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Abstract: Spatial-exploitation convolutional neural networks (CNNs) have
a simplified architecture compared to other CNN models. However,
devices with limited computational resources could struggle with
processing spatial-exploitation CNNs. To address this, we investigate two
methods to optimise spatial-exploitation CNN models for time efficiency
and classification accuracy: hyperparameter-tuning, and human-in-the-loop
(HITL). We apply grid-search to optimise the hyperparameter space, whilst
HITL is used to identify whether the time-to-accuracy relationship of the
optimised model can be improved. To show the versatility of combining
the two methods, CIFAR-10, MNIST, and Imagenette are used as model
input. This paper contributes to spatial-exploitation CNN optimisation
by combining hyperparameter-tuning and HITL. Results show that this
combination improves classification accuracy by 1.47-2.34% and reduces
the time taken to conduct this task by 27-28%, depending on dataset.
We conclude that combining hyperparameter-tuning and HITL are a viable
approach to optimise spatial-exploitation CNNs for devices with limited
computational resources.
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Reference to this paper should be made as follows: Beveridge, L. and
Dahal, K. (2024) ‘Optimisation of spatial-exploitation CNN models through
hyperparameter-tuning and human-in-the-loop combination’, Int. J. Artificial
Intelligence and Soft Computing, Vol. 8, No. 2, pp.147-158.

Biographical notes: Luke Beveridge holds an MRes in Al from the
University of the West of Scotland (UWS) and is a PhD candidate in
the UWS Creative Computing Technologies Research Group. His research
focuses on design processes for extended reality applications and how these
are applied to industrial training, with an interest in serious games and Al to
support learning and content generation.

Keshav Dahal is a Professor of Intelligent Systems and the Director of the
Artificial Intelligence, Visual Communication and Network (AVCN) Research
Institute at the University of the West of Scotland (UWS), UK. Before joining

Copyright © 2024 Inderscience Enterprises Ltd.



148 L. Beveridge and K. Dahal

UWS, he was with Bradford and Strathclyde Universities in UK. He obtained
his PhD and Master from Strathclyde. His research interests lie in the areas
of applied Al, blockchain, intelligent systems, trust/security modelling in
distributed systems, and scheduling/optimisation problems. He has published
extensively with award winning papers, and has sat on organising/program
committees of over 60 international conferences including as the General
Chair and Programme Chair. He is a senior member of the IEEE.

1 Introduction

In deep learning (DL), image classification has achieved great strides in recent years.
In particular, advancements in image analysis and key features identification allow
to categorise a collection of images appropriately with a high level of classification
accuracy (Hou et al., 2021). Spatial-exploitation convolutional neural networks (CNNs)
(Bhatt et al., 2021), a subclass of CNNs (LeCun et al., 1989), are ideal for tasks related
to image classification due to their simplified architecture.

Spatial-exploitation CNNs originate from LeCun’s seminal work (LeCun et al.,
1989). LeCun’s simple architecture presents a small number of parameters, as such it
could be considered as the first low complexity spatial-exploitation CNN.

However, modern spatial-exploitation CNNs present different architectures
depending on the type of model that is selected, introducing varying levels of model
complexity (Bhatt et al., 2021). Complex architectures pose the problem of an increase
in time complexity (Simonyan and Zisserman, 2015; He et al., 2016; Xin et al., 2020;
Tuba et al., 2021), accuracy (Joshi et al., 2021), and power consumption (Stamoulis
et al., 2018). This problem is particularly true for computational systems with limited
processing power (Sen and Ozkurt, 2020), as classification tasks for large datasets
on these devices are either prevented to be completed or require a considerable
amount of time (Xin et al., 2020). To address this, we explore combining optimisation
methods such as hyperparameter tuning (Liashchynskyi and Liashchynskyi, 2019) and
human-in-the-loop (HITL) (Wu et al., 2022).

