteration of position update of the first whale is illustrated below:

1Current iteration counter 1, (1) (1, 5, 3, 4, 2), (1) (1, 4, 5, 2, 3)= = =bestt X X

Let the maximum number of iterations IM =100.
So balancing probability:

2

max
2

1

11
100

1 .0001
0.9999

 = −  
 

 = −  
 

= −
=

b

b

iterp
iter

p

Let p′ = 0.7532 and rand = 0.4324
Now p′ > 0.5, so ordered crossover operator is performed between X1(1) = (1, 5, 3,

4, 2) and Xbest(1) = (1, 4, 5, 2, 3).

1: 1 5 3 4 2 2 : 1 4 5 2 3P P

Random substrings are selected from the two parents as follows:

 122 A. Kumar

These substrings are copied into the corresponding locations to create two proto-children
as follows.

1: 5 3 2 : 4 5O O

Following this, the bits from the opposite parent are duplicated in the same sequence but
without the existing bits, beginning at the second cut point of one parent.

For example, the bit sequence in the second parent from the 2nd cut point is ‘2 →3→
1→ 4→ 5’. After removing the existing bits 5 and 3 of the first offspring the new
sequence is ‘2→1→4’. This sequence is duplicated in the first offspring starting from the
2nd cut point. Similarly, the other offspring is generated.

1: 4 5 3 2 1 2 : 3 4 5 2 1O O

Now, one of the two offsprings is chosen randomly as the updated first whale.
So the updated first whale after the first iteration is

3 4 5 2 1

5 Experimental results

The proposed algorithm GWOA and three recent discrete PSO algorithms: standard
particle swarm optimisation (SPSO) (Chuan and Quanyuan, 2007), adaptive particle
swarm optimisation (APSO) (Zhan et al., 2009) and quantum-based particle swarm
optimisation (QPSO) (Ho et al., 2013) were implemented using MATLAB 2015a in
windows 10 environment. These algorithms were compared by conducting experiments
on an Intel-based 2.5 GHz PC having 8 GB RAM. Table 5 shows the comparisons of the
lengths of shortest tours found by these algorithms. The TSP problem set is taken from
the http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/. Number of iterations and population
size are 400 and 400 for all the test cases.
Table 5 Experimental results of solving TSP using GWOA with SPSO, QPSO and APSO.

Sr. no. Problem name GWOA SPSO QPSO APSO
1 Att48 50,911.53 124,922.3 106,805.4 88,240.69
2 Bayg29 12,579.9 16,587.71 15,918.07 15,663.98
3 Burma14 31.22692 31.20877 31.78388 32.47089
4 Ulysses16 74.10874 77.22789 76.59773 75.63054
5 Ulysses22 79.10002 90.35913 90.64342 94.90065

The performance of these algorithms was also compared graphically by plotting graphs
between the best fitness and iteration counter when applied to these five benchmark TSPs
in Figures 5–9.

 Genetic whale optimisation algorithm 123

Figure 5 Fitness vs. iterations, Att48 (see online version for colours)

Figure 6 Fitness vs. iterations, Bayg29 (see online version for colours)

Figure 7 Fitness vs. iterations, Burma14 (see online version for colours)

 124 A. Kumar

Figure 8 Fitness vs. Iterations, Ulysses16 (see online version for colours)

Figure 9 Fitness vs. iterations, Ulysses22 (see online version for colours)

The effect of making the changes in the initial population size for GWOA algorithm on
the results of Att48 problem set is shown in the Table 6 and Figure 10.
Table 6 Effect of initial population of WOA on the results of Att48 (see online version

for colours)

Sr. no. Population size Fitness result
1 50 77.09092
2 100 76.77059
3 150 79.10002
4 200 76.12375
5 250 79.44039
6 300 80.95955
7 400 77.09092
8 500 76.77059
9 600 79.10002
10 700 76.12375

 Genetic whale optimisation algorithm 125

Figure 10 Population size vs. fitness, Att48 (see online version for colours)

6 Conclusions

In this paper, a new discrete WOA has been presented to solve the TSP. The WOA
algorithm, which is was inspired by the way humpback whales hunt, was initially
proposed to solve continuous optimisation problems. The original WOA has been
hybridised by combining the approach with crossover operators from the GA and adding
the 2-opt exchange to further enhance the solution. Simulations were carried out on
five TSP instances using GWOA, and its performance was compared with three other
state-of-the-art discrete PSO algorithms. Experimental results showed that the proposed
algorithm GWOA performed well for TSP. Based on this, it can be concluded that
GWOA can be used to solve other large discrete combinatorial optimisation problems.

