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Abstract: Travelling salesman problem (TSP) is a hard combinatorial 
optimisation problem that has an enormous discrete search space with an 
excess of potential solutions. In this condition, it is impossible to carry out an 
exhaustive search using merely brute force. Whale optimisation algorithm 
(WOA) is a recent nature-inspired metaheuristic algorithm that is widely being 
utilised for the modern intelligent solution approach for hard optimisation 
problems. It is inspired by the spiral bubble-net hunting strategy of humpback 
whales. In this paper, a new discrete genetic operators-based whale 
optimisation algorithm (GWOA) has been presented for addressing the TSP. 
Further, experiments-based comparison of the GWOA with some recently 
proposed discrete particle swarm optimisation algorithms shows that the former 
is able to find better quality tours for TSP. 

Keywords: travelling salesman problem; TSP; nature-inspired metaheuristic 
algorithms; whale optimisation algorithm; WOA; particle swarm optimisation; 
PSO. 
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1 Introduction 

Combinatorial optimisation solves discrete optimisation problems by determining the 
best possible solution from a finite set of possibilities. Any combinatorial optimisation 
problem seeks to find the maxima (or minima) of an objective function. TSP is a  
well-known NP-hard combinatorial optimisation problem that is significant in operations 
research and theoretical computer science (Papadimitriou, 1977). It may be formulated as 
the problem of determining the shortest closed tour in a given network that covers every 
node. Even in its most basic version, TSP has several uses, including planning, logistics, 
and the production of microchips. It shows up in numerous domains, such as DNA 
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sequencing, in a slightly modified form as a sub-problem. A common feature of hard 
combinatorial optimisation problems like TSP is large discrete search spaces with an 
excess of possible solutions. There is no way to conduct an exhaustive search using 
merely brute force under these circumstances. Thus, randomised algorithms are required. 
Random search algorithms and the word metaheuristic are sometimes used 
interchangeably. Metaheuristics are stochastic algorithms that integrate deterministic and 
stochastic elements and may be used to solve a variety of optimisation problems with just 
minor adjustments (Bianchi et al., 2009). They find optimal solutions within an 
acceptable time by iteratively trying to improve a candidate solution among very large 
spaces of candidate solutions with regard to a given measure of quality. The inspiration 
for them is frequently taken from the natural world. In recent years, nature-inspired 
metaheuristic algorithms have received widespread attention in research and these are 
being utilised for the modern intelligent solution approach. 

In nature, a large number of insects and other small organisms are generally organised 
in hierarchies, e.g., ants, bees and fish, etc. These natural intelligent swarms solve many 
problems in nature like finding sources, division of labour among nest mates, building 
nests etc. For example, ants find the shortest path between their nest and the food source 
even if subjected to the varying environment or despite the failure of individual ants via 
stigmergy (Theraulaz and Bonabeau, 1999). It is a form of indirect communication 
mediated by change in the environment. While searching for food ants leave behind a 
substance called pheromone which attracts other ants. Similarly, another example is bees 
looking for a new location for their beehive. Communication among bees regarding the 
characteristics of food sources takes place in the dancing area. This dance is called a 
waggle dance (Tereshko and Loengarov, 2005). At the outset, numerous scouts scope 
potential locations. Subsequently, upon returning, they perform a distinctive dance that 
expresses in code the direction of the new found site. The intensity of the bee’s dance 
reveals the excitement for the particular location. When several scouts select the same 
location, the entire swarm moves. The problems that the natural intelligent swarms solve 
in nature have significant counterparts in numerous engineering fields of the real world. 
Biologists and natural scientists are constantly simulating the behaviour of natural 
swarms into novel numerical optimisation techniques. As a result, swarm intelligence is 
transpiring all the time more important research area for researchers from engineering, 
economics, bioinformatics, operation research and many other disciplines. By mimicking 
nature-inspired swarming behaviour in computing methodologies, techniques emerge for 
hard optimisation problems that are robust, scalable and easily distributed. A list of 
various swarm intelligence-inspired algorithms is shown in Table 1. 