To show the versatility of combining the two methods, several heterogeneous
datasets (Parvin and Hasan, 2020; Huang et al., 2017), such as CIFAR-10 (Krizhevsky,
2009), MNIST (LeCun et al., 1989), and Imagenette (Deng et al., 2009), are used in
this paper as input for the optimised spatial-exploitation CNN model. Each dataset used
within the study contains images that are either grey-scale or RGB (Makantasis et al.,
2015). This variety allows to test the robustness of the optimised spatial-exploitation
CNN model, as well as showing its potential applications. The CIFAR-10 dataset is used
to train the initial CNN model, whilst the MNIST and Imagenette datasets demonstrate
the applicability of the optimised model to different use cases.

There are various spatial-exploitation CNN models that have their roots in LeCun’s
work (LeCun et al., 1989) such as AlexNet (Krizhevsky et al., 2017), ResNet50 (Liu
et al., 2020) and GoogLeNet (Szegedy et al., 2015) — otherwise known as Inception
(Szegedy et al., 2015). We selected the AlexNet model to apply our optimisation
technique to show how it can benefit different fields, due to the wide range of its
applications, such as synthetic aperture radar (SAR) imagery classification (Wang et al.,
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2021), alcoholism detection (Wang et al., 2019), pathological brain detection (Luo et al.,
2019), and lung cancer detection (Agarwal et al., 2021).

For the purpose of this paper hyperparameter tuning will be focused on attributes
within each of the layers, such as the number of convolution filters, number of epochs,
learning rate value, and the dropout rate in fully connected layers (Berg and Hjelmervik,
2021; Vrskova et al., 2021). The quantity of layers contained by the spatial-exploitation
CNN model architecture will remain constant as well as the selected activation function,
ReLU, due to its already known proficiency (Krizhevsky et al., 2017).

We found that hyperparameter tuning proves to be beneficial in terms of significant
time complexity reduction of the spatial-exploitation CNN model, at the cost of
classification accuracy. The application of HITL helps to maintain the time performance
whilst striving to regain classification accuracy. To achieve this, the HITL process
exclusively optimises the learning rate hyperparameter dynamically during run-time
(Usman et al., 2021).

This paper contributes to spatial-exploitation CNNs by exploring the combination
of deep learning techniques and a layer-wise filter-pruning approach using the AlexNet
model. A novel technique is proposed for tuning the learning rate hyperparameter
through human interaction in real-time during model testing.

The next section explores related literature, followed by a description of the
methodology used to optimise AlexNet as well as data handling procedures. The
experimentation conducted on the new approach is then detailed, followed by the results
obtained from it. We then conclude with remarks outlining the impact of the techniques
used within this paper for the CNN model optimisation.

2 Related work

Wang et al. (2021) highlight that the amount of time required to perform classification
tasks in CNN is an issue. To address time related issues in spatial exploitation
CNNs, deep learning techniques such as hyperparameter tuning (Joshi et al., 2021) and
human-in-the-loop (Wu et al., 2022) are used. These optimisation techniques can be
used on spatial exploitation CNNs to enhance metrics such as time (Tuba et al., 2021),
classification accuracy (Joshi et al., 2021), and power consumption (Stamoulis et al.,
2018).

CNN models often contain multiple hyperparameters such as, number of layers,
number of filters, learning rate, dropout, and stride values (Krizhevsky et al., 2017; Bhatt
et al., 2021). Hyperparameter tuning allows to optimise a CNN model in a localised
way by focusing on specific parameters of the CNN model.

Usman et al. (2021) and Budd et al. (2021) demonstrate that HITL can be applied
to both the input and output stages of a CNN model for optimisation, whilst Kumar
et al. (2016) theorises how human intervention within the training execution loop can
also optimise the CNN model.

