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Abstract: Most of the collision avoidance strategies in recent years only 
consider steering or braking. The dynamic and complex nature of the driving 
environment presents a challenge to developing robust collision avoidance 
algorithms in emergency scenarios. To address the complex, dynamic obstacle 
scene and improve lateral manoeuvrability, this paper establishes a multi-level 
decision-making obstacle avoidance framework that employs the safe distance 
model and integrates emergency steering and emergency braking to complete 
the obstacle avoidance process. This approach helps avoid the high-risk 
situation of vehicle instability that can result from the separation of steering and 
braking actions. In the emergency steering algorithm, we define the collision 
hazard moment and propose a multi-constraint dynamic collision avoidance 
planning method that considers the driving area. Simulation results demonstrate 
that the decision-making collision avoidance logic can be applied to dynamic 
collision avoidance scenarios in complex traffic situations and improving the 
safety of autonomous driving. 
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1 Introduction 

As the global economy continues to grow at a rapid pace, the rate of car ownership has 
been on the rise. The World Health Organization (WHO) reports that road traffic 
accidents cause nearly 1.3 million deaths and approximately 50 million injuries 
worldwide each year and are the leading cause of death among children and young people 
worldwide. The WHO released “Global Plan Decade of Action for Road Safety at its 
headquarters in Geneva, Switzerland”, calling on countries to take measures to reduce 
road traffic fatalities and injuries by at least 50% by 2030 at the latest (WHO, 2021). 
According to the data, about 92% of road traffic accidents are due to improper operation 
of drivers. In an emergency situation, drivers are not aware of the risk of encountering or 
have too little time to react to take the right steps to avoid a collision (Liu et al., 2023; 
Xia et al., 2022a). 

The industry commonly uses passive safety control systems to improve driving 
safety, including an anti-lock brake system (ABS), traction control system (TCS), 
electronic stability controller (ESC), etc. (Bengler et al., 2014; Chen et al., 2023). 
Although passive safety systems are crucial in reducing the severity of vehicle collisions, 
the continuous development of sensors and data processing technologies has led to the 
emergence of advanced driving assistance systems (ADAS), which can detect potential 
dangers in various scenarios and make prompt decisions (Liu et al., 2022). By detecting 
potential hazards and making correct decisions in different scenarios, ADAS systems can 
significantly enhance driving safety (Xiong et al., 2020; Hua et al., 2019). In case of 
emergency, the active collision avoidance movement can be divided into two major 
categories, i.e., collision avoidance by changing the longitudinal motion of the vehicle 
through emergency braking and collision avoidance by steering or braking to make  
the vehicle change lanes in the form of emergency lane change to avoid the obstacle  
(Gao et al., 2022; Hua et al., 2020; Liu et al., 2021). Longitudinal collision avoidance 
technologies, represented by forward collision warning (FCW) systems and automatic 
emergency braking (AEB) systems, warn the driver when there is a risk of collision in 
front of the vehicle or automatically apply the braking operation when an accident is 
about to occur, and such systems have been commercially implemented in many vehicles 
and have effectively improved vehicle safety (Cicchino, 2017; Chen et al., 2019a). 
However, when the vehicle is in emergency conditions such as low road adhesion 
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coefficient, high relative speed to obstacles, or oncoming traffic in the opposite direction, 
the impending collision cannot be avoided by longitudinal braking, and then the vehicle 
can avoid collision by emergency steering around the obstacles. 

Han et al. (2015) proposed a practical probabilistic method for collision decision-
making, where a Gaussian hybrid method is designed to calculate the collision 
probability with the help of linear recursive collision time (TTC) estimation. Experiments 
show that the method can greatly reduce the inherent nonlinearity of the collision 
decision problem and the complexity of the collision probability calculation. The method 
improves the reliability of the collision probability calculation and provides a solution for 
developing real-time decision algorithms. Huang and Chao (2010) proposed a novel  
bi-exponential TTC decision algorithm that can distinguish between safe passage in 
adjacent lanes and basic hazard lateral collision situations. In addition, grey prediction 
theory is introduced to estimate the relative distance of two vehicles one step ahead, and 
this strategy can effectively avoid collisions. The results showed that with the reduction 
of emergency braking system delay and collision time trigger threshold increases, the 
percentage of pedestrian collisions avoided also increases, and several studies have 
highlighted the importance of low system delays for vehicle-equipped autonomous 
braking systems and that choosing the appropriate crash time threshold for emergency 
braking systems is key to determining system usability, with too low a threshold leading 
to an overly sensitive system and resulting in false alarms, and too high a threshold 
increasing the risk of vehicle crashes (Haus et al., 2019). In order to avoid collisions 
between vehicles and pedestrians while crossing the road, Yang et al. (2019) established 
an AEB-P warning model based on TTC (time to collision) and braking safety distance 
and defined the traffic safety level and working area of the AEB-B warning system, and 
verified the plausibility of this control strategy through experiments. Tian and Wang 
(2022) proposed a control strategy based on fuzzy logic control for the crash risk 
assessment model and corresponding pedestrian AEB control strategy. The results show 
that the developed AEB control strategy can accurately assess the collision risk and take 
effective measures to avoid collisions with pedestrians crossing the road at a constant 
speed. Considering the accuracy and timeliness of automatic system control, Hang et al. 
(2022) proposed a rear-end real-time automatic emergency braking (RTAEB) system. 
Real-time driver-based conflict recognition and collision avoidance performance are 
inserted for braking intervention. The results show that the system can help to 
successfully avoid all collision events, and the TTC threshold of 1.5 s and the maximum 
deceleration threshold of –7.5 m/s2 can achieve the best collision avoidance effect. 

