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Abstract: Induction motors stand out for their robustness and are widely used 
in the industrial sector. Literature studies have focused more on rotor faults 
because rotor fault signatures are hard to detect. In most experimental studies, 
tests were carried out using a single motor for fault classification. In general, 
training and fault classification was conducted on a single load type. This study 
focused on fault classification for induction motors with varying powers and 
load conditions. Motor current data for four different induction motors and 
randomly selected load levels were obtained, a classifier structure was formed 
using machine learning, and tests were carried out. Classification results for the 
five classifiers were obtained and compared to determine the reliability of the 
generalised classifier structure. Support vector machines and k-nearest 
neighbour methods were used in the classification and k-nearest neighbour 
achieved at 99.51% accuracy. 
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1 Introduction 

Induction motors are well-known for their robustness and are widely used in the 
industrial sector for their affordability. Any fault in the motor affects its efficiency and 
performance and so the system it drives, which negatively affects connected production 
processes. Therefore, induction motor faults have been examined by numerous 
researchers for many years. Induction motor faults are evaluated under four different 
groups (Hassan et al., 2018): 

• stator faults

• rotor faults

• misalignment faults

• roller faults.

Stator faults are easy to detect with simple methods. Other faults are not as easily 
detected and require in-depth analysis (Vas, 1993). These three fault types are generally 
detected by vibration analysis, sound analysis, and current analysis methods (Hassan 
et al., 2018). To obtain the vibration signals for vibration analysis, vibration sensors need 
to be connected to the motor and the system to which it is connected (Nath et al., 2020; 
Morales-Perez et al., 2018). Sensors are difficult to place, require precision, and are 
expensive. Therefore, the usage of vibration analysis to detect motor faults is on the 
decline. For sound analysis, microphones and ultrasonic sensors are used for fault 
detection with sound signals (Yaman, 2021). However, it is difficult to distinguish 
between sound information which carries fault data from background noise since motors 
are generally found in noisy environments. This complicates fault detection with sound 
analysis. Also, there are rotor fault detection studies that use FEM-based motor magnetic 
flux measurement (Panagiotou et al., 2019a, 2019b). However, FEM-based 
implementations require a high processing load. 

In the current analysis method, motor current data obtained from just one current 
sensor can be utilised for fault detection. Moreover, current sensors are inexpensive, and 
connecting them to the system is easy. For this reason, recent literature studies have 
focused on fault detection with current analysis (Hassan et al., 2018). 

Initial fault detection studies focused primarily on revealing the fault feature. 
Subsequent studies, however, aimed to determine whether the motor was defective or 
intact (Haji and Toliyat, 2001). In recent years, the focus of such studies has been on fault 
classification in addition to fault detection. Time and frequency domains are used for the 
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extraction of rotor fault features. The time domain is not commonly used in fault 
classification because it has large amounts of data and the effects of rotor bar fault on the 
current signal are insignificant. The frequency-domain for feature extraction yields better 
results since the effects of rotor bar fault occur in multiples of the base current frequency 
component due to slip as shown in equation (1). Thus, fault detection studies have 
focused more on the frequency domain. In equation (1), s is slip value; f is fundamental 
current frequency. 

(1 2 )= ±brbf ks f  (1) 

Studies using time-frequency domains together are also being conducted (Panagiotou  
et al., 2019b; Romero-Troncoso et al., 2016). The use of only the frequency domain for 
feature extraction has increased since the fault effects are more pronounced, the number 
of features is low and therefore the processing load is reduced. Numerous methods have 
been used to obtain rotor bar fault frequency components: discrete wavelet transform 
(Antonino-Daviu et al., 2006; Ordaz-Moreno et al., 2008; Sadeghian et al., 2009; 
Siddiqui and Giri, 2012), Prony analysis (Chen and Živanović, 2010), fast Fourier 
transform (FFT) (Didier et al., 2007; Ameid et al., 2017a, 2017b), zoom-FFT (Kim et al., 
2012), Hilbert transform (Bessam et al., 2015; Rangel-Magdaleno et al., 2017), extended 
Kaman filter (Naha et al., 2016), multiple signal classification (Singh and Naikan, 2018), 
autoregressive model (Ayhan et al., 2008). Equation (1) shows that rotor bar fault effects 
have close values to the fundamental current component. Therefore, it is sufficient to 
examine frequency components close to the fundamental current component (sidebands). 
FFT is used to zoom into this frequency interval for feature extraction; thus, a feature 
matrix with less data is obtained. 