In this paper, HITL explores Kumar et al.’s (2016) theory with a focus on
dynamically optimising the learning rate hyperparameter during model training with
a human intervening during testing run-time of the CNN model. The purpose of this
is to explore if human intervention at this point of the mode life-cycle can improve
classification accuracy whilst maintaining the time efficiency.
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Combining the deep learning techniques of hyperparameter tuning and HITL is
important because while hyperparameter tuning improves spatial exploitation CNN time
efficiency, it comes to the cost of classification accuracy. In this paper we show that,
by adding HITL techniques to the optimisation process, it is possible to bring back
classification accuracy of the model while keeping the efficiency introduced by the
hyperparameter tuning technique.

3 Research methodology

An iterative approach was taken in this paper combined with Sen and Ozkurt
(2020) comparative approach, comparing the standard AlexNet CNN model with an
hyperparameter tuned version of itself (Berg and Hjelmervik, 2021; Vrskova et al.,
2021).

A mapping of how the spatial exploitation CNN model AlexNet is gradually
optimised can be seen in Figure 1, identifying the core components that are explained
in detail throughout this paper.

Figure 1 An overview of the how deep learning techniques are used to optimise a CNN
model (see online version for colours)
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3.1 Data collection and results gathering

The initial draw of focus within this portion of the research project looks towards
identifying sufficient datasets for use within the experimental part of the study. For
appropriate datasets to be selected they required to be image-orientated primarily for
application in the CNN models. Then datasets that were selected differentiated in terms
of the number of channels pertaining to the selection of images which each possessed;
as more explicitly detailed in the related work section (Huang et al., 2017; Akshay et al.,
2020; Makantasis et al., 2015) — allowing for the model produced to be applied in more
instances.

An integral portion of the studies data collection takes the form of the results
produced in the experimentation conducted, as identified previously. These results will
be collected from the standard un-tuned AlexNet model as well as the optimised
model that has undergone hyperparameter-tuning. Throughout this optimisation process
deep learning techniques are employed as the hyperparameter search space is detailed,
allowing for a grid search to be applied (Fraccaroli et al., 2021) through the use of the
Keras-tuner library (Abdelminaam et al., 2021).
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3.2 Data analysis and interpretation

Due to the chosen search algorithm for the optimisation process being grid search, this
allows for each individual hyperparameter to be examined separately and in turn identify
their specific impact on the model performance. This analysis aids in isolating statistics
for the parameters in the search space that benefited more performance the more than
others as well as noticing redundant parameters in the search space that could not be
optimised any further.

Once data has been collated from both of the aforementioned models responsible
for processing the previously mentioned datasets, this will then allow for improved
interpretation of the results retrieved as comparisons will be able to be conducted on the
resultant datasets. The key values which would be inspected to achieve this comparison
would be the time complexity and the classification accuracy across the number of
epochs that each model will process.

Presenting what the findings mean from the analysis portion of the study is the key
objective when interpreting the data comparison. After both models have been looked at
comparatively, there should be a clear insight as to how the hyperparameters have either
aided or hindered performance, allowing for the optimised model to be refined further
in a process that intends to be iterative in nature and thus relating to the methodology
outlining the project as a whole.

3.3 Hyperparameter tuning

To conduct hyperparameter tuning a tuning framework is required, for this paper
Keras-tuner was selected due to its common use when applying the hyperparameter
tuning deep learning technique (Manaswi, 2018) and for its availability of search
algorithms.

Search algorithms found within the Keras tuning framework are differing methods
of hyperparameter tuning. The algorithms that are commonly utilised within CNN
optimisation vary between grid search, random search, hyperband, and Bayesian
optimisation (Putatunda and Rama, 2018; Liashchynskyi and Liashchynskyi, 2019; Joshi
et al., 2021). Grid search is the conventional method of hyperparameter optimisation that
conducts an exhaustive search over the entire hyperparameter search space; the search
space is the hyperparameters selected for tuning. Due to the exhaustive nature of this
approach, it can be slower than the alternatives. Despite the slower time to tune the
hyperparameters, grid search is appropriate to use as it looks at all combinations within
the hyperparameter search space. This ensures the most optimal combination within the
search space is found, unlike random search that has a chance to overlook the optimal
combination.