Population-based meta-heuristic algorithms exhibit a common characteristic 
irrespective of their nature. They split the search process into two phases: exploration and 
exploitation (Hu et al., 2019). The optimiser should embrace operators to globally 
explore the search space: during this part, movements (i.e., perturbation of style 
variables) ought to be randomised as much as possible. The exploitation part follows the 
exploration part and might be outlined as the method of investigating the promising 
area(s) of the search area. Therefore, exploitation pertains to the native search capability 
within the promising regions of search space found within the exploration part. Finding a 
correct balance between exploration and exploitation is the most difficult task in any 
meta-heuristic algorithmic rule due to the random nature of the optimisation method. 
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Table 1 Different swarm intelligence inspired algorithms 

Name of the algorithm Based on technique 
Ant colony optimisation (Dorigo et al., 1991) Foraging behaviour of ants. 
Particle swarm optimisation (Kennedy and 
Eberhart, 1995) 

Intelligent, experience-sharing, social flocking 
behaviour of birds 

Bee system (Sato and Hagiwara, 1997) Bees’ foraging principles 
Honey bee algorithm (Nakrani and Tovey, 
2003) 
BeeHive (Wedde et al., 2004) 
Bee colony optimisation (Teodorović and 
Dell’Orco, 2005) 
Bees algorithm (Pham et al., 2005) 
Artificial bee colony (Karaboga, 2005) 
Bees swarm optimisation (Drias et al., 2005) 
Honey bee foraging (Baig and Rashid, 2007) 
Fish swarm algorithm (Li et al., 2002) Fish school 
Glow-worm swarm optimisation 
(Krishnanand and Ghose, 2005) 

Behaviour of insects that are called 
glowworms 

Bacterial foraging optimisation (Passino, 
2002) 

Group foraging behaviour of bacteria such as 
E. coli and M. xanthus 

Cat swarm optimisation (Chu et al., 2006) Two major behavioural traits of cats. These 
are termed ‘seeking mode’ and ‘tracing 
mode’. 

Monkey search (Mucherino and Seref, 2007) Monkey’s trees climbing behaviour 
Firefly algorithm (Yang, 2008) Flashing behaviour of fireflies 
Cuckoo search (Yang and Deb, 2009) Brooding behaviour of some cuckoo species 
Mosquito host-seeking algorithm (Feng et al., 
2009) 

Host-seeking behaviour of mosquitoes 

Bumble bee mating optimisation (Marinakis  
et al., 2010) 

Inspired by the mating behaviour of the 
bumble bees 

Bat algorithm (Yang, 2010) Echolocation behaviour of micro bats 
Eagle strategy (Yang and Deb, 2010) Eagle’s hunting strategy: random search by 

Lévy flight and intensive chase by locking its 
aim on the target 

Krill herd algorithm (Gandomi and Alavi, 
2012 

Herding behaviour of krill individuals 

Wolf search algorithm (Tang et al., 2012) Imitates the way wolves search for food and 
survive by avoiding their enemies 

Social spider optimisation (Cuevas et al., 
2013) 

Foraging strategy of social spiders, utilising 
the vibrations on the spider web to determine 
the positions of preys 

Grey wolf optimiser (Mirjalili et al., 2014) It mimics the leadership hierarchy and hunting 
mechanism of grey wolves (Canis lupus)in 
nature 

 



   

 

   

   
 

   

   

 

   

   112 A. Kumar    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 1 Different swarm intelligence inspired algorithms (continued) 

Name of the algorithm Based on technique 
Elephant herding optimisation (Wang et al., 
2015) 

It is inspired by the herding behaviour of 
elephant group 

Raven roosting optimisation algorithm 
(Brabazon et al., 2016) 

Social roosting and foraging behaviour of one 
species of bird, the common raven 

Lion optimisation algorithm (Yazdani and 
Jolai, 2016) 

Based on simulation of the solitary and 
cooperative behaviours of lions such as prey 
capturing, mating, territorial marking, defence 
and the other behaviours 

Whale optimisation algorithm (Mirjalili and 
Lewis, 2016) 

It mimics the social behaviour of humpback 
whales. The algorithm is inspired by the 
bubble-net hunting strategy 

Grasshopper optimisation algorithm (Saremi 
et al., 2017) 

It mimics the behaviour of grasshopper 
swarms in nature for solving optimisation 
problems. 

Salp swarm algorithm (Mirjalili et al., 2017) The swarming behaviour of salps when 
navigating and foraging in oceans 

Swarm intelligence algorithms, drawing inspiration from the cooperative behaviours 
observed in social insects and other natural systems, offer a powerful approach to address 
intricate optimisation challenges, including the renowned travelling salesman problem 
(TSP) (Wu and Duan, 2023; Tohid and Özlem, 2022; Panwar and Deep, 2023; Özer  
et al., 2022; Mzili et al., 2023; Gong et al., 2023). 