In recent years, deep learning (Paul et al., 2023; Sakallı and Koyuncu, 2023) has 
witnessed notable advancements, with the development of sophisticated neural network 
architectures addressing various challenges in computer vision and beyond. Residual 
networks (Das et al., 2022c) introduced a breakthrough architectural innovation by 
incorporating skip connections or residual blocks. This design mitigates the vanishing 
gradient problem, allowing for the training of extremely deep networks (Sahu et al., 
2023) with hundreds or even thousands of layers. MobileNetV2 (Das and Meher, 2021), 
on the other hand, focuses on efficient convolutional operations, making it well-suited for 
mobile and edge devices. It utilises inverted residuals and linear bottlenecks to achieve a 
good balance between model size and accuracy. These developments collectively 
represent a trend towards more efficient, scalable, and powerful deep learning models, 
enabling advancements in tasks such as image classification, object detection, and 
semantic segmentation. Researchers continue to explore novel architectures, optimisation 
techniques, and transfer learning strategies to push the boundaries of deep learning 
capabilities across various domains. 

Rotor faults are usually caused by manufacturing errors. However, not all errors are at 
the same level- some faults cause the rotor bar to lose its conductivity entirely (a broken 
rotor bar fault) whereas some faults cause a significant reduction in conductivity (high 
reactance bar fault). When a motor is first used after its production, existing faults have 
the potential to develop further as the bars are exposed to magnetic and thermal stress. A 
high-reactance bar fault can turn into a broken rotor bar fault. One broken rotor bar can 
cause a second broken rotor bar to form. For this reason, the following fault situations 
were included in the fault detection studies: 
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• no-fault 

• high-reactance 

• one broken bar 

• two broken bars 

• three broken bars 

• broken end-ring. 

The worsening of rotor fault with motor operation makes it crucial for faults to be 
detected in the initial stages. For this reason, correct fault classification is essential. Some 
classifier methods such as adaptive neural fuzzy inference system (Sadeghian et al., 2009; 
Mohamed et al., 2021), artificial neural network (ANN) (Zolfaghari et al., 2017; Bessam 
et al., 2016), principal component analysis (Georgoulas et al., 2013), support vector 
machines (SVM) (Thakur et al., 2021; Arabaci and Mohamed, 2020; Keskes et al., 2013), 
k-nearest neighbourhood (k-NN) (Yaman, 2021), and random forests (Quiroz et al., 
2018) are used to classify rotor bar faults. In recent years, literature works have focused 
more on SVM and k-NN classifier techniques (Nath et al., 2021). These classification 
studies generally used only one motor. A classification set is created by taking motor 
current values usually only for no-load or full-load values from one motor. By using one 
of these data values, accurate classification results were obtained. However, two 
questions arise here: 

1 Can the classifier structure, which is trained on one motor, classify another motor 
that has different nominal power? 

2 With the classification structure obtained, can it give the same accuracy for a 
different load than the load case used in the tests? 

This study used four different motors with different power ratings to answer these 
questions. Each motor was operated on different levels of loads. Current values for each 
motor were obtained for five fault conditions and no-fault conditions. A separate 
classifier structure was created for each motor. Besides, a classifier structure (generalised 
classifier), which was trained on all motors, was created. The obtained results were 
compared for the five different classifier structures. The results showed that the 
generalised classifier had high classification accuracy even if the motor power and load 
level were changed. The literature studies mostly limited with one motor power and load 
level. Also, the data in this study was acquired on motors operating in the factory. So, the 
data has other environmental effects on the motor signals. In addition, this study 
combined all data from different motors and load levels and proposes one classifier 
structure to detect different types of stator faults. 

This study has four sections. The second section explains the signals and dataset used. 
The third and fourth sections present the experimental setup and classification results, 
respectively. The fifth section concludes the findings obtained. 
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2 Material and method 

2.1 Material 

In a healthy motor, rotor currents flow evenly through the rotor bars. If the current 
passing through one of the bars decreases or does not flow at all, the magnetic flux in the 
air gap is adversely affected. These effects are reflected on the current drawn by the 
motor as frequency components [equation (1)] depending on the slip and fundamental 
frequency of the motor current. These frequency components, referred to as sidebands, 
can be found to the right or left side of the base principal component. In the frequency 
spectrum of the motor current, rotor bar fault effects can be sought by looking at these 
components. The location of these components in the spectrum and the amplitude of 
these components vary according to the magnitude of the rotor bar fault and the loading 
state of the motor. For this reason, even if motor rotor faults can be detected by simply 
looking at the sidebands, it is difficult to determine the magnitude (class) of the fault. 