In an emergency situation, when the safety distance is short, the vehicle can quickly 
employ steering to perform collision avoidance operations. Lane changes are limited by 
friction between the tyres and the road surface, which imposes coupled limits on the 
lateral and longitudinal acceleration of the vehicle, making steering operations more 
difficult (Chen et al., 2019b, 2024a; Xia et al., 2022b). Funke and Christian Gerdes 
(2016) demonstrated that self-driving cars can perform emergency lane changes in the 
friction limit by generating and evaluating binary paths in real-time. Vehicle emergency 
active collision avoidance path planning is one of the important parts of completing the 
collision avoidance function. Whether the system can quickly plan a collision-free path 
that meets the vehicle dynamics requirements is the key to collision avoidance path 
planning. The methods commonly used for vehicle emergency active collision avoidance 
path planning are: planning methods based on curve interpolation description, artificial 
potential field method, planning methods based on optimisation, genetic algorithm, fuzzy 



   

 

   

   
 

   

   

 

   

   158 G. Chen et al.    
 

    
 

   

   
 

   

   

 

   

       
 

and other methods (Chen et al., 2023a). Hesse and Sattel (2007) developed a path and 
velocity distribution map based on potential field and elastic band theory. The method 
can avoid obstacles in front of the vehicle when reaching the target location. However, in 
real collision avoidance situations, the available data on obstacles is often quite limited. 
For this reason, some studies have used potential fields to analyse all of the risks in a 
vehicle’s surroundings (Chen et al., 2023b; Guo et al., 2017; Zhang et al., 2017; Bis et al., 
2009; Xia et al., 2021a). Kim et al. (2017) proposed a method that uses the concept of 
potential risk. This method identifies the potential risks of the surrounding environment 
and finds the best path for safety. Nilsson et al. (2015) performed trajectory planning for 
a high-speed loop scenario with multiple obstacles by means of a convex optimal 
planning method with transverse-longitudinal decoupling. Rosolia et al. (2016) used a 
trajectory planning method with predictive control of an outer loop nonlinear model. The 
method generates collision-free trajectories with synthetic inputs based on a simplified 
vehicle model. The optimisation problem is solved by a generalised minimum residual 
method augmented with a continuation method. 

Obstacle avoidance operations in self-driving cars are mainly focused on solving 
path-planning problems in some regular driving scenarios (Liu et al., 2020; Xia et al., 
2022a; Zhang et al., 2023; Song et al., 2023). Therefore, their performance may be 
unsatisfactory in emergency obstacle avoidance situations. Lin and Tsukada (2022) 
proposed a new model predictive path planning controller (MPC) combined with PF with 
a specific trigger analysis algorithm for monitoring traffic emergencies to handle 
complex traffic scenarios. This method can ensure safe autonomous driving when dealing 
with traffic emergencies. The interpolation curve of the discrete optimisation-based path 
planner is too conservative, which will lead to the inability to plan a safe collision 
avoidance path in emergency situations. Therefore, Yu et al. (2021) designed a 
segmented path planner for emergency obstacle avoidance conditions. In the first stage of 
path planning, the smoothest and obstacle avoidance path is obtained using automatic 
stop path planning. In the second stage, a suitable path for stabilising the vehicle is found 
to determine the safety of vehicle driving based on the inputs of longitudinal acceleration, 
velocity, and road curvature. Simulation results show that the proposed collision 
avoidance motion planning method has a safer trajectory at the same longitudinal 
distance. In order to avoid the problem of emergency scenarios driving on the highway, 
He et al. (2023) established a transverse acceleration model and collision avoidance 
minimum safety spacing model based on the theoretical analysis of the five polynomial 
lane change trajectory model and verified the effectiveness and accuracy of steering 
collision avoidance of self-driving cars on the highway in the simulation platform, which 
can effectively improve the safety of highway driving. In addition to the safety of 
collision avoidance, the safety of lateral stability is another key issue for self-driving 
vehicles under high-speed conditions. Hang et al. (2021) proposed an integrated path- 
planning algorithm. A nonlinear model predictive control is used to optimise the path, 
and a multivariate Gaussian distribution and polynomial fitting are used to predict the 
trajectory of moving obstacles. In the algorithm design, a series of constraints are 
considered, including minimum turning radius, safety distance, control constraints, and 
tracking error. Simulation results show that the algorithm can handle both static and 
dynamic collision avoidance as well as lateral stability. And facing active collision 
avoidance between autonomous vehicles with motion uncertainty and pedestrians, Feng 
et al. (2020) proposed a candidate trajectory planning method considering spatial and 
temporal sequences, which combines polynomial path planning and speed planning with 
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variable safety speed, based on which safety, stability, and efficiency as well as different 
driving styles are evaluated from the candidate trajectories optimal trajectory. The results 
show that the method is effective in planning safe, stable, and efficient trajectories in 
emergency situations. 

Both emergency steering and emergency braking are crucial for self-driving vehicle 
collision avoidance systems. It is the basis for the successful introduction of higher levels 
of autonomous driving and allows the autonomous vehicle to adjust its trajectory 
planning to its capabilities, external conditions, and knowledge of human errors to 
improve safety (Chen et al., 2024b; Xia et al., 2021b; Zhao et al., 2019). In Falcone et al. 
(2007, 2008), it was pointed out that combining the steering system with the braking 
system can effectively improve the yaw and the lateral stability of an autonomous 
vehicle. Wang et al. (2022) integrated multiple driver assistance function to improve the 
safety of the system effectively. The effectiveness of the algorithm was verified in 
simulation experiments. In summary, the establishment of a perfect vehicle emergency 
active collision avoidance control algorithm has high practical application prospects as 
well as research value. 

