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Abstract: The design and optimisation of analogue and mixed-signal
integrated circuits become intractable with technology scaling. It gives rise
to multi-dimensional tradeoffs among its numerous performance metrics.
Evolutionary algorithms are being explored to generate possible solutions
having goodness of fit with the desired solution. In this direction, a
novel fitness evaluation function integrated with PSO and PSO-SPICE
framework is proposed to design and implement multi-objective optimisation
for analogue and mixed-signal circuit design automation. The framework is
demonstrated to automatically design and optimise the multi-objectives of
2-stage op-amp and 4-bit flash ADC. The proposed fitness evaluation function
demonstrate large design outperformance independent of quality of initial
population and requiring no adaptive weights. The novel fitness function
driven PSO-SPICE framework exemplifies a robust, scalable, and precise
method for multi-objective optimisation of analogue and mixed-signal circuits
of varying scale and design complexity.
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1 Introduction

With advancements in transistor scaling, the analogue and mixed-signal circuits are
integrated on-chip resulting in a rise in resistive and capacitive parasitics. In contrast
with digital circuits, analogue circuits are more vulnerable to parasitic effects, crosstalk,
noise, and other non-idealities. With a limited number of digital design tradeoffs, the
electronic design automation (EDA) tools have achieved a high degree of maturity.
However, with the emergence of system on chip (SoC) implementation, integrating
digital, analogue, and mixed-signal circuits, it has become a herculean task for design
engineers to design manually and to achieve multi-dimensional tradeoffs between
performance metrics of analogue and mixed-signal circuits in the absence of design
automation tools. Manual optimisation, in the presence of nonlinear functionalities,
results in sub-optimal solutions involving long and tedious process.

In model-based optimisation, with posynomial or polynomial models, the global
optimum can be guaranteed with a reduction in the computational cost as compared
to that of simulation-based models. The models developed can be reused for further
optimisation, but the predicted circuit performances diverge from the actual circuit
performances. However, in simulation-based models, the objective functions, constraints,
and performance metrics are directly evaluated and optimised by the circuit simulations
(Lyu et al., 2018). The variables of circuit design, such as transistor aspect ratios, bias
currents, and passive devices, are tuned to meet few metrics at most while trading the
remaining metrics to meet the design specifications closely.

The optimisation-based approach explores the design space to find one optimal
solution for multiple tradeoffs between performance metrics (Gonzalez-Echevarraa et al.,
2017). Metaheuristic algorithms such as genetic algorithm (GA), artificial bee colony
(ABC), and particle swarm optimisation (PSO) algorithms are demonstrated in the
design of analogue filters and PSO produces few design errors in comparison. For
optimisation of analogue ICs, hybrid methodologies involving PSO and radial basis
function (RBF) (Garbaya et al., 2018), PSO and gravitational search algorithm (GSA)
(Mallick et al., 2017), PSO and GA (Deb and Padhye, 2014) have been reported.
Craziness-based PSO (CRPSO) algorithm is used for the design of PMOS driver-based
2-stage comparator and NMOS driver-based folded-cascode op-amp (Sumalya et al.,
2019; De et al., 2017). Multi-parameter optimisation based on artificial neural networks
(ANN) are demonstrated in the design of 2-stage op-amp (Harsha and Harish, 2020;
Lourenco et al., 2018). The combination of ANN with stochastic gradient descent (SGD)



Integrated AWA fitness PSO-SPICE framework for automated design 89

and PSO is shown for designing of high-speed ADC (Bansal et al., 2021). g,,, /I method
is applied to speed-up the non-dominated sorting genetic algorithm (NSGA-II) to predict
the device geometry and its appropriate bias levels of the operational transconductance
amplifiers (Tlelo-Cuautle and Sanabria-Borbon, 2016). In contrast to heuristic methods
of GA and simulated annealing (SA), PSO exhibits rapid convergence to the promising
regions (Fakhfakh et al., 2010), resulting in computational savings.

This paper presents a novel fitness evaluation function and an evolutionary
algorithm like PSO to optimise an analogue and mixed-signal circuits by employing a
simulation-based approach. We demonstrate the proposed methodology by taking design
optimisation of a 2-stage op-amp and 4-bit flash ADC for illustration.