This study aimed to classify rotor faults regardless of motor power and the motor load 
condition. For this purpose, four different induction motors were loaded at various load 
levels and current values were obtained. The frequency spectrum from the current data 
was obtained using FFT. Differences in motor power and load conditions cause rotor 
faults to affect the spectrum in different ways. To evaluate similar fault conditions under 
the same motor conditions, the frequency spectrum was normalised. The frequency 
interval of 28–72 Hz, where fault indications are most intense on the spectrum, was used 
as input data for the classifier structure. The frequency spectrum obtained, and the 
frequency region used for the feature matrix is given in Figure 1. 

Figure 1 The frequency spectrum of motor current and the frequency area used as features  
(see online version for colours) 

Feature 
Extraction 
Region 

 

This study examined six different rotor faults. Each motor current was obtained under 
three different load levels for all different fault conditions. Each dataset was created by 
sampling the current signal for three seconds. One signal vector has 20,000 points for one 
motor condition. Three different datasets were prepared from the signals. Figure 2 
presents the dataset preparation process. 
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Figure 2 The dataset preparation process (see online version for colours) 

 

The aim of preparing three different datasets is to increase the number of samples for 
each motor. Also, this process gives information about if the classification performance 
increases when the number of samples increases. Table 1 presents the number of samples 
for three datasets of all motor types. 
Table 1 The number of samples for three datasets of all motor types 

Motor type Fault types Dataset 1 Dataset 2 Dataset 3 
Motor 1 No-fault 450 360 270 

High reactance 480 384 288 
One broken bar 450 360 270 

Two broken bars 450 360 270 
Three broken bars 360 288 216 
Broken end-ring 540 432 324 

Motor 2 No fault 270 216 162 
High reactance 255 204 153 
One broken bar 255 204 153 

Two broken bars 270 216 162 
Three broken bars 270 216 162 
Broken end-ring 275 220 165 

Motor 3 No fault 360 288 216 
High reactance 360 288 216 
One broken bar 360 288 216 

Two broken bars 360 288 216 
Three broken bars 375 300 225 
Broken end-ring 360 288 216 
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Table 1 The number of samples for three datasets of all motor types (continued) 

Motor type Fault types Dataset 1 Dataset 2 Dataset 3 
Motor 4 No fault 270 216 162 

High reactance 270 216 162 
One broken bar 270 216 162 

Two broken bars 285 228 171 
Three broken bars 270 216 162 
Broken end-ring 270 216 162 

Motors 1, 2, 
3 and 4 

No fault 1,350 1,080 810 
High reactance 1,365 1,092 819 
One broken bar 1,335 1,068 801 

Two broken bars 1,365 1,092 819 
Three broken bars 1,275 1,020 765 
Broken end-ring 1,445 1,156 867 

FFT method was applied to the raw signals in Table 1. The FFT signal that is between 
28–72 Hz interval has 150 data points. Figure 3 shows the signals for different rotor fault 
classes for dataset 1. 

Figure 3 FFT results for different rotor fault types (see online version for colours) 

 

2.2 Method 

This study used k-NN and SVM methods as classifiers. In the classification stage, the 
three datasets created from motors 1, 2, 3 and 4, respectively – were classified separately. 
Figure 4 shows the preparation of datasets 1, 2 and 3 on a sample signal that belongs to 
motor 1. 
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Figure 4 Two broken bars sample signal from motor 1 (see online version for colours) 

 

Figure 4 shows that the same signal has different shapes for three different datasets. This 
study examined if this situation affects classification performance. After classifying the 
four different motor datasets, all datasets were combined, and one dataset was prepared. 
The new combined dataset was also classified by k-NN and SVM methods; thus, the 
performance of the rotor fault classifier was evaluated regardless of motor nominal power 
and load level for different types of induction motors. Figure 5 presents the training 
process used in this study. 