In order to ensure the safety of self-driving vehicles by taking a reasonable collision 
avoidance approach in high-speed emergencies, this paper proposes a multi- level 
decision framework collision avoidance algorithm for emergency scenarios. The 
algorithm overcomes the limitations of braking and steering avoidance in the applicable 
scenarios, calculates the current vehicle hazard level based on the safety distance model, 
and adopts combined braking and steering to avoid collisions, which improves the lateral 
manoeuvrability of the self-driving vehicle. When the vehicle collision risk is high and 
emergency steering is used, a feasible collision avoidance path is decided by the 
emergency active collision avoidance path planning module, and finally, the motion 
control layer completes the whole collision avoidance operation by precise and stable 
control of the target quantity. The overall architecture of the emergency active collision 
avoidance control algorithm proposed in this paper is shown in Figure 1. The system is 
divided into two layers, the upper layer is the decision planning layer, and the lower layer 
is the motion control layer. The decision planning layer includes two parts, one is the 
emergency collision avoidance multi-level decision module to adapt to different working 
conditions, and the other is the emergency active collision avoidance path planning 
module using the multi-constraint collision avoidance path planning optimisation method. 
In the planning module, this paper proposes a multi-constraint collision avoidance path 
planning optimisation method that considers the drivable area of the vehicle. In this 
method, the vehicle drivable area considering collision avoidance constraint is finally 
determined by establishing the prediction formula of kinematic obstacle position and 
analysing and calculating the relationship between collision hazard moment and position 
constraint. Then, the optimisation function considering the kinematic constraints as well 
as the position constraints is established, and the final collision avoidance path is 
determined through the optimisation solution. The lower motion control layer establishes 
the vehicle transverse and longitudinal motion control module, including vehicle 
longitudinal acceleration control based on feedforward plus feedback algorithm and MPC 
path tracking control based on the vehicle dynamics model. Among them, the real-time 
effect of the MPC tracking controller has been tested in previous work and can support 
the tracking control in emergency situations (Chen et al., 2023c). In addition, the raw 
information acquired by the sensors is processed so that the algorithm obtains stable and 
effective sensory information during the execution. 
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Figure 1  Emergency active collision avoidance control algorithm architecture (see online 
version for colours) 

 

The remainder of this paper is organised as follows: In Section 2 the designed multi- 
level obstacle avoidance decision algorithm is proposed. In Section 3, the multi-
constraint collision avoidance path planning optimisation method proposed in the 
decision algorithm is provided. Section 4 provides the results of simulation and 
experimental studies. Finally, Section 5 summarises the contributions of the paper and 
puts forward suggestions for future work. Our contributions are as follows: 

1 For improved lateral manoeuvrability, this paper proposes a multi-level decision 
avoidance framework that integrates steering and braking systems. The system takes 
the optimal operation according to different risk levels to avoid the high-risk 
situation of vehicle instability due to the separation of steering and braking actions. 

2 In the planning module of steering obstacle avoidance operation, this paper proposes 
a multi-constraint collision avoidance path planning optimisation method 
considering the drivable area of the vehicle, defines the collision hazard moment, 
and analyses and calculates the relationship between the collision hazard moment 
and the position constraint, finally establishes the drivable area that meets the actual 
collision avoidance requirements and obtains the planning path. The method reduces 
the complexity of the algorithm, realises the precise restriction of the lane change 
process, satisfies the requirements of the obstacle avoidance framework for 
computational efficiency, and takes into account the driver’s comfort. 

3 In order to verify the effectiveness of the algorithm, this paper systematically 
composes four typical hazardous traffic scenarios under structured roads: collision 
avoidance by stationary obstacles, collision avoidance by the front car emergency 
stop, collision avoidance by pedestrians crossing lanes and collision avoidance by 
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opposite direction traffic. The system can accomplish the collision avoidance task 
under different scenarios, and the algorithm has high flexibility and scenario-using 
capability. 

2 Design of multilevel collision avoidance decision algorithm 

The task of the vehicle emergency active collision avoidance decision algorithm is to 
make behavioural decisions for vehicles in hazardous situations by using the current 
vehicle state, vehicle surroundings, obstacle information, and driver’s behaviour. For 
different dangerous traffic scenarios and collision risk levels, the vehicle can take 
collision avoidance operations according to the set collision avoidance decision logic to 
improve safety. 

As shown in Figure 2, the process of establishing the vehicle emergency active 
collision avoidance decision algorithm can be divided into four parts: self-vehicle braking 
process analysis, safety distance model establishment, typical dangerous traffic scene 
description and the emergency collision avoidance decision model construction. 

Figure 2 General framework of multilevel collision avoidance decision algorithm (see online 
version for colours) 

 

The emergency active collision avoidance decision algorithm first analyses the vehicle 
braking process through the motion formula. At the same time, the target braking end 
state of the self-vehicle is divided into two categories: self-vehicle braking speed is zero 
and self-vehicle braking speed is the target speed. The corresponding vehicle braking 
safety distance formula is established, as shown in Figure 3. Based on the braking 
distance formula and the definition of the minimum safe distance of the vehicle. This 
paper establishes the distance-switching threshold between the four collision avoidance 
behaviours of the vehicle. Finally, a collision avoidance decision algorithm that considers 
typical hazard scenarios and satisfies the driver intervention exit mechanism is 
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established. The decision algorithm carries out the corresponding collision avoidance 
operation by calculating the current hazard level of the self-vehicle. When the path 
planning module is unable to calculate an effective collision avoidance path, the system 
selects the maximum braking force for pre-crash braking to minimise the damage caused 
by the collision. 

