An evaluation of customer trust in e-commerce market based on entropy weight analytic hierarchy process
by Yan Liu
International Journal of Information Technology and Management (IJITM), Vol. 23, No. 3/4, 2024

Abstract: In order to solve the problems of large generalisation error, low recall rate and low retrieval accuracy of customer evaluation information in traditional trust evaluation methods, an evaluation method of customer trust in e-commerce market based on entropy weight analytic hierarchy process was designed. Firstly, build an evaluation index system of customer trust in e-commerce market. Secondly, the customer trust matrix is established, and the index weight is calculated by using the analytic hierarchy process and entropy weight method. Finally, five-scale Likert method is used to analyse the indicator factors and establish a comment set, and the trust evaluation value is obtained by combining the indicator membership. The experiment shows that the maximum generalisation error of this method is only 0.029, the recall rate is 97.5%, and the retrieval accuracy of customer evaluation information is closer to 1.

Online publication date: Thu, 04-Jul-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information Technology and Management (IJITM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com