The rest of the paper is organised as follows: Section 2 describes the multi-objective
PSO and the limitations of its existing fitness functions for analogue design. The
proposed AWA fitness evaluation methodology for multi-objective optimisation is
presented in Section 3. Section 4 describes design equations for the design of a 2-stage
op-amp and 4-bit flash ADC. The PSO-SPICE framework for the design automation
and optimisation using the proposed AWA fitness function and its implementation is
presented in Section 5. While the results are discussed in Section 6, conclusions are
summarised in Section 7.

2 Multi-objective PSO

The complexity in solving optimisation problems continues to scale up, requiring diverse
optimisation methods to find the optimum either by maximising or minimising an
objective function, and there is no remarkable quantitative method regarded as the best
for any case. An optimisation technique is always application-specific, opting for an
optimisation technique that relies on the nature of the application (Gomes de Almeida
and Leite, 2019).

Based on bird flocking, fish schooling, and swarming theory, Kennedy and Eberhart
(1995) has introduced PSO methodology for nonlinear functions that employ basic
mathematical operators, and the methodology is computationally efficient in terms of
both memory requirements and speed.

A swarm or collection of potential solutions known as particles is maneuvered in the
solution space, and the information between particles is traded in order to evolve into an
optimum solution, meeting the objective function/s. According to the objectives of the
problem, the fitness function is evaluated to determine the fitness values of each particle
in the swarm. In PSO, irrespective of the equations of the objective functions, their
values alone are essential to finding the optimum solution. The velocities associated with
the particles administer the transition of particles in the solution space. The particles
drift in the solution space getting attracted by the current best solution.

Along with fitness function evaluation, two prominent assessments have been carried
out within the swarm to identify,

1 the local best fitness valued solution P, captured till now by any particle in the
process

2 the global best fitness valued solution Gy.s; obtained by considering the overall
particles in the swarm.



90 H. Maddur Venkataswamy and B.P. Harish

Subsequently, Pp.s¢ and Gpes; are revised at each iteration.

Py.s: mimics reminiscence by revoking each individual involvement/experience in
action, and the associated velocity alteration assists the individual in retreating to its
most delighted point in the past. Meanwhile, Gpes; is similar to the quintessential
knowledge that each individual pursues to obtain. How particle swarm optimiser
marches towards Ppes; and Gpest is analogous to GA’s crossover and mutation
operations.

Consider a n *j dimensional solution space with a swarm of n particles; after
evaluating the fitness of particles, Py.st and Gyp.st, the velocity and position vectors are
updated as in equations (1) and (2), respectively.

m—+1 m m m m m
V(Syj) ) = 'LUV(M) +ciry (P(best(i,j) - X(i,j)) + corg (Gbest(j) - X(m’)) )

X =X + Vi @
where ¢ = {1, 2, 3, ..., n}, m = {1, 2, ..., maximum iteration}, j is the number of
items constituting a particle, inertia weight w balances the search exploration between
the local and global searches, ¢; and co represents the relative acceleration factor in the
direction of Ppes; and Gpest, respectively. 71 and 7o are the random numbers spanning
between 0 to 1. V7", and V(’Z"j'gl are the current and updated velocities of i™ particle,
respectively.

2.1 Fitness evaluation

In this work, a novel generic multi-objective model is proposed for evaluating the fitness
of the solutions. The fitness evaluation of a solution determines how optimal it is to the
desired solution. So, each solution has to be given a numerical value to determine its
optimality with respect to the desired solution.

When there is a pool of possible solutions for a unique problem, the best solution
among them is to be chosen by evaluating the fitness of all the solutions. When each
possible solution is applied to a respective problem, the resulting outcomes are tallied
with its desired/optimum solution. For a single objective optimisation problem, the
solution with the highest valued fitness is chosen from the pool of solutions as the
best solution for maximising the single objective, and the solution with the lowest
valued fitness is selected as the best solution for minimising the single objective.
In multi-objective optimisation, there are two kinds of objectives: maximise a few
objectives and at the same time minimise some other objectives. Care needs to be
taken while evaluating the fitness of a solution which comprises both maximising and
minimising the objectives simultaneously, else the overall efficiency of the fitness will
be degraded.

The conventional fitness evaluation functions like Euclidean distance, Manhattan
distance are based on distance evaluation of the obtained solution from the target
solution and hence, fail to distinguish between multiple solutions in multidimensional
solution space that are equidistant from the target solution. Such solutions return the
same fitness value making it hard to determine the most optimal solution. The SP fitness
function Papadopoulos et al. (2000), based on the ratio of actual error to acceptable error
contributions of inequality objectives, may return identical fitness values for multiple
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obtained solutions making it hard to pick the most optimal solution. The Yu and Mao
(2009) fitness function based on the adaptive weights, determines the optimal solution
based on the quality of the initial solution and the adaptive weights.