Figure 3 Vehicle collision avoidance hazard classification diagram (see online version  
for colours) 

Safe Warning Braking Steering Pre-crash

 

2.1 Collision avoidance safety distance model 

As shown in Figure 4, when a vehicle takes an emergency braking operation, the change 
in acceleration generally consists of four phases. 

Figure 4 Vehicle braking acceleration change process 
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where egov  is the self-vehicle speed, egoa  is the self-vehicle target braking deceleration, 
_ego endv  is the target vehicle speed at the end moment, 1τ  is the time of braking system 

adjustment, and 2τ  is the time of braking deceleration growth. 
Figure 5 for the vehicle minimum safety distance diagram. safeD  is the end of the 

vehicle’s active collision avoidance, the relative distance between the vehicle and the 
obstacles in front, egoL  is the braking distance of the vehicle, objL  is the distance  
of the obstacles in front of travel. Then the vehicle safety distance L can be expressed as 
follows: 

ego obj safeL L L D= − +  (2) 

The vehicle safety distance model established in this paper is mainly used to distinguish 
four vehicle target operations, namely safe driving, FCW, emergency braking, and 
emergency steering. Then determine the safety distance of warning, the safety distance of 
starting braking, and the minimum safety distance of braking for the four cases. 
Assuming that the front obstacle movement state is kept constant, combined with the 
analysis of the vehicle braking process, the obstacle movement process is divided into 
three cases: stationary, uniform motion or accelerated motion, and emergency braking. 
For the three cases of safety distance calculation, the derivation of the calculated safety 
distance model can be adapted to the vehicle in front of the obstacles in different states of 
motion, as shown in Table 1. 

Figure 5 Vehicle minimum safety distance diagram (see online version for colours) 

Ego_Vehicle

Ego_Vehicle

Obstacle

Obstacle

objvegov

objL

safeD

egoL

L

 

Where the relative distance at the end of the braking moment safeD  is: 

3.6 0
max(0.2364 1.6109,3.6) 0

ego
safe

ego ego

v
D

v v
=⎧⎪= ⎨ + >⎪⎩

 (3) 

The trigger braking deceleration _ego mina  and the maximum braking deceleration _ego maxa  
are: 

( )
( )

2
_

2
_

4 / ,

7 / ,

ego min

ego max

a min m s g

a max m s g

µ

µ

⎧ =⎪
⎨

=⎪⎩
 (4) 

 



   

 

   

   
 

   

   

 

   

   164 G. Chen et al.    
 

    
 

   

   
 

   

   

 

   

       
 

Table 1 Minimum safety distance of collision avoidance for different obstacle motion states 
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2.2 Multilevel collision avoidance decision logic based on crash risk 
assessment 

For the side of the opposite lane vehicles across the centreline approaching conditions, 
emergency braking is not effective to avoid the collision. At this time, only emergency 
steering can be taken to avoid the collision. However, when encountering a situation 
where the speed of the oncoming vehicle is too low or the relative distance is small, 
steering to avoid collision is not in line with the general driver’s operating habits. 
Therefore, in this paper, we establish the method of TTC risk assessment. The inverse of 
the collision time is used to characterise the degree of collision risk when a vehicle in the 
opposite lane crosses the centreline and approaches, which is calculated as follows: 

1 ego objv v
TTC

L
− −

=  (5) 

where egov  is the self-vehicle speed, objv  is the speed of the obstacle vehicle, and L  is 
the relative distance between the vehicle and the proximal face of the obstacle. In this 
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paper, based on Sun Y’s classification of the inverse of the collision time corresponding 
to the collision risk level, the collision warning threshold 1

warTTC −  is set to 0.3, and the 
active steering collision avoidance threshold 1

strTTC−  is 0.5. 
For the oncoming vehicle working condition, when 1 1 1

war strTTC TTC TTC− − −< < , the 
vehicle is considered to be at risk of collision with the vehicle coming from the opposite 
direction, but the risk is small, at this time the system only carries out a collision warning 
to the driver. When 1 1

strTTC TTC− −> , emergency steering is taken to avoid the collision. 
And when the risk of vehicle collision is too large, the current environment does not exist 
an effective steering collision avoidance path, the system believes that there is no longer 
collision avoidance, then the system with the maximum braking force braking for pre-
collision. The goal is to minimise the damage caused by the collision. Outside the entire 
system, the driver’s right to take over is ensured. The system automatically exits vehicle 
control when the system detects driver intervention. The decision logic of the vehicle 
emergency active collision avoidance control algorithm is shown in Figure 6, where L  is 
the relative distance and objv  is the speed of the obstacle vehicle. 

Figure 6 Emergency active collision avoidance decision logic diagram (see online version  
for colours) 

 

3 Evasive manoeuvre planning with safety envelopes 

In the vehicle collision avoidance process path planning algorithm, the safety constraints 
include the calculation of the drivable area and dynamics constraints. The path in this 
chapter is solved by the planning algorithm optimisation function to obtain a collision 
avoidance path that meets the requirements of collision avoidance. 
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3.1 Description of vehicle drivable area 

As shown in Figure 7, during the vehicle emergency active collision avoidance, the 
vehicle drivable area is determined by the lateral position of the obstacle objW  and the 
lane change width W . The self-vehicle position needs to be between the upper boundary 

maxY  and the lower boundary minY . These upper and lower boundaries are influenced by 
the movement state of the obstacle. For stationary obstacles, the vehicle travelable area is 
fixed; for moving obstacles, the vehicle travelable area needs to be combined with the 
prediction of the obstacle position and the correction of the original travelable area 
constraint. 