Researchers routinely tailor the parameters and strategies of these algorithms to align 
with the distinctive features of the TSP. Demonstrating notable success, these algorithms 
have proven effective in discovering solutions that approach optimality for diverse 
instances of the TSP. 

Whale optimisation algorithm (WOA) is a swarm-based metaheuristic algorithm 
(Mirjalili and Lewis, 2016). WOA copies the pattern followed by the humpback whale 
during hunting. It is inspired by the spiral bubble-net hunting strategy. In WOA 
algorithm, the hunting behaviour of whale to chase the prey and using a spiral way for 
bubble-net attacking mechanism is simulated. In this paper, we study how to solve TSP 
by WOA, and propose a new discrete WOA for discrete optimisation problems based on 
genetic operators of genetic algorithm. This paper is structured as follows for the 
remaining sections: original WOA is briefly described in Section 2 while the suggested 
discrete genetic operators-based whale optimisation algorithm (GWOA) for addressing 
TSP is presented in section 3. Results acquired using GWOA are covered in Section 4. 
The article is concluded in Section 5 by describing its potential future 

2 Whale optimisation algorithm 

WOA was proposed by Mirjalili and Lewis in 2016. This algorithm is a simulation model 
of the whale’s unique characteristics like territorial defence, territorial takeover, 
laggardness exploitation and pride. From a theoretical perspective, WOA is often thought 
of as a worldwide optimiser as it includes exploration/exploitation ability (Mirjalili and 
Lewis, 2016). Furthermore, the projected hypercube mechanism defines a search space 
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within the neighbourhood of the most effective solution and permits different search 
agents to take advantage of this best record within that domain. Adaptive variation of the 
search vector Q allows the WOA algorithm to smoothly transit between exploration and 
exploitation: by decreasing Q, some iterations are devoted to exploration (|Q| ≥ 1) and the 
rest is dedicated to exploitation (|Q| < 1). Remarkably, WOA includes only two main 
internal parameters to be adjusted (Q and P). Three main concepts of the whale 
optimisation algorithm are encircling prey, bubble net attacking and the search for prey. 
These are discussed below: 

2.1 Encircling prey 

Humpback whales acknowledge the position of the prey and then encircle them (Mirjalili 
and Lewis, 2016). Since the position of the best solution within the search space is not 
evident a priori, WOA rule assumes that the best candidate solution is the target prey or is 
near to the optimum. After the simplest search agent is outlined, the opposite search 
agents can therefore try and update their positions towards the simplest search agent. This 
behaviour is modelled by the subsequent equations. 

( ) ( )∗= ⋅ −
   
L P Y t Y t  (1) 

1 )( () ∗+ = − ⋅
  

Y tt Y Q L  (2) 

where t indicates the current iteration, Q and P are coefficient vectors, Y* is the position 
vector of the best solution obtained so far, Y is the position vector, | | is the absolute 
value, and · is an element-by-element multiplication. It is worth mentioning here that Y* 
should be updated in each iteration if there is a better solution. 

The vectors Q and P are calculated as follows: 

12= ⋅ −
   Q m r m  (3) 

22= ⋅
 P r  (4) 

where a is linearly decreased from 2 to 0 over the course of iterations (in both exploration 
and exploitation phases) and r is a random vector in [0, 1]. 

The same idea is extended to a search space with n dimensions and therefore the 
search agents can move in hyper-cubes around the solution obtained to this point. As 
mentioned in the previous section, the humpback whales conjointly attack the prey with 
the bubble-net strategy. 

2.2 Bubble-net attacking 

The bubble-net attacking behaviour of humpback whales can be described by two 
techniques as follows (Mirjalili and Lewis, 2016): 

2.2.1 Shrinking encircling mechanism 
This behaviour is achieved by decreasing the value of m in equation (3). Note that the 
fluctuation range of Q is also decreased by m. Q is a random value in the interval  
[–m, m] where a is decreased from 2 to 0 over the course of different iterations. Using 
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random values for Q in [–1, 1], the new position of a search agent can be defined 
anywhere in between the original position of the search agent and the position of the 
current best search agent. 