In terms of how the tuning was carried out once a framework and search algorithm
were decided upon, consideration was given towards the work conducted by Tajbakhsh
et al. (2016). This focused on full training vs. fine-tuning in a layer-wise approach,
and ultimately is the reasoning behind showing this is a viable method of tuning. This
contributed to the choice to utilise a layer-wise hyperparameter tuning in this paper.
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3.4 Human-in-the-loop discussion

The framework that has been discussed thus far is met with the addition of the HITL
machine learning technique. The purpose of this implementation was to understand
whether it was possible to improve classification accuracy. This was whilst maintaining
the previously enhanced time complexity of the CNN model that was achieved from
hyperparameter tuning. As seen later in the paper, although the model time complexity
improved, there was a slight decline in the final classification accuracy. HITL intends
to address this recognised deficit.

The work of Usman et al. (2021) where implementation of a HITL learning process
is involved in CNN model enhancement draws parallels to the work in this paper.
However, inclusion of the human in this HITL process is focused during the run-time
of the CNN model instead. The design of this process involved monitoring the learning
rate hyperparameter whilst a dynamic learning rate was applied, altering after each
epoch. The value of the learning rate could either be incremented or decremented after
each epoch. Ultimately, a decaying learning rate (Goodfellow et al., 2016) proved to
give the only recognisable benefit. The issue that had to be addressed at this stage
was understanding what method of decaying the learning rate was best suited to the
CNN model. For this to be achieved, learning rates were decremented in various
implementations when applied to the CNN model. During run-time of the model the
human in the process would identify whether values either became stagnant or began to
have negative impact upon the classification accuracy or time complexity of the model.
The human would know this by observing the resultant time and classification accuracy
values given after each epoch.

4 Experimentation and results

Preliminary experimentation was conducted to observe the effect of hyperparameter
tuning upon time and accuracy for each individual hyperparameter applied. Table 1
displays the obtained results showing the values for hyperparameters of dropout rate,
learning rate and number of filters. It should be noted that the initial dropout rate
value of 0.4 was taken from an original AlexNet study (Guo et al., 2017). After
tuning, this value remained consistent from this paper and therefore was not included
in Table 1 containing each optimisation from the hyperparameter search space. The
results are incrementally shown to illustrate the individual effect each had throughout
the optimisation process.

After the preliminary results were explored and the optimal values for differing
hyperparameters were obtained, this then allowed for a more detailed exploration of the
changed model architecture. Figure 2 illustrates a comparison over 30 epochs between a
hyperparameter tuned version of the AlexNet model and its equivalent AlexNet model
control experiment which has no modification through hyperparameter tuning. The
experimentation of each of the discussed models were carried out over the course of
30 epochs and the hyperparameter value of the number of filters for each model and
their layers was of focus at this point. After already previously identifying an optimal
hyperparameter value for dropout rate and learning rate. A linear trendline was applied
to the results obtained from each model, where it is seen that the relation between
accuracy and time is more favoured within the tuned AlexNet model.
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Table 1 The values for hyperparameters during CNN model optimisation, whilst observing
classification accuracy and time complexity

CNN model variations Epochs Time Acc (%) LR DR

Standard AlexNet model as control 5 24 m 47 s 63.8% 0.001 0.4
Optimised learning rate 20 m 20 s 66.1% 0.0001 0.4
Optimised layer 1 filter (64) 19 m 40 s 66.3% 0.0001 0.4
Optimised layer 2 filter (224) 17m 54 s 66.1% 0.0001 0.4
Optimised layer 3 filter (288) 17m 30 s 65.6% 0.0001 0.4
Optimised layer 4 filter (288) 15m 45 s 65.2% 0.0001 0.4
Optimised layer 5 filter (224) 15 m 65.3% 0.0001 0.4