Further, the fitness values alter as the size of the population pool varies. While
optimising, the evolutionary algorithms, like PSO, are subjected to iterations for finding
the best solution. There are chances of the same solution occurring in two or more
iterations, and the best fitness solution may go unnoticed due to change in population
pool characteristics in subsequent iterations. Further, in a few instances, the fitness
values may replicate in different iterations even though the individual objective of each
solution differs.

Hence, there is a need for a fitness evaluation function that determines the optimal
solution, based on its optimality rather than distance-based closeness with respect to the
desired solution, from among multiple obtained solutions independent of the quality of
initial solution and without the need for applying adaptive weights. Thus, the limitations
of existing fitness evaluation methods are addressed in the proposed fitness evaluation
methodology to be referred to as ‘adaptive weight agnostic (AWA) fitness evaluation
function’.

3 AWA fitness evaluation methodology

Consider a pool of obtained solutions for a multi-objective design problem which is
represented in the form of n % m matrix, where ‘n’ is the number of solutions, each
having ‘m’ number of objectives. The rows of the matrix represent multiple solutions
and the columns represent multiple objectives. The main aim of the AWA fitness is to
measure the optimality of the obtained solutions to the desired solution. The possible
solution with the highest fitness value is regarded as the best solution in the respective
pool of solutions. The steps for evaluating AWA fitness are illustrated below:

Step 1  If an objective is to be maximised, divide the obtained objective by desired

objective,

Fit B Obtained ; j ' 3)
UWMazimise(i,j) — Desired(m) )

where i =1, .., nand j = 1, ..., m.

Step 2 If an objective is to be minimised, divide the desired objective by obtained

objective,

Fit pinimise(i.j _ Desired) )
inimise(i.) Obtained; j)'

where i =1, .., nand j = 1, ..., m.

Equations (3) and (4) address the issue of simultaneous maximisation of one
set of objectives and minimisation of the rest of the objectives.

Combining the matrices Fitprqzimise and Fitpyrinimise Of equations (3) and
(4) into a single matrix,

Fitall(n,m) - [FitMawimise FitMinimise] (5)



92 H. Maddur Venkataswamy and B.P. Harish

Step 3 If all fitness values of Fitness matrix in equation (5) are greater than 1, all
objectives are equally emphasised requiring no action. The fitness of 1
indicates that the obtained solution is equal to the desired solution and close
to 1 indicates closeness of obtained solution to the desired solution.

Step 4  If few fitness values in a row of Fitness matrix in equation (5) are greater
than 1, such values are limited to a maximum of 1, to avoid over emphasis
of any objective at the cost of other objectives. In other words, to avoid
objectives with higher fitness value overshadow the objectives of lower
fitness value.

Step 5 All negative values are made zero. A negative fitness value is undesirable
and hence is made zero to avoid under-emphasis of any objective with
respect to other objectives.

Step 6  Generate AWA fitness value for all n solutions:

1 If all the individual fitness values of a solution (i.e., a row) are equal to
or greater than 1, then take their mean.

ie., VFilai,:) > 1; wherei=1,..,n (6)
The AWA fitness value of ™ solution is given by,
Fit aw acy = mean(Fitay,:)) (7

2 If the above condition fails, then take mean of sum of squares (SS). The
AWA fitness value of i solution is given by,

Fit aw aciy = mean(SS(Fitay,:))) 3

It may be observed that in the six-step fitness evaluation, as no adaptive weights are
applied in any step, it is referred to as the adaptive weights agnostic (AWA) fitness
evaluation methodology. The AWA fitness evaluation is different from conventional
distance measure-based fitness evaluation methods in the sense that it involves
comparison between obtained solution and the desired solution based on their ratio
and not on their difference. Further, the distance-based fitness evaluation allows small
outperformance on any objective while large outperformance will be discarded with low
fitness value assigned to it. The design outperformance on any objective indicates that
the design solution is superior to the desired solution on that metric, irrespective of the
nature of optimisation, i.e., maximisation of few objectives and minimisation of rest of
the objectives. As AWA fitness evaluation is based on design optimality and not on
distance measure, such large design outperformance is recognised with a large fitness
value assigned to it by equations (7) and (8), facilitating large design outperformance.