2.2.2 Spiral updating position 
This approach measures the distance between the whale located at (Y, Z) and the prey 
located at (Y*, Z*). A spiral equation is made between the position of whale and prey to 
copy the helix-shaped movement of humpback whales as follows: 

( 1) cos(2 ) ( )∗⋅′+ = ⋅ +
  

blY t L πl Y te  (5) 

where | ( ) ( )|∗′ = −
  
L Y t Y t  and indicates the distance of the ith whale to the prey (best 

solution obtained so far), b is a constant for defining the shape of the logarithmic spiral, l 
is a random number in [–1, 1], and · is an element-by-element multiplication. 

The humpback whales swim round the prey along a shrinking circle and on a spiral 
shaped path at the same time. To model this coincidental behaviour, it is assumed that 
there is an equal likelihood of deciding between either the shrinking peripheral 
mechanism or the spiral model to update the position of whales throughout optimisation. 
The mathematical model is as follows: 

( ) if 0.5( 1)
cos(2 ) ( ) it 0.5

∗

∗

 − ⋅ <+ =  ′ ⋅ ⋅ + ≥

 
 

bl

Y t Q L pY t
L e πl Y t p

 (6) 

where p is a random number in [0, 1]. In WOA, the humpback whales find prey 
randomly. The mathematical model of the search is as follows. 

2.3 Search for prey 

WOA uses Q with random values greater than 1 or less than –1 to force the search agents 
to go far away from a reference whale. |Q|> 1 emphasises exploration and allows the 
WOA algorithmic program to perform a worldwide search. The mathematical model is as 
follows: 

= ⋅ −
   

randL θ P Y Y  (7) 

( 1)+ = − ⋅
  

randY t Y Q L  (8) 

where Yrand is a random position vector (random whale) chosen from the current 
population of the whales. 

WOA cannot be utilised to directly resolve discrete optimisation problems because it 
was developed for continuous optimisation where it can converge quickly on the best 
solution or solutions in the high dimension. TSP, however, is an NP-hard discrete 
problem. Since the variables are integers, the arrangement of their values in the various 
dimensions indicates a distinct solution with a different objective function value. As a 
result, in order to solve TSP efficiently, the typical whale optimisation technique must be 
adjusted to account for the unique requirements of the issue. Researchers have suggested 
many DWOA algorithm variations in the literature (Zamani and Nadimi-Shahraki, 2016; 
Abdel-Basset et al., 2017; Mafarja and Mirjalili, 2017; Hussien et al., 2018; Reddy et al., 
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2018; Hussien et al., 2019). In Zhang et al. (2021), a discrete whale optimisation 
algorithm with variable neighbourhood search was proposed to address the TSP. In this 
paper a new discrete GWOA is presented to address TSP, which is discussed next. 

3 GWOA for TSP 

TSP is a well-known NP-hard problem in optimisation in the disciplines of computer 
science and operations research. It asserts that given a set of cities and distances between 
each pair of cities, a salesperson must visit each city precisely once and return to the city 
where he began his tour. What is the shortest possible path that the salesman must take to 
finish his tour? The solution to the problem can be found out by comparing each  
round-trip route to find the shortest one. But with the growing number of cities, the 
number of possible roundtrips outpaces the capacity of even the most powerful 
computers. Therefore, classical mathematical methods can not be used to address the 
TSP. A wide variety of alternative solutions have also been developed in an effort to 
discover the optimal solution as quickly as feasible. Nature-inspired algorithms have been 
successful in finding the solutions that are very near to the optimal. In this paper, TSP is 
solved using GWOA algorithm and its performance is compared with discrete particle 
swarm optimisation (PSO) algorithms on the basis of tour length. 

Suppose there are n cities and the sequence of cities that shall be visited serves as the 
coding for the solution. Since each element in the solution is represented by a city 
number, any solution X can be represented as (x1, x2, x3, …, xn), where xj ∈ [1, n] and any 
xi ≠ xj. The following fitness function is used to calculate the tour length for the TSP: 

( ) ( )
1

1 1
1

, ,
−

+
=

= +
n

i i n
i

f d x x d x x  (9) 

where d(xi, xi+1) is the distance between the cities xi and xi+1 · d(xn, x1) is the distance 
between the city xn and the city x1. 