Figure 7 Diagram of vehicle drivable area (see online version for colours) 

 

According to the relative position of the self-vehicle and the obstacle in the collision 
avoidance process, the collision avoidance process is divided into two phases: the 
collision avoidance phase and the merging phase. These two phases demarcation point 
for the collision hazard moment 1* objT N . After this moment, the vehicle’s lateral position 
crosses the left end face of the obstacle, the vehicle is considered to have no collision 
threat. When the vehicle is in the collision avoidance phase, the main purpose of the 
system at this time is to avoid a collision between the self-vehicle and the obstacle. When 
the vehicle crosses the obstacle, the vehicle enters the merging stage. At this time the 
vehicle has no collision threat, where 2* objT N  for the vehicle’s longitudinal position over 
the front surface of the obstacle moment. Since in the merging phase, the size of the 
longitudinal distance is related to the drivable area detected by the sensor. Therefore, the 
minimum value of the longitudinal distance should be greater than the longitudinal 
position of the far-end face of the obstacle. However, the distance is too large to meet the 
driving habits of the driver when merging, so in the merging phase, the longitudinal 
distance should be greater than or equal to the longitudinal distance in the collision 
avoidance phase. 

3.1.1 Determination of the drivable area of stationary obstacles 

The position constraint established based on the drivable area of the vehicle can be 
expressed as: 

       1 , ,max endY W t N= ∀ ∈ "  



   

 

   

   
 

   

   

 

   

    Multi-level decision framework collision avoidance algorithm 167    
 

    
 

   

   
 

   

   

 

   

       
 

1

1 2

2

1,...,0
,...,

,..., 10

obj

obj objobj
min

obj end

end

t N
t N NW

Y
t N N

t NW

∀ ∈⎧
⎪ ∀ ∈⎪= ⎨ ∀ ∈ −⎪
⎪ =⎩

 (6) 

In the merging phase, the vehicle slowly moves into the target lane and gradually enters 
the lane-keeping state. The collision risk at this time is low, so there is no strict 
requirement for the lateral position. On the premise of not affecting the collision 
avoidance effect, to reduce the computational burden of the planning algorithm, y∆  is set 
as the allowed lateral deviation of the vehicle at the end of the lane change moment. The 
vehicle is allowed to have a certain range of deviation from the target lane at that 
moment. Therefore, the position constraint of the vehicle can be expressed as: 

1,...,max endY W y t N= + ∆ ∀ ∈

1

1 2

2
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,...,

,..., 10

obj

obj objobj
min

obj end

end

t N
t N NW

Y
t N N

t NW y

=

∀ ∈⎧
⎪ ∀ ∈⎪
⎨ ∀ ∈ −⎪
⎪ =− ∆⎩

 (7) 

When establishing the location constraints for path planning, the self-vehicle and the 
obstacle cannot be considered as mass points, and the influence of the size of the self-
vehicle and the obstacle on the constraints needs to be considered. This is to ensure that 
the self-vehicle does not collide with the obstacle when it travels along the planned path. 
Therefore, this paper defines the collision hazard moment in the collision avoidance 
process, as shown in Figure 8. 

Figure 8 Diagram of the collision hazard moment (see online version for colours) 

 
In Figure 8, point A  is the midpoint of the rear axle of the vehicle, point C  is the edge 
of the vehicle in the longitudinal position of the midpoint of the rear axle, and the nearest 
point with the obstacle, in this paper point B is called the collision risk point, θ  is the 
heading angle of the vehicle, fS , rS  are the distance from point A to the front and rear 
end of the vehicle, D  is the distance between the vehicle and the near end of the 
obstacle, d  is the minimum lateral distance between the midpoint of the rear axle of the 
vehicle and the obstacle set to avoid the collision. 

The collision hazard moment is defined as the moment when the longitudinal position 
of the midpoint of the rear axle of the self-vehicle coincides with the position of the 
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proximal surface of the obstacle. Because of the collision avoidance process, the 
longitudinal speed of the vehicle is much larger than the lateral speed, so in the vehicle 
over the obstacle car this time, the vehicle’s heading angle change is small. And in a short 
period, the lateral relative distance between the self-car and the obstacle changes less, so 
do not consider the case of the obstacle hitting the side of the self-vehicle. As the vehicle 
heading angle increases, the distance of point C  from the obstacle is becoming smaller. 
Therefore, setting a reasonable d  value, can ensure that the vehicle in the maximum 
heading angle C  point does not intersect with the obstacle, can avoid the collision, and 
can be expressed in the following formula: 

2cos max

Bd
θ

>  (8) 

where the maximum heading angle maxθ  is calculated from the angle between the set 
maximum lateral velocity and longitudinal velocity: 

arctan ymax
max

x

v
v

θ =  (9) 

In the collision avoidance process, if the lateral position of the collision danger moment 
crosses the left end face of the obstacle, it can be considered that no collision occurs with 
the obstacle. Based on the collision danger moment to establish the vehicle can drive area 
position constraint since the vehicle and the relative position information of the obstacle 
can be effectively transformed into position constraint to ensure the safety of the collision 
avoidance process. 

3.1.2 Drivable area correction for moving obstacle conditions based on 
collision hazard moments 

In the emergency active collision avoidance process, the position of the moving obstacle 
changes with time. This situation leads to the obstacle position constraint that does not 
meet the actual collision avoidance requirements. Therefore, in the emergency collision 
avoidance path planning process, this paper converts the position of the moving obstacles 
at the moment of the actual collision risk into the corresponding position constraint by 
determining the actual collision risk moment, and then the initial position constraint is 
modified. In different obstacle motion cases, the position constraint process is established 
with the collision risk moment, as shown in Figures 9–11. 