Further, the AWA fitness methodology is generic in nature and can be applied to
determine the best optimal solution, where its optimality rather than distance-based
closeness with respect to the desired solution is the requirement, over all application
domains.

In this work, two fitness calculations of Yu and Mao (2009) fitness evaluation
based on weights and SP fitness evaluation based on errors (Papadopoulos et al., 2000)
are carried out, and the efficacy of AWA fitness evaluation is illustrated for design
automation of analogue and mixed-signal circuits.
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4 Design of analogue integrated circuits

4.1 2-stage operational amplifier design

The basic methodology of op-amp design has two specific steps: The first step is
building a suitable circuit topology that remains fixed unless there is a change in the
specification. The next step involves the selection of W /L ratios of all transistors in
the circuit to meet the desired specifications.

A 2-stage op-amp is designed with the common source configuration as the second
stage to contribute large output swings to drive an output device (Ratan et al., 2016). The
2-stage op-amp circuit schematic is as in Figure 1. The performance metrics considered
for design are open-loop DC gain (A4, ), unity-gain bandwidth (UGBW), phase margin
(PM), slew rate (SR), power dissipation (P), and area (A). Among these metrics, while
gain, bandwidth and phase margin are computed from SPICE output file, the slew rate,
power dissipation and area are computed by user defined equations in the SPICE netlist
as given by equations (9), (10) and (11) (Allen and Holberg, 2002).

The amount of current that can be bought into the compensation capacitor determines
the slew rate, which is given by:

I5
SR = . )
where [I5 is the drain current through M5 and C. is the frequency compensation
capacitor.

Figure 1 Circuit schematic of 2-stage op-amp
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The supply voltages Vpp and Vgg, and drain currents I5 and I; through M5 and M7,
respectively, accounts for power dissipation, which is given by:

P=Vpp —Vss)(I5 +2I7) (10)

Area is given by:
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=1

where W; is the width and L; is the length of the ith transistor, respectively, and n is
the number of transistors.

4.2 4-bit flash ADC

In the present-day electronic systems, flash ADC plays a prominent role in converting
real-world analogue signal to digital output. In conventional n-bit flash ADC, 2" — 1
comparators output the thermometer code by comparing the input voltage simultaneously
with reference voltages produced by the resistor ladder circuit. Then the encoder
converts the thermometer code into digital output. Flash ADC uses one comparator per
quantisation level and 2" resistors, therefore it has the highest conversion speed than
any ADC.

4.2.1 Pseudo-dynamic latched comparator

The pseudo-dynamic latched comparator is designed with a pre-amplifier and a latch
(Varghese, 2014). Reset and regeneration are the two operating phases of the latch: In
the rest phase, charge imbalance is proportional to the variation in the input signal on
the differential nodes of the latch, and in the regeneration phase, the voltage imbalance
is amplified to the rail-to-rail logic levels. The schematic of the pseudo-dynamic latched
comparator is shown in Figure 2.

Figure 2 Schematic of pseudo-dynamic latched comparator
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4.2.2 Encoder

The output of the comparators is in the form of a thermometer code, which is converted
to binary form using full swing XOR Gupta et al. (2020)-based thermometer to binary
fat tree encoder (Lee et al., 2002). The schematic of the full swing XOR and block
diagram of the fat tree encoder is shown in Figure 3.

Figure 3 Encoder for a thermometer to binary code conversion, (a) schematic of full swing
XOR (b) block diagram of the fat-tree encoder
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The architecture of the n-bit flash ADC used for design optimisation is shown in
Figure 4. Static characteristics of the flash ADC such as INL and DNL, along with power
dissipation (P), are considered for design optimisation (Allen and Holberg, 2002). DNL
and INL are given by equations (12) and (13):

Vby1—Vp

DNL = —1; where 0 < D < 2" —1 (12)
VisB,1deal

INL:M—D; where 0 < D < 2" — 2 (13)
VLSB,Ideal

where Vp is the voltage value of the digital output code D, V..., is the voltage value
at an all zero output code, VL sB 1deq 15 the ideal least significant bit value, and n is
the ADC’s resolution.