References
Abdel-Basset, M., El-Shahat, D. and Sangaiah, A.K. (2017) ‘A modified nature inspired

meta-heuristic whale optimization algorithm for solving 0-1 knapsack problem’, International
Journal of Machine Learning & Cybernetics, Vol. 1, pp.1–20.

Baig, A. and Rashid, M. (2007) ‘Honey bee foraging algorithm for multimodal & dynamic
optimization problems’, GECCO’07: Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation, p.169.

Bianchi, L., Dorigo, M., Gambardella, L.M. and Gutjahr, W.J. (2009) ‘A survey on metaheuristics
for stochastic combinatorial optimization’, Natural Computing, Vol. 8, No. 2, pp.239–287.

Brabazon, A., Cui, W. and Neil, M. (2016) ‘The raven roosting optimization algorithm’, Soft
Computing, Vol. 20, No. 2, pp.225–245.

Chu, S.A., Tsai, P.W. and Pan, J.S. (2006) ‘Cat swarm optimization’, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 4099 LNAI, pp.854–858.

Chuan, L. and Quanyuan, F. (2007) ‘The standard particle swarm optimization algorithm
convergence analysis and parameter selection’, Third International Conference on Natural
Computation (ICNC 2007), Haikou, pp.823–826.

Croes, G.A. (1958) ‘A method for solving traveling-salesman problems’, Oper. Res., Vol. 6, No. 6,
pp.791–812.

 126 A. Kumar

Cuevas, E., Cienfuegos, M., Zaldívar, D. and Pérez-Cisneros, M. (2013) ‘A swarm optimization
algorithm inspired in the behavior of the social-spider’, Expert Systems with Applications, Vol.
40, No. 16, pp.6374–6384.

Dorigo, M., Colorni, A and Maniezzo, V. (1991) Positive Feedback as a Search Strategy,
Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy.

Drias, H., Sadeg, S. and Yahi, S. (2005) ‘Cooperative bees swarm for solving the maximum
weighted satisfiability problem’, IWAAN International Work Conference on Artificial and
Natural Neural Networks, pp.318–325.

ElMousel, A.S., Khairy, O.M., Shehata, O.M. and Morgan, E.I. (2021) ‘A novel discrete whale
optimization algorithm for solving the capacitated vehicle routing problem’, 2021
7th International Conference on Mechatronics and Robotics Engineering (ICMRE),
DOI: 10.1109/icmre51691.2021.9384842.

Feng, X., Lau, F.C.M. and Gao, D. (2009) ‘A new bio-inspired approach to the traveling salesman
problem’, Complex Sciences, Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, February, Vol. 5, pp.1310–1321,
Springer Berlin Heidelberg.

Gandomi, A.H. and Alavi, A.H. (2012) ‘Krill Herd: a new bio-inspired optimization algorithm’,
Communications in Nonlinear Science and Numerical Simulation, Vol. 17, No. 12,
pp.4831–4845.

Gong, X., Rong, Z., Wang, J. et al. (2023) ‘A hybrid algorithm based on state-adaptive slime mold
model and fractional-order ant system for the travelling salesman problem’, Complex Intell.
Syst., Vol. 9, No. 3, .3951–3970.

Ho, S.L., Yang, S., Ni, G. and Huang, J. (2013) ‘A quantum-based particle swarm optimization
algorithm applied to inverse problems’, IEEE Transactions on Magnetics, Vol. 49, No. 5,
pp.2069–2072.

Hu, Z., Jianyong, S., Tonglin, L., Ke, Z. and Qingfu, Z. (2019) ‘Balancing exploration and
exploitation in multiobjective evolutionary optimization’, Information Sciences, ,
p.S0020025519304499, DOI: 10.1016/j.ins.2019.05.046.

