Damage mechanics of electromigration in microelectronics copper interconnects
by Cemal Basaran, Minghui Lin
International Journal of Materials and Structural Integrity (IJMSI), Vol. 1, No. 1/2/3, 2007

Abstract: Current density levels are expected to increase by orders of magnitude in nanoelectronics. Electromigration which occur under high current density is the major concern for the nanoelectronics industry. Using a general purpose computational model, which is capable of simulating coupled electromigration and thermo-mechanical stress evolution, several dual damascene copper interconnect structures have been investigated for electromigration damage. Different diffusion boundary conditions including blocking and non-blocking boundary conditions, current crowding effects, interface diffusion effects and material plasticity have been considered. Different damage criteria are used for quantifying material degradation. The computational simulation results match the experimental findings; therefore the model proves to be a useful tool for quantifying damage in nanoelectronics interconnects.

Online publication date: Thu, 31-May-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Structural Integrity (IJMSI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com