W L W W D

Figure 2 Comparison of hyperparameter tuned and untuned version of the AlexNet model
with CIFAR-10 dataset (see online version for colours)
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The overall impact of the hyperparameter tuning allowed for a time complexity
optimisation of 28% whilst only losing a marginal amount of classification accuracy;
the resultant being less than a single percentile. Similarly, when applying this enhanced
CNN model to other datasets it was found that the same trend of time reduction to run
all epochs continued despite the alteration to the dataset and the respective quantity of
channels it possessed. Figure 3 illustrates the optimised time for the MNIST dataset
whilst Figure 4 does similar for the ImageNet subset, Imagenette. The optimised times
were 28.38% and 27.21% respectively whilst maintaining less than a loss of less than
1% to classification accuracy.

This implies that through following the methodology applied within this paper less
computationally demanding model architectures can be achieved with the application
of deep learning techniques such as hyperparameter tuning. As a result, the learning
rate optimisation aided in increased classification accuracy with a slight improvement
to time taken to run the model, whilst the reduction to the number of filters in each
layer significantly aided in the time complexity of each model decreasing. This is
effectively applying a method known as pruning (Li et al., 2017), in which the redundant
parameters have been removed from the model therefore allowing for compression of
the CNN model consequently.
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Figure 3 The classification accuracy for applying the tuned and preliminary CNN model on
MNIST dataset (see online version for colours)
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Figure 4 The classification accuracy for applying the tuned and preliminary CNN model on
Imagenette dataset (see online version for colours)
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Human-in-the-loop (HITL) learning was implemented in an attempt to further
the previously mentioned gained efficiencies, specifically this was focused on the
optimisation of the learning rate hyperparameter. The approach taken to achieve this
was by applying learning rate schedules to the model, allowing for the learning rate to
dynamically alter during the training process (Goodfellow et al., 2016). This is where the
HITL technique becomes more apparent as this was required to identify the drawbacks
or benefits to using certain learning rate schedules.

It was discovered that incrementing the learning rate over time negatively impacted
the classification accuracy regardless of the delta between each epoch. In contrast, when
decrementing the learning rate, otherwise known as a decaying learning rate, this seen
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negative effect as well. This occurred when the delta was too large or when the decay
transitioned back to a constant. However, there was one case where benefit was seen
to implementing a decaying learning rate. Specifically, the decaying value was derived
from the beginning learning rate divided by the quantity of epochs that the model would
execute; this caused for a small gradual decay between each epoch. As seen in Figure 5,
the model that had the dynamic learning rate attained a higher classification accuracy
compared to the previous tuned model without a dynamic learning rate. Almost every
epoch experienced an increase to classification accuracy between 1.47-2.34% whilst not
experiencing any alteration to the total time taken to run the model.

Figure 5 The classification accuracy comparison between the previously tuned model
alongside a version of the tuned model with a dynamic learning rate
(see online version for colours)
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5 Conclusions

It can be noticed that a brute force approach was taken in the hyperparameter tuning
segment of this paper, due to the usage of a grid search algorithm. This allows
for the ideal of a less computationally intensive convolutional neural network to be
discovered whilst also positively impacting upon the execution time of the model
by a significant degree. Importantly, this was achieved as a level of classification
accuracy was maintained. This is a success within itself as there is normally a trade-off
between sacrificing classification accuracy at the cost of improving time. The latter
half of the study that involved HITL learning took the previous success and allowed
for classification accuracy to be increased, whilst keeping the previously reduced
time complexity at a constant. This has an overwhelmingly positive impact on the
outcome of the CNN model architecture as both classification accuracy and the time
complexity benefited from the techniques implemented. Considering the applications of
the optimised model in conjunction with the different datasets that are applicable for
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use, it can be concluded that there is a strong potential for the findings to be discovered
that pertain to a more diverse fashion for moving ahead with future work.
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