3.1 Proposed GWOA 

In ElMousel et al. (2021), a novel discrete WOA was proposed for solving the 
capacitated vehicle routing problem. In this paper this discrete WOA has been modified 
to apply it on TSP. Similar to humpback whales hunting in groups, GWOA starts with a 
random population of TSP solutions as whales. The following three steps make up the 
hunting procedure. 

1 Encircling the target prey: during hunting, humpback whales explore the ocean to 
identify the whereabouts of their prey. As soon as they locate the prey, they start 
enveloping them. Since, we are solving TSP, we are looking for some solution that 
will be the shortest route feasible among others. In this case, the search space which 
consists of all feasible TSP solutions, corresponds to the ocean. Each solution of the 
TSP is representing a unique whale agent. Furthermore, it is believed that the current 
best TSP solution is near the target prey, or the best solution, as the location of the 
ideal prey is not known beforehand. All the other whales update their positions in 
accordance with the best whale agent. 
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2 Bubble-net attacking: this is the exploitation phase of WOA where humpback whales 
exhibit two possible types of movements: either travelling in a narrowing circle 
around their target prey or travelling in a spiral path. In the first case, each whale’s 
new position can be specified anywhere between its initial position and the position 
of the best whale at the time. The second choice, however, updates the spiral location 
in accordance with how far apart each whale is from its target prey. 

3 Searching for prey: this is the exploitation phase of WOA where the position of a 
search agent is updated based on a randomly selected search agent rather than using 
the best search agent found thus far. 

The objective function of the TSP, which is shortest possible tour length that the 
salesman must cover to visit each city precisely once and return to the city where he 
began his tour, is used to determine each whale’s fitness. 

WOA was originally proposed for continuous optimisation that allows the updating of 
whales’ positions in a continuous domain. TSP is a combinatorial optimisation problem 
that can not be addressed by the original WOA. So, a discrete WOA that updates the 
position of whales on the basis of the crossover operator of the genetic algorithm is 
presented. Two different crossover operators: partially mapped crossover and order 
crossover operators are used which are described next. 

3.1.1 Partially mapped crossover (PMX) operator 
Step 1 Choose two parents to mate. 

: 1 2 3 4 5 6 7 2 : 5 4 6 7 2 1 3P P  

Step 2 Using crossover points, choose a substring at random from the parents. 

 
Step 3 Implement the two-point crossover. 

 
Step 4 Identify mapping relationships using substrings 
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Step 5 To legitimise offsprings in unselected substrings, use the mapping. 

1: 3 5 6 7 2 1 4 2 : 2 7 3 4 5 6 1O O  

3.1.2 Ordered crossover operator 
It is a variation of PMX with a different repairing procedure. It creates offsprings by 
picking a parent’s subtour and keeping the relative order of the other parent’s bits. 

1: 1 2 3 4 5 6 7 2 : 5 4 6 7 2 1 3P P  

Step 1 Select a substring from a parent at random. 

 
Step 2 Copy the substring into the corresponding location of it to create a proto-child. 

1: 3 4 5 6 2 : 6 7 2 1O O  

Step 3 Remove the cities from the second parent that are already in the substring. The 
cities that the proto-child requires are included in the resulting sequence of 
cities. 

Step 4 In order to make offspring, place the cities in the unfixed positions of the  
proto-child from left to right in the prescribed order of the sequence. 

1: 2 1 3 4 5 6 7 2 : 4 5 6 7 2 1 3O O  

The exploitation phase: this phase achieves the local minimum by updating the whales’ 
positions using either the spiral model or the declining encircling process with an equal 
probability. 

( )
( )

1

2

( ), ( ) , if 0.5
( 1)

( ), ( ) , if 0.5
′ < + =  ′ ≥  

best

best

f X t X t p
X t

f X t X t p
 (10) 

where f1 and f2 are partially mapped crossover operator and order crossover operators 
respectively between the current whale and the best whale. p′ is a random number 
between 0 and 1. The fitter of the two offspring produced by the crossover operator is 
chosen as the updated solution. 

The exploration phase: this phase improves the ability of the global search by choosing a 
random whale from the population and applying a crossover operator between this 
random whale and the current whale. Again, the fitter of the two offspring produced by 
the crossover operator is chosen as the updated solution. 

( )3 (( 1) ( ), )+ = randX t f X t tX  (11) 
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where f3 represents the ordered crossover operator between the randomly chosen whale 
and the current whale. 