5 PSO-SPICE framework with AWA fitness evaluation for design optimisation

The proposed design automation intends to achieve or outperform the desired
specifications of analogue ICs by arriving at the optimum transistor dimensions along
with the values of passive elements. The design process is implemented using PSO,
and the proposed AWA fitness methodology in MATLAB, and the design solution



96 H. Maddur Venkataswamy and B.P. Harish
evolved during each iteration of the optimisation is verified against SPICE simulations

seamlessly. The design is carried out using 0.18 pm CMOS technology node, for
illustration.

Figure 4 Block diagram of n-bit flash ADC
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The design methodology requires two sets of data to progress, the first being the model
files of the process node, power supply, and load, the other being design specifications
and PSO parameters. The inputs and the outputs of the proposed design methodology
to generate optimum design solutions for 2-stage op-amp and 4-bit flash ADC, are
as shown in Table 1. The design specifications act as our design objectives and are
tabulated in Table 2.

The mandate of the methodology is that the overall design objectives improve the
design specifications as much as possible. In 2-stage op-amp, the differential amplifier
and current mirror configurations require matching devices in 2-stage op-amp: (M1,
M2), (M3, M4), and (M5, MS). Since all comparators must be equal in the ADC, the
size of all the MOS devices in the comparators, along with MOS devices in the encoder,
are considered as equal. The vector of a possible solution known as particle is as shown
in Figure 5.

The methodology is initiated with a set of particles that are generated randomly
within a predefined boundary constrained by area specification. Then the corresponding
performance metrics are obtained for each of the generated particles through
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SPICE simulations. The proposed AWA fitness is then evaluated for PSO generated
performance metrics with respect to design specifications. Hereafter, with the inception
of PSO, the optimum solution is evolved from the swarm of particles. Thus, the
optimisation process calls for data transfer between two platforms, i.c., between PSO
and SPICE. This process is automated to support bidirectional data transfer, for multiple
iterations, between two platforms using a DOS batch file in a PSO-SPICE framework:

1 Netlist with PSO-MATLAB generated design values [W, L, C,, and I;] of
2-stage op-amp and all Ws and all Ls of 4-bit flash ADC, are passed to SPICE

2 SPICE generated circuit performance data in log files are passed to MATLAB for
the next PSO iteration.

The PSO-SPICE framework of the proposed methodology using AWA fitness number
for analogue circuit design optimisation is as shown in Figure 6.

Table 1 Inputs and outputs of the design methodology

Inputs Outputs
1 Design specifications: performance 1 Design solution comprising transistor
metrics as specified by the designer lengths and widths, passive elements,

2 Supply voltages and load and/or bias current, etc.

3 Process node constants 2 The circuit is simulated with the

4 PSO parameters optimum design solution to at least
match or outperform the desired
specifications

Table 2 Design objectives

2-stage op-amp 4-bit flash ADC
Maximise Gain, UGBW, SR, and PM
Minimise Power and area Power, DNL, and INL

The PSO process is initiated with a swarm of randomly generated 50 and 30 possible
solution vectors of real numbers for a 2-stage op-amp and 4-bit flash ADC, respectively.
The PSO parameter of inertia weight is characterised to decrease linearly from 0.9 to 0.4
as the algorithm runs in finding the optimal solution. Initial velocity value of 0.05, and
acceleration factors, ¢; and co of 2 and 0.5 are applied to all the particles in the swarm
to find an optimal solution. The dimensional range of design parameters [W, L, C.,
and I] for generating a swarm of solutions are taken from Harsha and Harish (2018).
For practical modelling of layout parasitics for analogue circuits design, the diffusion
area and perimeter formed at the source and drain junctions are included and calculated
as ad = as = 2x W % Ly, and pd = ps = 2(W + 2L;,) (Nagendra, 2013).

For a LTspice netlist, each solution vector is imported seamlessly and simulated.
The corresponding performance metrics are extracted from the SPICE waveform data
file and log file and transported to the PSO. The PSO carries out the fitness evaluation
for each solution in the swarm with respect to target design specifications. The quality
of optimisation is enriched by evaluating the fitness of SPICE generated performance
metrics directly.