Figure 9  Schematic diagram of the position constraint of the opposing motion of the obstacle 
(see online version for colours) 
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Figure 10 Schematic diagram of the obstacle isotropic motion position constraint (see online 
version for colours) 

 

Figure 11 Obstacle lateral drive-in position constraint schematic (see online version for colours) 

 

According to the above front obstacle movement scenario, the calculation of the obstacle 
collision hazard moment needs to consider the relative motion state of the self-car and the 
obstacle along the lane direction. The results of the calculation are shown in Table 2. 

To ensure the safety as well as the comfort of vehicle driving in the process of 
emergency active collision avoidance, this paper sets up the cost functions of vehicle 
lateral speed, lateral acceleration, and lateral jerk: 

( )2 2 2

1

end

t t t

N

y t y t y t y
t

J p v q a r j
=

= + +∑  (10) 

where tp , tq , and tr  are the weight values corresponding to the lateral velocity, lateral 
acceleration, and lateral jerk of the collision avoidance path, respectively. The 
smoothness and feasibility of the collision avoidance path are ensured by setting 
reasonable non-negative weight values. 
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 (11) 

where ty ,
tyv ,

tya ,
tyj  represent the lateral position, lateral velocity, lateral acceleration, 

and lateral jerk of the self-vehicle at the sampling moment t . ty  needs to satisfy the 
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vehicle position constraint and requires each moment to ensure that the path lateral 
position is within the vehicle travelable area. 

tyv ,
tya ,

tyj  all need to satisfy the kinematic 
constraints of the vehicle and are influenced by the vehicle travel constraints and the road 
adhesion coefficient. 

Table 2 Motion obstacle collision hazard moment calculation 

Longitudinal acceleration 
of the obstacle Collision hazard moment 

0obja ≥  2
ego obj

LT
v v

=
−

 

ego brake brakev t L x> +  ego brake brakev t L x≤ +  

0obja <  2

2

2
2

ego

ego

v aL
T

av
+

=  
2

2

( ) 2obj ego obj ego objv v v v a L
T

a
− + − +

=  

In the emergency active collision avoidance process, ( )y tϕ  is used to represent the 
lateral motion state of the vehicle at sampling moment t , and Y  denotes the set of 
vehicle motion states at all sampling moments in the lane change process. 

( ) [ , , , ]       1, ,
t t t

T
y t y y y endt y v a j t Nϕ = ∀ ∈ …  (12) 

( ) ( )[ 1 ,..., ]T
y y endY Nϕ ϕ=  (13) 

where maxb , minb  denote the constraints on the lateral motion state of the vehicle at the t  
sampling moments, and with maxB , minB  denote the boundaries of the vehicle motion state 
at all sampling moments during the lane change. 
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From the above equation, the motion state constraint of the vehicle during the whole lane 
change can be expressed by the following equation: 

min maxB Y B≤ ≤  (16) 

During the lane change process, each moment of the vehicle path is required to satisfy the 
physical motion equation. The lateral displacement at the current moment is obtained by 
accumulating the lateral displacements in each previous sampling step, and the 
relationship between each sampling step of the vehicle is expressed as follows: 
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Simplify it to: 
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Among them: 

[ ]

2

1 0 1 0 0 0
2

0 1 0 0 1 0 0    0 0 0
0 0 1 1 0 0 1 0

nb

TT

a T b

⎡ ⎤
−⎢ ⎥

⎢ ⎥
= − =⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 (19) 

The motion state constraint of the vehicle between each sampling step is represented as 
follows: 

AY b=  (20) 
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In summary, the standard form of secondary planning can be obtained: 
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The path planning problem of the vehicle emergency active collision avoidance process is 
converted into the standard form of quadratic programming described in the above 
equation, and by setting reasonable weight parameters and using optimisation methods 
such as the interior point method or the effective set method to solve, a collision 
avoidance path that meets the collision avoidance requirements can be obtained. 

4 Simulation verification 

Currently, there are several solutions available for addressing collision avoidance in 
emergency scenarios, such as sensor-based collision avoidance, predictive modelling, 
emergency braking systems, and path planning and decision-making. It’s worth noting 
that the specific solution or combination of solutions employed may vary depending on 
factors such as the autonomous driving system, level of autonomy, available technology, 
and the nature of the emergency scenario. In this study, typical vehicle obstacle 
avoidance scenarios, as shown in Table 3, are first summarised, then introduces the 
simulation results of the algorithm in different scenarios, then introduces the combination 
of braking and steering control and the vehicle hazard level calculation to evaluate the 
performance of the proposed vehicle emergency active collision avoidance control 
algorithm. 

In Table 3, the relative distances of high and low collision risk scenarios and the 
lateral distance of obstacles are the relative distances between the self-driving car and the 
obstacles when the system determines the presence of collision risk. Since the parameters 
of the stationary obstacle collision avoidance condition and the front car emergency stop 
collision avoidance condition are similar, and the latter is more representative, due to the 
limitation of space, this section selects a typical representative of the obstacle avoidance 
condition for simulation experiments. The C-class passenger car model is selected in 
Carsim and the main vehicle parameters are shown in Table 4. 