Figure 5 The proposed rotor faults classifier method (see online version for colours) 

 

2.3 Machine learning 

Machine learning is a subfield of artificial intelligence that empowers computer systems 
to learn and improve from experience without explicit programming. It involves the 
development of algorithms and models that enable computers to analyse and interpret 
data, identify patterns, and make decisions or predictions. The process often begins with 
feeding the machine learning model large sets of data, allowing it to recognise underlying 
patterns and relationships. As the model learns and iterates, it becomes more adept at 
making accurate predictions or classifications on new, unseen data. Machine learning 
finds applications in various domains, from image and speech recognition to 
recommendation systems, making it a pivotal technology in the advancement of 
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intelligent systems (Das et al., 2022a). SVM, k-NN, ANN, deep learning, AdaBoost are 
some of machine learning methods. 

2.3.1 Support vector machines 
SVMs are a powerful class of supervised machine learning algorithms designed for 
classification and regression tasks. The fundamental principle behind SVM is to find the 
optimal hyperplane that separates different classes in a high-dimensional space. This 
hyperplane is chosen in such a way that it maximises the margin, which is the distance 
between the hyperplane and the nearest data points of each class. SVM excels in handling 
both linear and nonlinear relationships in data using kernel functions that map input data 
into higher-dimensional spaces. SVMs are known for their ability to handle complex 
decision boundaries and perform well in scenarios with limited data. They have found 
applications in various fields, including image classification (Nurrani et al., 2023), text 
categorisation (Bamgboye et al., 2023), and biomedical imaging (Das et al., 2019, 
2022b), making them a versatile tool in the machine learning toolkit. 

2.3.2 k-nearest neighbours) 
k-NN is a simple yet effective machine learning algorithm used for classification and 
regression tasks. The core idea of k-NN is to classify a data point based on the majority 
class of its k-NNs in the feature space. The ‘k’ in k-NN represents the number of 
neighbours considered for the classification, and it is a crucial parameter that influences 
the algorithm’s performance. In the case of classification, the algorithm assigns the class 
label that is most prevalent among the k neighbours, while in regression, it predicts the 
average or weighted average of the target values. K-NN is a non-parametric,  
instance-based learning method, making it particularly useful for scenarios with complex 
and nonlinear relationships. However, its performance can be sensitive to the choice of 
distance metric and the value of k, and it may not scale well with large datasets. Despite 
these considerations, k-NN remains a versatile and intuitive algorithm, often used for its 
simplicity and effectiveness in various applications such as medical image segmentation 
(Das et al., 2021), motor health control systems (Kumar and Upadhyaya, 2023). 

3 Experimental study 

This experimental study used a motor-generator experiment setup. A generator was 
connected to the motor shaft to load the motors. The motors were loaded under different 
levels by a resistive load that was connected to the generator terminals. The block 
diagram of the experimental setup is given in Figure 6. 
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Figure 6 Experimental setup block diagram 

 

Four different motors with powers of 50HP, 30HP, 25HP, and 10HP were used in the 
experiments. All motors were 3-phase, with a 380V nominal voltage and 50Hz 
frequency. Six different conditions (six classes) were examined for each of the motors: 

• no-fault 

• high-reactance 

• one broken bar 

• two broken bars 

• three broken bars 

• broken end-ring. 

Each of the fault conditions was created in a factory environment. First, to obtain a  
high-reactance rotor bar fault, one of the rotor bars was drilled 5 mm deep with a drill bit 
smaller than the bar diameter. Doing so caused the electron transition surface to become 
smaller; thus, the bar resistance was increased. To create a broken rotor bar, instead of 
driving the copper rotor bar through the rotor, it was hammered in 2 parts, one on the left 
and one on the right, leaving a 10mm gap in the axial direction. By doing so, the electron 
transfer was eliminated. This same process was applied to create two and three rotor bar 
faults. For the end-ring fault, the ring was split in a lathe to lose its conductivity in the 
axial direction. Photographs of the defective rotors created and three of the motors used 
are shown in Figure 7. After creating the faults, the rotors were balanced and mounted to 
prevent a negative effect on the current due to unbalance, thus avoiding possible 
confusion with rotor bar faults. 
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Figure 7 The rotor bar faults, (a) high-reactance fault (b) broken end-ring fault (c) broken bar 
faults (d) the motors used (see online version for colours) 

 

In experimental studies, the motor current was obtained from only one phase. LA-205-S 
Hall-effect current sensor of LEM company was used to read the current. Advantech  
PCI-1716 data card was used to obtain current sensor data. The sampling frequency was 
set at 7,500 Hz. The data was saved to the computer. The photograph of the experimental 
setup (test unit) from which the data was taken is shown in Figure 8. 