98 H. Maddur Venkataswamy and B.P. Harish

Figure 5 Vector structure of the candidate solution, (a) 2-stage op-amp (b) 4-bit flash ADC
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Figure 6 PSO-SPICE framework using AWA fitness evaluation for analogue circuit design
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After evaluating the fitness of the initial swarm of solutions, the Pyes; and Gpest
are noted. Then, the velocity and position vectors are updated in accordance with
equations (1) and (2), respectively. In the subsequent iterations, as and when the swarm
moves away from the search space, the solutions in the swarm are auto-corrected
subject to predefined dimensional ranges. Fitness is evaluated for the updated swarm
of solutions of any iteration within the range or upon range auto-correction, and the
Pyest and Gpesy are updated if it is superior to previous values. If the Gpesr value
changes, the swarm changes its course for the subsequent iteration, thus complying with
the principle of stability (Millonas, 1992). This process continues in a loop until the
stopping criterion is met. In this work, the maximum number of iterations is selected
to be the stopping criterion. Based on the PSO convergence graphs generated from
experimental trails, the stopping criterion is selected as 50 iterations for 2-stage op-amp
and ten iterations for flash ADC. For iterations more than stopping criterion, it is found
that the quality of design solutions is saturated with respect to the desired design. The
Gpest solution obtained at the end is regarded as the optimal solution for a particular
design specification. The flowchart of automated analogue design optimisation using
AWA fitness driven PSO-SPICE is shown in Figure 7.

6 Results and discussion

6.1 2-stage operational amplifier

The methodology is tested on three different design specifications of 2-stage op-amp,
as mentioned in Tables 3 and 4. While results 3 and 4 represent the optimal solution
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obtained using PSO with the Yu and Mao (2009) fitness function, results 5 and
6 represent the optimal solution obtained using PSO with the SP fitness function

(Papadopoulos et al., 2000). Results 7, 10, and 13 are the optimal solutions obtained
using PSO with the proposed AWA fitness evaluation methodology.

Figure 7 Flowchart of automated analogue design optimisation using AWA fitness driven

PSO-SPICE

‘ Design specifications ‘

Define PSO parameters & Select
process node with supply
voltages

'

MATLAB PLATFORM
Create a swarm of random
solution vectors

'

SPICE PLATFORM
Parse solution vectors to Netlist,

Run SPICE simulations &
Extract performance metrics

!

MATLAB PLATFORM
Calculate AWA fitness and Find
(Pbest & Gbest)

'

MATLAB PLATFORM
Update velocity and positions,
Correct boundary values

!

SPICE PLATFORM
Parse solution vectors to Netlist,

Run SPICE simulations &
Extract performance metrics

'

MATLAB PLATFORM
Calculate AWA fitness and Update

(Pbest & Gest)

Is stopping
criteria met?

Optimal Solution Vector




100 H. Maddur Venkataswamy and B.P. Harish

The Yu fitness and SP fitness methodologies suffer from the possibility of significantly
different design solutions depending on the quality of randomly generated swarms of
initial solutions. However, the AWA fitness evaluation decouples the design solution
from the quality of the initial solution and generates global optimum solutions, i.e.,
optimisation of all performance metrics. The area of the design is computed as the
area of all transistors only, with interconnects excluded. For 2-stage op-amp, the
corresponding PSO convergence is shown in Figure 8 and the behaviour of performance
metrics in Figure 9.

Table 3 2-stage op-amp’s performance metrics obtained using PSO and fitness functions for
the design 1 of specifications of MOGA

PSO + PSO + PSO+ PSO + PSO +

Perfc Design MOGA CRPSO
erformance g Yu fitness Yu fitness SP fitness SP fitness AWA fitness

metrics 1

Result 1 Result 2 Result 3 Result 4 Result 5 Result 6 Result 7
Gain (dB) 70 76 65.47 0.54 73.47 66.11 64.18 70.04
UGBW (MHz) 1.5 1.5 22.57 0.01 11.12 99.99 100 17.63
PM (°) 60 70 64.59  159.96 74.46 16.84 42.46 60.01
SR (V/us) 1.5 2.25 25.09 8.87 11.26 109.31 108 27.79
Power (mW) 0.1 0.04 0.45 0.20 0.21 0.2 0.40 0.09
Area (1 m?) 200 559 196 132.43  138.75 308 178.78 108.00
Time (s) - - 6,162 5,799 6,238 6,276 4,306 3,844

Source: Dendouga et al. (2014) and Harsha and Harish (2018)

Table 4 2-stage op-amp’s performance metrics obtained using PSO and fitness functions for
proposed designs 2 and 3

- ; PSO + . PSO +
Performance  Design MOGA CRPSO . Design  MOGA  CRPSO .