Table 3  Emergency steering test scenario parameters 

Collision avoidance 
scenarios 

Front Car 
emergency stop 

Pedestrians crossing 
lanes 

Opposite direction 
traffic Unit 

Self-vehicle speed 90 80 60 km/h 

Obstacle speed 60 5 60 km/h 
Obstacle acceleration -7 0 0 m/s2 
Direction of obstacle 
movement 

In the same 
direction To the left Reverse direction – 

Obstacle lateral 
distance 0 2 1 m 
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Table 3  Emergency steering test scenario parameters (continued) 

Collision avoidance 
scenarios 

Front Car 
emergency stop 

Pedestrians crossing 
lanes 

Opposite direction 
traffic Unit 

Obstacle size (length 
x width) 4.5 × 1.9 0.4 × 0.6 4.5 × 1.9 m 

Collision avoidance 
longitudinal distance 120 120 90 m 

Trigger braking 
safety distance 75.7 67.6 – m 

Minimum safety 
distance for braking 42.3 41.1 – m 

Relative distance of 
high-risk scenarios 26 30 – m 

Relative distance of 
low-risk scenarios 60 55 100 m 

Table 4 Vehicle parameters 

Symbol Description Value Units 

m  Vehicle mass 1820 kg  

fl  C.g. distance to front wheel 1.265 m 

rl  C.g. distance to rear wheel 1.895 m 

zI  Yaw moment of inertia 4095 2kg m⋅  

fCα  Front wheel cornering stiffness 148600 N / rad  

rCα  Rear wheel cornering stiffness 97600 N / rad  

swi  Steering Ratio 16.7 – 

4.1 Scenario I: front car emergency brake collision 

4.1.1 Simulation verification of high collision risk conditions for front vehicle 
emergency brake 

The simulation results of the front vehicle emergency brake’s high collision risk 
condition are shown in Figure 12. 

In the Step1 stage, the vehicle is driving normally at 25 m/s speed, and the obstacle 
vehicle in front is driving at a uniform speed of 16.7 m/s. In the Step2 stage, the obstacle 
vehicle suddenly brakes urgently with a reduced speed of 7 m/s2. At this time, the 
longitudinal relative distance between the vehicle and the obstacle vehicle is 26 m, while 
the minimum safe distance of braking is 42.3 m, and the risk of collision is large. The 
collision cannot be avoided by emergency braking, and the system carries out collision 
avoidance operation by emergency steering, and the system plans the collision avoidance 
path and carries out tracking. In the Step3 stage, the vehicle successfully crosses the 
obstacle vehicle and continues the merging process. In the Step4 stage, the vehicle 
completes the collision avoidance process. 
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Figure 12 The process of collision avoidance for high collision risk working conditions in the 
front car emergency brake (see online version for colours) 

 

The results of collision avoidance path planning are shown in Figure 13. 

Figure 13 Planning path and constraint settings for high collision risk conditions of front vehicle 
emergency brake (see online version for colours) 

 

The results of vehicle tracking for the collision avoidance path are shown in Figure 14. 
From the tracking results, it can be concluded that the maximum lateral acceleration 

is 2.6 m/s2, the lateral deviation is less than 0.1 m, the heading deviation is kept within 
0.01 rad, and the steering wheel angle changes smoothly. 

4.1.2 Simulation verification of low-crash risk conditions for front vehicle 
emergency brake 

The simulation result curve of the front vehicle emergency brake’s low collision risk 
condition is shown in Figure 15. From the simulation results can be obtained, the vehicle 
to 25 m/s speed uniform speed, and the speed of the obstacle vehicle is 16.7 m/s. At this 
time, the vehicle and the longitudinal relative distance of the obstacle vehicle ahead is 
greater than the trigger braking safety distance under this condition, the vehicle for 
normal driving. When the front obstacle vehicle suddenly emergency braking with 7 m/s2 
deceleration speed, at this time the emergency collision avoidance decision algorithm 
gets the trigger braking safety distance and braking minimum safety distance jump, 
respectively to 75.7 m and 42.3 m. And then the relative distance is 60 m, and the vehicle 
into an emergency braking state, with a 4 m/s2 target deceleration speed for braking. 
When the actual distance is equal to the minimum safety distance of braking, the vehicle 
brakes with the maximum braking deceleration speed of 7 m/s2 until the vehicle stops. 
The longitudinal relative distance between the end moment of collision avoidance and the 
front obstacle vehicle is 4.1 m, effectively avoiding the collision accident. 
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Figure 14 Path tracking results of high collision risk conditions of the front vehicle emergency 
brake (see online version for colours) 
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Figure 15 Collision avoidance results of the front vehicle emergency stop with low collision risk 
conditions (see online version for colours) 

 

4.2 Pedestrian crossing lane collision avoidance conditions 

4.2.1 Simulation validation of high crash risk conditions for pedestrians 
crossing lanes 

The simulation results of the pedestrian crossing lane collision avoidance condition are 
shown in Figure 16. In the Step1 stage, the vehicle initially drives normally at 22.2 m/s, 
and the pedestrian moves up along the vertical direction of the lane at 1.4 m/s on the right 
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side of the house. In Step 2, the pedestrian crosses the house to the side of the lane. At 
this time, the self-vehicle detects pedestrian information. The longitudinal relative 
distance between the vehicle and the pedestrian is 29.7 m. The lateral relative distance is 
–2 m. And the minimum safety distance for braking is 40.8 m. Due to the high risk of 
collision, the system adopts emergency steering for collision avoidance. The vehicle 
plans the collision avoidance path and tracks it. In the Step3 stage, the vehicle 
successfully crosses the pedestrian and continues the vehicle merging. In Step 4, the 
vehicle completes the collision avoidance process. The results of collision avoidance path 
planning are shown in Figure 17. 