Figure 8 Experimental test unit (see online version for colours) 
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To extract features from each data, the current data in the time domain was transformed 
to the frequency domain using FFT. The frequency region between 28 and 72 Hz, where 
the indications are most noticeable, was taken as input data for the classification. 
Experimental results were obtained by using this input data in the training and testing of 
the classification structure. 

4 Experimental results 

This section consists of two parts. The first part presents the results of each motor, 
separately. The second part presents the classification results of all motors. Sensitivity 
(Sen), specificity (Spe), accuracy (Acc), and G-mean metrics were used to examine the 
classification results. 2-fold, 5-fold, and 10-fold cross-validation methods were used 
during the training process. SVM and k-NN techniques were applied to classify all 
datasets. 

4.1 Single motor analyses 

In this section, the classification results of the motors 1, 2, 3 and 4 datasets have been 
analysed. The classification results were obtained using a confusion matrix. The 
classification process was applied to datasets 1, 2 and 3 of four different induction 
motors. 2-fold, 5-fold, and 10-fold cross-validation methods were used during the 
classification. Table 2 presents the best classification results of k-NN and SVM 
classifiers. 
Table 2 The classification results for each motor 

Motor Dataset Classifier k-fold Sen  
(mean ± std) 

Spe  
(mean ± std) 

Acc  
(mean ± std) 

G-mean  
(mean ± std) 

Motor 1 Dataset 3 k-NN 10 99.69 ± 0.6 99.88 ± 0.2 99.83 ± 0.3 99.79 ± 0.4 
Dataset 3 SVM 10 88.82 ± 1.7 95.52 ± 0.8 93.6 ± 1.1 92.11 ± 1.3 

Motor 2 Dataset 2 k-NN 10 99.69 ± 0.5 99.87 ± 0.2 99.82 ± 0.3 99.78 ± 0.4 
Dataset 3 SVM 10 98.43 ± 1.4 99.37 ± 0.6 99.1 ± 1.4 98.9 ± 1 

Motor 3 Dataset 2 k-NN 10 99.66 ± 0.5 99.86 ± 0.2 99.8 ± 0.3 99.76 ± 0.1 
Dataset 3 SVM 5 97.4 ± 1.4 98.97 ± 0.6 98.53 ± 0.8 98.18 ± 0.9 

Motor 4 Dataset 3 k-NN 10 100 100 100 100 
Dataset 3 SVM 5 97.45 ± 1.3 98.96 ± 0.5 98.52 ± 0.8 98.2 ± 0.9 

As Table 2 indicates, the best classification performance for all motor types was achieved 
with the k-NN classifier. The classification accuracies for motors 1, 2, 3 and 4 were 
obtained as 99.83%, 99.82%, 99.8%, and 100%, respectively. While the best 
classification performance was obtained with dataset 3 in motors 1 and 4, it was obtained 
with dataset 2 in motors 2 and 3. The highest classification accuracy was always achieved 
in all trials with 10-fold cross-validation. SVM method reached the highest classification 
accuracy in motor 2 with dataset 3 as 99.1%. 
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4.2 Collective motor analysis 

In this section, motors 1, 2, 3 and 4 datasets were combined and collective classification 
results were obtained for three separate datasets. The methods applied in the single motor 
analysis were also applied in the collective motor analysis. 
Table 3 Classification results for each of the combined datasets 

Motor Dataset Classifier k-fold Sen  
(mean ± std) 

Spe  
(mean ± std) 

Acc  
(mean ± std) 

G-mean 
(mean ± std) 

Motors 1, 2, 
3 and 4 

Dataset 1 k-NN 10 98.07 ± 0.6 99.23 ± 0.3 98.9 ± 0.4 98.65 ± 0.4 
Dataset 1 SVM 10 78.25 ± 1.6 91.15 ± 0.7 87.42 ± 0.9 84.45 ± 1.2 

Motors 1, 2, 
3 and 4 

Dataset 2 k-NN 10 98.02 ± 0.9 99.21 ± 0.4 98.87 ± 0.6 98.61 ± 0.7 
Dataset 2 SVM 10 80.27 ± 1.4 91.76 ± 0.6 88.38 ± 0.9 85.82 ± 1.1 

Motors 1, 2, 
3 and 4 

Dataset 3 k-NN 10 99.14 ± 0.6 99.66 ± 0.2 99.51 ± 0.3 99.4 ± 0.4 
Dataset 3 SVM 5 81.05 ± 1.5 92.21 ± 0.6 88.96 ± 0.8 86.45 ± 1.1 