. AWA fitness AWA fitness
metrics 2 - 3

Result 8 Result 9 Result 10 Result 11 Result 12 Result 13

Gain (dB) 80 74.8 63.47 79.56 70 68.37 69.3 72.1
UGBW (MHz) 5 7.32 8.042 18.29 5 8.36 9.17 45.96
PM (°) 70 76.1 72.25 73.00 70 70.63 78.26 70.00
SR (V/us) 10 7.41 11.91 12.54 10 10.01 6.14 44.56
Power (mW) 0.5 0.39 0.18 0.33 0.5 0.57 0.23 0.49
Area (1 m?) 100 254 54.6 99.67 100 634 61.5 87.85
Time (s) - 5,879 5,615 3,836 - 6,112 6,013 4,249

The PSO results obtained using Yu fitness are stuck at a local optima, due
to the adaptive weights associated with the Yu fitness function, indicating less
number of performance metrics being optimised. This degrades the efficiency of the
multi-parameter optimisation due to the epistatic nature of the objectives over successive
iterations.

Equivalently, the SP fitness stumbles by virtue of acceptable ranges and change in
swarm behaviour. Here, the fitness function determines the errors of the solution vector
with respect to the design specification and its acceptable range. With multi-objective
optimisation, the cumulative square of positive and negative errors results in a high
fitness value, but yet a suboptimal solution. Because in this case, the Gp.s: updates
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and in turn the position of the swarm of solutions changes, but there is a likelihood of
imitating the errors of the previous iteration, thereby it ends at a suboptimal solution,
where only a few objectives are achieved.

Figure 8 PSO convergence for AWA fitness driven PSO optimisation of 2-stage op-amp,
(a) design 1 (b) design 2 (c) design 3
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The performance metrics of 2-stage op-amp of the proposed AWA fitness driven PSO
are compared with Yu fitness driven PSO, SP fitness driven PSO, multi-objective genetic
algorithm (MOGA) (Dendouga et al., 2014) and craziness-based PSO (De et al., 2017)
for design 1 specifications and the results are tabulated in Table 3. The result 7 of
the AWA fitness driven PSO demonstrate the accuracy and even betterment of design
specifications for each performance metric, resulting in best optimal design solution. For
design 1, while open-loop DC gain, PM and power dissipation are accurate, UGBW, SR
and area are significantly better than specifications.
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Table 5 Design parameters of results 1 to 13 of 2-stage op-amp
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Behaviour of performance metrics — open-loop DC gain, UGBW, PM, SR, power
dissipation and Area for AWA driven PSO optimisation of 2-stage op-amp,
(a) design 1 (b) design 2 (c) design 3 (see online version for colours)
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The quality of the design in case of Yu fitness driven PSO and SP fitness driven
PSO has a strong dependence on the initial solution and adaptive weights, respectively
as indicated by results 3 to 6 of Table 3. In contrast, the AWA fitness is directly
evaluated with respect to the desired target, and it is independent of acceptable target
range and does not require any adaptive weights. The deployment of AWA fitness
evaluation enables unique optimal solution for a particular design specification that
is generated independent of the initial random solution and the iteration count, when
the iteration count is above a minimum. The corresponding results are demonstrated
for different set of specifications designs 2 and 3, as shown in Table 4. The range
of design outperformance, against given specifications, with the proposed methodology
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varied between —0.55% to 3% for gain, 365% to 1,175% for UGBW, 0% to 4.2% for
PM, 25% to 1,852% for SR, 2% to 34% for power and 0.33% to 46% for area, for
designs 1, 2 and 3. The corresponding behaviour of PSO convergence and convergence
of its performance metrics using AWA fitness driven PSO optimisation are shown
in Figures 8(a), 8(b), 8(c), 9(a), 9(b) and 9(c), respectively. It can be seen that all
performance metrics are optimised requiring 50 iterations. For 2-stage op-amp, the
corresponding final optimal design parameters of W, L, C., and I, generated are
tabulated in Table 5.