Hussien, A.G., Hassanien, A.E., Houssein, E.H., et al. (2019) ‘S-shaped binary whale optimization
algorithm for feature selection’, Advances in Intelligent Systems and Computing, pp.79–87,
https://doi.org/10.1007/978-981-10-8863-6.

Hussien, A.G., Houssein, E.H. and Hassanien, A.E. (2018) ‘A binary whale optimization algorithm
with hyperbolic tangent fitness function for feature selection’, Eighth International
Conference on Intelligent Computing and Information Systems, IEEE, pp 166–172.

Karaboga, D. (2005) An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical
report, Computer Engineering Department, Engineering Faculty, Erciyes University.

Kennedy, J. and Eberhart, R. (1995) ‘Particle swarm optimization’, IEEE International Conference
on Neural Networks, Vol. 4, pp.1942–1948.

Krishnanand, K. and Ghose, D. (2005) ‘Detection of multiple source locations using a glowworm
metaphor with applications to collective robotics’, IEEE Swarm Intelligence Symposium,
Pasadena, CA, USA, pp.84–91.

Li, L.X., Shao, Z.J. and Qian, J.X. (2002) ‘An optimizing method based on autonomous animals:
fish-swarm algorithm’, Syst. Eng. Theory Practice, Vol. 22, No. 11, pp.32–38.

Mafarja, M.M. and Mirjalili, S. (2017) ‘Hybrid whale optimization algorithm with simulated
annealing for feature selection’, Neurocomputing, Vol. 260, pp.302–312, 342.

Marinakis, Y., Marinaki, M. and Matsatsinis, N. (2010) ‘A bumble bees mating optimization
algorithm for global unconstrained optimization problems’, NICSO 2010, SCI, Vol. 284,
pp.305–318.

Mirjalili, S. and Lewis, A. (2016) ‘The whale optimization algorithm’, Advances in Engineering
Software, Vol. 95, pp.51–67.

 Genetic whale optimisation algorithm 127

Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H. and Mirjalili, S.M. (2017) ‘Salp
swarm algorithm: a bio-inspired optimizer for engineering design problems’, Advances in
Engineering Software, Vol. 114, pp.163–191.

Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014) ‘Grey wolf optimizer’, Advances in Engineering
Software, Vol. 69, pp.46–61.

Mucherino, A. and Seref, O. (2007) ‘Monkey search: a novel meta-heuristic search for global
optimization, data mining, system analysis and optimization in biomedicine’, in Seref, O.,
Kundakcioglu, O.E. and Pardalos, P.M. (Eds.): AIP Conference Proceedings, Vol. 953,
pp.162–173.

Mzili, T., Mzili, I. and Riffi, M.E. (2023) ‘Artificial rat optimization with decision-making:
a bio-inspired metaheuristic algorithm for solving the traveling salesman problem’, Decision
Making: Applications in Management and Engineering, Vol. 6, No. 2, pp.150–176.

Nakrani, S. and Tovey, C. (2003) ‘On honey bees and dynamic allocation in an internet server
colony’, Proceedings of 2nd International Workshop on the Mathematics and Algorithms of
Social Insects.

Özer, S., Baykasoğlu, A. and Kilinçci, Ö. (2022) ‘Application of chicken swarm optimization to
travelling salesman problem and a reviewing of similar studies’, Journal of New Results in
Engineering and Natural Sciences, Vol. 15, pp.65–72.

Panwar, K. and Deep, K. (2023) ‘Discrete salp swarm algorithm for Euclidean travelling salesman
problem’, Appl. Intell., Vol. 53, pp.11420–11438.

Papadimitriou, C.H. (1977) ‘The Euclidean travelling salesman problem is NP-complete’,
Theoretical Computer Science, Vol. 4, No. 3, pp.237–244.

Passino, K. (2002) ‘Biomimicry of bacterial foraging for distributed optimization and control’,
IEEE Control Systems Magazine, Vol. 22, No. 3, pp.52–67.

Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M. (2005) The Bees Algorithm,
Technical report, Cardiff University, UK.

Reddy, K.S., Panwar, L., Panigrahi, B.K. et al. (2018) ‘Binary whale optimization algorithm: a new
metaheuristic approach for profit-based unit commitment problems in competitive electricity
markets’, Eng. Optim., Vol. 51, No. 3, pp.369–389.