Figure 16 Collision avoidance process for pedestrian crossing with high crash risk conditions  
(see online version for colours) 

 

Figure 17 Planning path and constraint settings for high collision risk conditions for pedestrian 
crossing lanes (see online version for colours) 

 

The tracking results of the vehicle for the collision avoidance path are shown in  
Figure 18. From the tracking results, we can see that the maximum lateral acceleration of 
tracking is 2.5 m/s2, the lateral deviation of tracking is less than 0.1 m, and the deviation 
of heading is kept within 0.015 rad. The steering wheel angle changes smoothly. 
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Figure 18 Path tracking results for high collision risk conditions for pedestrians crossing lanes 
(see online version for colours) 

 

4.2.2 Simulation validation of low crash risk conditions for pedestrians crossing 
lanes 

The simulation result curve for the low collision risk condition of the pedestrian crossing 
lane is shown in Figure 19. From the simulation results in the figure, it can be concluded 
that no pedestrian is detected by the vehicle at the beginning moment. The vehicle is 
driving at a constant speed of 22.2 m/s. When the pedestrian is detected, the longitudinal 
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relative distance between the vehicle and the pedestrian is 55 m. This distance is less than 
the current trigger braking safety distance (67.6 m) and greater than the current braking 
minimum safety distance (41.1 m), and the vehicle enters the emergency braking state at 
this time. The vehicle starts braking at a target deceleration speed of 4 m/s2. With the 
change of the self-vehicle speed and the longitudinal relative distance with the pedestrian, 
the trigger braking safety distance and the braking minimum safety distance calculated by 
the emergency collision avoidance decision algorithm also change. When the actual 
distance is equal to the braking minimum safety distance, the vehicle brakes at the set 
maximum braking deceleration rate of 7 m/s2 until the vehicle stops completely. And the 
relative longitudinal distance between the vehicle and the pedestrian at the end of braking 
is greater than 0, which effectively avoids the collision accident. 

Figure 19 Collision avoidance results for low crash risk conditions for pedestrian crossings  
(see online version for colours) 
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4.3 Collision avoidance for opposing vehicles 

The simulation results of the collision avoidance condition of the opposite-direction 
vehicle are shown in Figure 20. In the Step1 stage, the vehicle travels at a speed of 
16.7 m/s. The obstacle vehicle crosses the centreline of the lane at 16.7 m/s and drives in 
the opposite direction of the self-propelled vehicle. At this time, the countdown of the 
collision time 1TTC −  is less than the set active steering collision avoidance threshold of 
0.5, so the system does not perform active collision avoidance operation. In Step2 stage, 
the system detects that the countdown of the collision time 1TTC −  is greater than the set 
threshold, at this time the longitudinal relative distance between the self-vehicle and the 
obstacle vehicle is 66.7 m. The collision risk is considered to exist, but if the emergency 
braking collision avoidance operation is taken, the vehicle will still collide. At this time, 
the decision algorithm takes emergency steering to avoid the collision, and the system 
plans the collision avoidance path and carries out tracking. In the Step3 stage, the vehicle 
successfully crosses the obstacle vehicle coming from the opposite direction and 
continues the merging process. In the Step4 stage, the vehicle completes the collision 
avoidance process. 

Figure 20 Collision avoidance process for opposing vehicles (see online version for colours) 

 
The results of collision avoidance path planning are shown in Figure 21. 

Figure 21 Planning path and constraint settings for collision avoidance for opposing vehicles 
(see online version for colours) 

 

The tracking results of the vehicle for the collision avoidance path are shown in  
Figure 22. From the tracking result curve, it can be concluded that because the self-car 
has the judgement of collision risk in advance for the vehicles coming from the opposite 
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direction, the time left for the collision avoidance phase (Step2) is also longer, and the 
planned path is also more gentle, the tracking lateral deviation is less than 0.1 m, and the 
heading deviation is basically kept within 0.005 rad, and the steering wheel changes 
smoothly. This also proves the collision avoidance capability of the system for the special 
situation of oncoming traffic. 

Figure 22 Tracking results of oncoming traffic steering collision avoidance path (see online 
version for colours) 
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5 Conclusion 

This paper proposes a multi-level decision framework obstacle avoidance algorithm for 
emergency scenarios. The algorithm differs from other obstacle avoidance algorithms by 
integrating the steering and braking systems, and the collision avoidance operations such 
as collision warning, emergency braking, and emergency steering are taken according to 
different risk levels, which improves the lateral manoeuvrability of the system. When the 
system takes steering for obstacle avoidance, unlike traditional path planning algorithms, 
the collision avoidance path planning method based on multi-constraint optimisation fully 
takes into account the positional constraints and dynamics constraints of the vehicle in 
the process of collision avoidance, and also takes into account the drivable area of the 
vehicle and generates the motion trajectory by solving the optimisation problem under the 
multi-constraint conditions. The conclusions are drawn as follows: 

1 The decision avoidance algorithm can make correct operations quickly in the four 
typical hazardous traffic scenarios in this paper. 

2 The planning module can generate smooth collision-free trajectories suitable for 
lane-changing manoeuvres in complex traffic situations, and the tracking control 
module can complete tracking control tasks accurately and stably. 

3 These results motivate future work that incorporates dynamic predictive modelling 
of the traffic environment, which also includes curved roads, obstacles with lateral 
speeds, and multi-obstacle hazard scenarios. 

The MPC control algorithm achieves accurate and stable control of the path according to 
the established vehicle prediction model, and the accuracy of the vehicle model 
parameters significantly influences the control algorithm. Therefore, future work will 
thoroughly investigate the online identification function of vehicle parameters within the 
control algorithm. Furthermore, it is essential to further validate the proposed multilevel 
decision framework obstacle avoidance algorithm in real-world road environments. 
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