Figure 10 AWA fitness driven PSO optimisation of 4-bit flash ADC, (a) PSO fitness
convergence (b) behaviour of performance metrics — DNL, INL and power
dissipation (see online version for colours)
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6.2 4-bit flash ADC

To demonstrate the efficacy of the proposed methodology across mixed-signal circuits
of varying complexity, it is tested on 4-bit flash ADC for the given design specifications
and its performance metrics obtained using PSO and various fitness functions are
tabulated in Table 6. While result 1 represents the optimal solution obtained using PSO
with the Yu and Mao (2009) fitness function, result 2 represents the optimal solution
obtained using PSO with the SP fitness function (Papadopoulos et al., 2000). The result
3 is the optimal solution obtained using PSO with the proposed AWA fitness evaluation
methodology. The design outperformance, with respect to given specifications, is
observed on all five performance metrics: power of 28.5%, DNL maximum of 100%,
DNL minimum of 46%, INL maximum of 96.5% and INL minimum of 20.6%. It is
demonstrated that the AWA fitness evaluation decouples the design solution from the
quality of the initial solution. Hence, the deployment of AWA fitness evaluation enables
a unique optimal solution for a given design specification that is generated independent
of the initial random solution and the iteration count, when the iteration count is large
enough. Further, AWA fitness function assists in finding an optimal design solution even
with a wide range of W and L, unlike a narrow range of W and L required by the Yu
and SP fitness functions.

For the 4-bit flash ADC, the behaviour of PSO convergence and performance metrics
using AWA fitness are shown in Figure 10. The transistor parameters of the 4-bit flash
ADC design for results 1, 2 and 3 are tabulated in Table 7. It may be noted that the
area of the design is computed as the area of all transistors only, with interconnects
excluded.

Table 6 Performance metrics of 4-bit flash ADC obtained using PSO and various fitness

functions
Performance Design  PSO + Yu fitness PSO + SP fitness PSO + AWA fitness
metrics specifications Result 1 Result 2 Result 3
Power dissipation (mW) 2 1.25 0.771 1.43
DNL maximum (LSB) 1 0.25 0.25 0
DNL minimum (LSB) -0.9 —0.49 -1 —0.49
INL maximum (LSB) 1 0.285 1.78 0.035
INL minimum (LSB) -0.9 -0.714 —0.464 -0.714
Time (s) 5,888 4,390 5,968
Area (p m?) 11.84 22.07 10.88

Table 7 Transistor parameters of the 4-bit flash ADC design for results 1, 2 and 3

Transistor parameters (1 m) Result 1 Result 2 Result 3

For all W 0.18 0.219 0.18
For all L 0.1958 0.3 0.18
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7 Conclusions

An integrated AWA fitness function driven PSO-SPICE framework, with simple,
automated, and seamless bidirectional interfaces for multi-objective optimisation of
analogue and mixed-signal integrated circuits, is presented. The proposed methodology
addresses the design complexity and scalability by optimising 2-stage op-amp and 4-bit
flash ADC, respectively. The design of a 2-stage op-amp having eight transistors with
12 design parameters and 4-bit flash ADC having 336 identical transistors with four
design parameters are efficiently automated for design optimisation to achieve respective
design specifications. The efficacy of a novel AWA fitness evaluation function for
PSO technique is compared against Yu fitness and SP fitness functions and shown to
excel the design specifications, besides being simple and requiring low computational
cost. The AWA fitness is directly evaluated with respect to the desired target, and
it is independent of the acceptable target range and does not require any adaptive
weights. The AWA fitness evaluation enables a unique optimal solution that is generated
independent of the quality of the initial solution, the iteration count and without the
need for applying adaptive weights. As AWA fitness evaluation is based on design
optimality and not on distance measure, large design outperformance is recognised,
facilitating large design outperformance. The design solutions generated by AWA fitness
driven PSO are compared and found to be superior to MOGA and CRPSO work. The
range of design outperformance against given specifications of 2-stage op-amp with
the proposed methodology varied between —0.55% to 3% for gain, 365% to 1,175%
for UGBW, 0% to 4.2% for PM, 25% to 1,852% for SR, 2% to 34% for power and
0.33% to 46% for area, for designs 1, 2 and 3. The design outperformance of 4-bit flash
ADC against given specifications is observed on all five performance metrics: power of
28.5%, DNL maximum of 100%, DNL minimum of 46%, INL maximum of 96.5% and
INL minimum of 20.6%. The quality of the design optimisation is enhanced by directly
measuring the fitness on SPICE generated data in each iteration, which is facilitated by
the proposed integrated PSO-SPICE framework. Thus, the AWA fitness function driven
PSO optimisation methodology implemented in an integrated PSO-SPICE framework,
exemplies a robust, scalable, and precise method for multi-objective optimisation of
analogue and mixed-signal circuits of varying scale and design complexity. Further, the
AWA fitness methodology is generic in nature and can be applied to determine the best
optimal solution, where its optimality rather than distance-based closeness with respect
to the desired solution is the requirement, over all application domains.
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