Balancing probability: GWOA strikes a balance between the exploration phase and the 
exploitation phase by comparing the balancing probability (pb) with a random number  
r ∈ (0, 1). If r ≤ pb, the exploitation phase is used to update the solution, otherwise, the 
solution is updated by using the exploration phase. Balancing probability is calculated as 
follows: 

2

max
1  = −  

 
b

iterp
iter

 (12) 

where iter is the current iteration and itermax is the total number of iteration. 

2-opt mutation: 2-opt mutation (Croes, 1958) is a local search strategy for TSP to precise 
solutions quickly. In the proposed GWOA, the concept of 2-opt mutation is used so as to 
modify the original WOA for TSP. 2-opt mutation is applied on the best whale in each 
iteration. 

Figure 1 The routes for TSP before and after 2-opt 

 

The pseudo-code of the GWOA is shown in Figure 2. 
Initially, the number of whale search agent in the population are defined as ps and a 

termination criterion is set as the maximum number of iterations. A random tour is 
assigned to each of the whale in the population. Then, fitness value (i.e., tour length) of 
each whale search agent is computed. The best whale Xbest in the population is 
determined. In each iteration step, the position X(t)of each whale is updated based on the 
position of the best whale using the crossover and 2-opt mutation operators discussed 
above. The fitness value of each new whale is computed. The best whale search agent is 
updated if possible. Finally, the best whale Xbest is returned as the outcome of the whole 
optimisation procedure. 

The flow chart of GWOA algorithm is also shown in Figure 3. 
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Figure 2 Pseudo-code of the GWOA 

 

Figure 3 Flowchart of GWOA 
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4 Illustrative example: tackling TSP with GWOA 

Consider the fully connected graph of five vertices as depicted in Figure 4. 

Figure 4 Fully connected graph with five vertices (see online version for colours) 

 

In TSP, the aim is to find the shortest Hamiltonian cycle in a fully connected graph. In 
this example, the number of different Hamiltonian cycles is (5 – 1)!/2 = 12. The possible 
tours and respective costs are shown in Table 2. 
Table 2 Possible TSP tours and respective costs 

Sr. no. Tour Cost 
1 (1, 2, 3, 4, 5) 25 
2 (1, 5, 3, 4, 2) 29 
3 (1, 4, 3, 2, 5) 21 
4 (1, 3, 2, 4, 5) 27 
5 (1, 2, 5, 4, 3) 21 
6 (1, 3, 5, 2, 4) 23 
7 (1, 4, 3, 5, 2) 21 
8 (1, 2, 3, 5, 4) 23 
9 (1, 3, 5, 4, 2) 27 
10 (1, 3, 4, 2, 5) 25 
11 (1, 4, 5, 2, 3) 19 
12 (1, 4, 2, 3, 5) 27 

Let the population size ps = 6. A population of six whales is initialised randomly from the 
available fully connected graph shown in Table 3. 
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Table 3 Initial population of six whales 

Whale (i) Position (Xi) 
1 (1, 5, 3, 4, 2) 
2 (1, 3, 2, 4, 5) 
3 (1, 3, 5, 2, 4) 
4 (1, 4, 3, 2, 5) 
5 (1, 3, 4, 2, 5) 
6 (1, 4, 5, 2, 3) 

The fitness, i.e., tour length of each of the six whales is computed, as shown in Table 4. 
Table 4 Fitness or tour length of six whales 

Whale (i) Position (Xi) Fitness (tour length) 
1 (1, 5, 3, 4, 2) 29 
2 (1, 3, 2, 4, 5) 27 
3 (1, 3, 5, 2, 4) 23 
4 (1, 4, 3, 2, 5) 21 
5 (1, 3, 4, 2, 5) 25 
6 (1, 4, 5, 2, 3) 19 

The best whale in the population with the shortest possible tour length is Xbest = (1, 4, 5, 
2, 3). 

Now, for each whale of the population in position Xi(t) the next position Xi(t + 1) is 
computed. 

The first iteration of position update of the first whale is illustrated below: 

1Current iteration counter 1, (1) (1, 5, 3, 4, 2), (1) (1, 4, 5, 2, 3)= = =bestt X X  

Let the maximum number of iterations IM =100. 
So balancing probability: 

2

max
2

1

11
100

1 .0001
0.9999

 = −  
 

 = −  
 

= −
=

b

b

iterp
iter

p

 

Let p′ = 0.7532 and rand = 0.4324 
Now p′ > 0.5, so ordered crossover operator is performed between X1(1) = (1, 5, 3,  

4, 2) and Xbest(1) = (1, 4, 5, 2, 3). 