As indicated in Table 3, the k-NN method achieved the best classification accuracy on 
dataset 3 with 99.51% performance. SVM method classified dataset 3 with 88.96% 
accuracy. The k-NN method obtained more than 10% higher classification performance 
than the SVM method on all datasets. The proposed method classified signals from six 
different conditions of the four different induction motors each with high classification 
accuracy. The confusion matrix of the highest classification results is presented in  
Table 4. 
Table 4 The confusion matrix for the proposed method (see online version for colours) 

Actual No-fault 798 0 1 0 4 7 
One broken bar 0 800 0 0 0 1 

Two broken bars 2 0 817 0 0 0 
Three broken bars 2 0 0 763 0 0 
Broken end-ring 0 1 1 0 862 3 
High reactance 17 1 1 0 1 799 

  
No-fault 

One 
broken  

bar 

Two 
broken 
bars 

Three 
broken 
bars 

Broken 
end-ring 

High 
reactance 

  Predicted 

As can be seen in Table 4, 17 ‘high reactance’ class signals were classified as ‘no-fault’ 
classes. Similarly, seven ‘no-fault’ class signals were detected as ‘high reactance’ class 
signals. ‘Three broken bars’ results show only two signals were detected as ‘no-fault’ 
class signals, while no other type of signal was found to have a ‘three broken bars’ signal. 
This indicates that ‘three broken bars’ signals can be detected with higher accuracy than 
other class signals. The optimum classifier structure obtained as a result of the 
experiments is presented in Figure 9. 
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Figure 9 The test process scheme (see online version for colours) 

 

5 Discussion 

This study implemented the detection and classification of rotor faults of induction 
motors. Rotor fault indicators are not obvious; thus, an in-depth analysis of the motor 
current is required. For this purpose, the motor current was obtained and transformed to 
the frequency domain using FFT. Fault-induced frequency components in the frequency 
domain were detected and used as input data for classification. This study formed two 
different classifier structures for both singular and multiple motor analysis and the results 
were compared. 

The detection and diagnosis of rotor faults are still being studied in the literature. 
Table 5 presents recent rotor fault classification studies. 
Table 5 Recent rotor fault classification studies 

Study Year Method Motor 
types Data Fault 

types 
Accuracy 

(%) 
Palácios et al. (2020) 2020 RBF-ANN 2 Current 3 90 
Devarajan et al. (2021) 2020 ANFIS 1 Thermal camera 

images 
4 91.27 

Gao et al. (2021) 2021 LSTM 1 --- 9 98.33 
Marmouch et al. (2021) 2021 PCA-RBFNN 1 Current 4 98.42 
Rodrigues et al. (2022) 2022 PCA-SVM 1 Vibration 5 79.4 
Patil et al. (2022) 2022 SVM 1 Vibration 2 88.9 
This study 2024 SVM 1 Current 6 99.1 
This study 2024 k-NN 1 Current 6 100 
This study 2024 SVM 4 Current 6 88.96 
This study 2024 k-NN 4 Current 6 99.51 

When literature studies regarding rotor faults were examined, it was seen that studies 
were mostly conducted on a single type of motor. This study analysed four different 
motors and three different load levels and achieved high classification performance. The 
results for both singular and collective motor analysis show that the proposed method can 
be used for rotor fault classification. Table 5 shows that the literature studies used k-NN 
and SVM methods for rotor fault classification and achieved satisfying results. This study 
indicates that: 

• The longer the sampling data, the more accurate the classification process can be. 
Current signal data of different lengths (5,000, 7,500, and 10,000 samples) were used 
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in the classifier training and testing phases. Test results showed that the current 
signal which had 10,000 samples gave more accurate results. 

• Both classifier methods achieved high classification accuracy. 

• The classifier structure for four motor types can be used for different rated powers. 

• A reliable classifier structure for rotor fault detection can be created via machine 
learning methods. 

• Machine learning-based test setup can be used in the motor robustness determination 
after production. 

In the literature studies, the approach of transforming motor signals into spectrogram 
images and subsequent feature extraction from these images has proven to be a promising 
methodology for motor fault classification. Therefore, we will use the signal data and 
transform them into spectrogram images. Also, by using image augmentation methods, 
the number of images will be increased, and so deep learning methods will be 
implemented on the data. As the field progresses, ongoing research efforts in refining 
image-based approaches to motor fault classification are crucial for advancing the 
accuracy and reliability of fault diagnosis systems in real-world industrial applications. 
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