Saremi, S., Mirjalili, S. and Lewis, A. (2017) ‘Grasshopper optimisation algorithm: theory and
application’, Advances in Engineering Software, Vol. 105, pp.30–47.

Sato, T. and Hagiwara, M. (1997) ‘Bee system: finding solution by a concentrated search’,
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics,
Vol. 4, No. C, pp.3954–3959.

Tang, R., Fong, S., Yang, X.S. and Deb, S. (2012) ‘Wolf search algorithm with ephemeral
memory’, 2012 Seventh International Conference on Digital Information Management
(ICDIM), pp.165–172.

Teodorović, D. and Dell’Orco, M. (2005) ‘Bee colony optimization–a cooperative learning
approach to complex transportation problems’, Advanced OR and AI Methods in
Transportation: Proceedings of 16th Mini–EURO Conference and 10th Meeting of EWGT,
13–16 September 2005, Publishing House of the Polish Operational and System Research,
Poznan, pp.51–60.

Tereshko, V. and Loengarov, A. (2005) ‘Collective decision making in honey-bee foraging
dynamics’, Comput. Inf. Syst., Vol. 9, No. 3, pp.1–7.

Theraulaz, G. and Bonabeau, E. (1999) ‘A brief history of Stigmergy’, Artificial Life, Vol. 5, No. 2,
pp.97–116.

Tohid, Y. and Özlem, A. (2022) ‘Solving the traveling salesman problem by adding a mutation
approach to a grasshopper optimization algorithm’, 1st International Conference on
Engineering, Natural and Social Sciences, Turkey, Konya, Vol. 1.

Wang, G.G, Deb, S. and Coelho, L. (2015) ‘Elephant herding optimization’, 3rd International
Symposium on Computational and Business Intelligence (ISCBI).

 128 A. Kumar

Wedde, H., Farooq, M. and Zhang, Y. (2004) ‘Beehive: an efficient fault-tolerant routing algorithm
inspired by honey bee behavior’, in Dorigo, M. (Ed.): Ant Colony Optimization and Swarm
Intelligence, pp.83–94, Springer, Berlin.

Wu, J. and Duan, Q. (2023) ‘An algorithm for solving travelling salesman problem based on
improved particle swarm optimisation and dynamic step Hopfield network’, International
Journal of Vehicle Design, Vol. 91, No. 1–3, pp.208–231.

Yang, X.S. (2008) Nature-Inspired Metaheuristic Algorithms, Luniver Press, UK.
Yang, X.S. (2010) ‘A new metaheuristic bat-inspired algorithm’, Nature Inspired Cooperative

Strategies for Optimization (NICSO 2010), pp.65–74.
Yang, X.S. and Deb, S. (2009) ‘Cuckoo search via Lévy flights’, Proceedings of World Congress

on Nature and Biologically Inspired Computing (NaBIC 2009), IEEE Publications, USA,
pp.210–214.

Yang, X.S. and Deb, S. (2010) ‘Eagle strategy using Lévy walk and firefly algorithms for
stochastic optimization’, Nature Inspired Cooperative Strategies for Optimization
(NICSO2010), pp.101–111, Springer.

Yazdani, M. and Jolai, F. (2016) ‘Lion optimization algorithm (LOA): a nature-inspired
metaheuristic algorithm’, Journal of Computational Design and Engineering, Vol. 3, No. 1,
pp.24–36.

Zamani, H. and Nadimi-Shahraki, M.H. (2016) ‘Feature selection based on whale optimization
algorithm for diseases diagnosis’, International Journal of Computer Science and Information
Security (IJCSIS), Vol. 14, No. 9, pp.1243–1247.

Zhan, Z.H., Zhang, J., Li, Y. and Chung, H.S.H. (2009) ‘Adaptive particle swarm optimization’,
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 39, No. 6,
pp.1362–1381.

Zhang, J., Hong, L. and Liu, Q. (2021) ‘An improved whale optimization algorithm for the
traveling salesman problem’, Symmetry, Vol. 13, No. 1, p.48, https://doi.org/10.3390/
sym13010048.