1: 1 5 3 4 2 2 : 1 4 5 2 3P P  

Random substrings are selected from the two parents as follows: 
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These substrings are copied into the corresponding locations to create two proto-children 
as follows. 

1: 5 3 2 : 4 5O O  

Following this, the bits from the opposite parent are duplicated in the same sequence but 
without the existing bits, beginning at the second cut point of one parent. 

For example, the bit sequence in the second parent from the 2nd cut point is ‘2 →3→ 
1→ 4→ 5’. After removing the existing bits 5 and 3 of the first offspring the new 
sequence is ‘2→1→4’. This sequence is duplicated in the first offspring starting from the 
2nd cut point. Similarly, the other offspring is generated. 

1: 4 5 3 2 1 2 : 3 4 5 2 1O O  

Now, one of the two offsprings is chosen randomly as the updated first whale. 
So the updated first whale after the first iteration is 

3 4 5 2 1  

5 Experimental results 

The proposed algorithm GWOA and three recent discrete PSO algorithms: standard 
particle swarm optimisation (SPSO) (Chuan and Quanyuan, 2007), adaptive particle 
swarm optimisation (APSO) (Zhan et al., 2009) and quantum-based particle swarm 
optimisation (QPSO) (Ho et al., 2013) were implemented using MATLAB 2015a in 
windows 10 environment. These algorithms were compared by conducting experiments 
on an Intel-based 2.5 GHz PC having 8 GB RAM. Table 5 shows the comparisons of the 
lengths of shortest tours found by these algorithms. The TSP problem set is taken from 
the http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/. Number of iterations and population 
size are 400 and 400 for all the test cases. 
Table 5 Experimental results of solving TSP using GWOA with SPSO, QPSO and APSO. 

Sr. no. Problem name GWOA SPSO QPSO APSO 
1 Att48 50,911.53 124,922.3 106,805.4 88,240.69 
2 Bayg29 12,579.9 16,587.71 15,918.07 15,663.98 
3 Burma14 31.22692 31.20877 31.78388 32.47089 
4 Ulysses16 74.10874 77.22789 76.59773 75.63054 
5 Ulysses22 79.10002 90.35913 90.64342 94.90065 

The performance of these algorithms was also compared graphically by plotting graphs 
between the best fitness and iteration counter when applied to these five benchmark TSPs 
in Figures 5–9. 
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Figure 5 Fitness vs. iterations, Att48 (see online version for colours) 

 

Figure 6 Fitness vs. iterations, Bayg29 (see online version for colours) 

 

Figure 7 Fitness vs. iterations, Burma14 (see online version for colours) 
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Figure 8 Fitness vs. Iterations, Ulysses16 (see online version for colours) 

 

Figure 9 Fitness vs. iterations, Ulysses22 (see online version for colours) 

 

The effect of making the changes in the initial population size for GWOA algorithm on 
the results of Att48 problem set is shown in the Table 6 and Figure 10. 
Table 6 Effect of initial population of WOA on the results of Att48 (see online version  

for colours) 

Sr. no. Population size Fitness result 
1 50 77.09092 
2 100 76.77059 
3 150 79.10002 
4 200 76.12375 
5 250 79.44039 
6 300 80.95955 
7 400 77.09092 
8 500 76.77059 
9 600 79.10002 
10 700 76.12375 
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Figure 10 Population size vs. fitness, Att48 (see online version for colours) 

 

6 Conclusions 

In this paper, a new discrete WOA has been presented to solve the TSP. The WOA 
algorithm, which is was inspired by the way humpback whales hunt, was initially 
proposed to solve continuous optimisation problems. The original WOA has been 
hybridised by combining the approach with crossover operators from the GA and adding 
the 2-opt exchange to further enhance the solution. Simulations were carried out on  
five TSP instances using GWOA, and its performance was compared with three other 
state-of-the-art discrete PSO algorithms. Experimental results showed that the proposed 
algorithm GWOA performed well for TSP. Based on this, it can be concluded that 
GWOA can be used to solve other large discrete combinatorial optimisation problems. 
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