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Abstract: In this research, the scheduling problem of open-shop scheduling
problem (OSSP) with sequence-dependent setup time (SDST) is investigated
considering the reverse flow (assemble/disassemble flow on the same
machines). The problem is formulated as a bi-objective mixed-integer linear
programming (MILP) model. It involves reverse flows to minimise the
completion time (Cmax) and total tardiness. Since the OSSP is an NP-hard
problem, a vibration damping-based multi-objective optimisation algorithm
(MOVDO) is employed to solve large test problems in a reasonable runtime.
Analysing the results of this algorithm was compared to an Epsilon-constrained
method, which produced similar results in small problem sizes. Additionally,
this algorithm is compared to other multi-objective algorithms, such as
MOACO, MO-Cuckoo search, and NSGA-II, in terms of its performance.
Based on the performance of these algorithms, we show that the proposed
MOVDO algorithm performs better than the other algorithms to solve this
problem. Eventually, a case study is investigated to validate the mathematical
model and demonstrate the application. Comparing the proposed model to the
results in the real world, the proposed model shows an improvement.
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1 Introduction

The purpose of resource allocation scheduling in a planning horizon is to optimise the use
of available resources. A schedule that uses production capacity efficiently can increase
profitability for production units. Time is always the most valuable resource. As a result,
resource scheduling increases efficiency, maximises production capacity, ultimately
increases profitability for an organisation, and reduces the time required to accomplish
tasks (Baker and Trietsch, 2009).

The scheduling of shop environments such as flow shops and job shops applies to
many industrial and service processes. A job-shop production system has a predetermined
constant processing route for each job. However, sometimes the decision is made by
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someone responsible for scheduling. This model is known as an open shop when there is
no restriction on the processing route. In this type of shop, the processing routes of
different jobs can differ from one another, and each job may have its processing route
(Tavakkoli-Moghaddam and Seraj, 2009). Since open-shop scheduling problem (OSSP)
are common in real-world environments, providing a suitable model will be very useful
to managers and practitioners. Medical clinics, car repair (battery making, refinishing,
engine repair, etc.), and administrative processes in universities are just some examples
of real open-shop scheduling problems.

The above specifications of an open-shop scheduling problem state that the jobs do
not have a specific order, so the problem-solving space is considerably larger than that of
other shop scheduling problems. Upon reviewing the literature, it appears that researchers
paid less attention to the open-shop problem. Due to their similarity to real-world
conditions, modelling scheduling problems, including open-shop scheduling problems,
include a variety of processing constraints, including precedence constraints,
breakdowns, machine eligibility restrictions, setup times, etc. This research aims to
determine the limitation of setup times based on sequence (sequence-dependent setup
times — SDST). A setup time is considered in the scheduling problem as the time taken to
set up machines between jobs (Noori-Darvish et al., 2012). Typically, setup time is part
of the processing time. However, this assumption leads to scheduling difficulties since by
taking setup time into account, the completion time can be drastically reduced
(Allahverdi, 2015). Moreover, in many manufacturing industries such as printing,
automobiles, pharmaceuticals, chemistry, and so on, the processing time is an influential
character that depends on the previous processes on the same machine (Shen et al., 2018;
Allahverdi et al., 2008). The setup operations, such as cleaning or changing tools, are not
only necessary between jobs but also highly dependent on the previous process on the
same machine (Naderi et al., 2011). During SDST, a machine’s startup time is influenced
by the previous job that was processed on the same machine.

Further, this study considers the reverse flow of jobs as assembly/disassembly
operations in an open-shop environment. It is the nature of jobs, not their processing
route, that determines what is considered direct and reverse in this study. Research has
focused on the management of reverse flows or return flows in industrial production
processes. Effective management of reverse product flows is vital to the survival of most
businesses. Technology advancements have resulted in shorter product life cycles than
before. Due to strict environmental laws and the need to respond to customers promptly,
defective, outdated, or unsold products have become valuable. Thus, scheduled product
returns are vital (Eydi et al., 2020). Generally, reverse logistics is more important for
industries whose products have a high value or a large return rate. Reverse flow includes
repair and replacement, product modernisation, remanufacturing, recycling, and the sale
or reuse of disassembled parts (Tibben-Lembke and Rogers, 2002). It is now possible to
reproduce computers, mobile phones, and copy and print machines. In addition to
reducing production costs, reverse logistics can improve customer service and
manufacturers’ competitiveness (Dolgui et al., 2006).

In the production cycle, one-way straight or reverse planning has a low optimisation
level in terms of cost and service level, so it is better to consider both direct and reverse
flow simultaneously (Amin and Zhang, 2013). Despite its application in the real world
(automotive industry, electronics, weapons systems, etc.), less research has been
conducted on this category of reverse flow. In part, this is due to the complexity of
moving to more advanced systems, such as open-shop environments. Due to the lack of
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traditional, analytical, and accurate methods, finding suitable and optimal scheduling for
these systems is a time-consuming and uneconomical process. Consequently,
metaheuristic algorithms were used to solve the proposed problem.

Section 2 reviews some of the existing articles on open-shop scheduling problems. A
bi-objective integer programming approach is presented in Section 3 to model this
problem when the setup time is sequence-dependent, and reverse flow is considered. In
Section 4, the problem-solving method is discussed using a multi-objective vibration
damping-based optimisation (MOVDO), NSGA-II (Deb et al., 2002), MOACO (Cheng
et al., 2012), and MO-cuckoo search (Yang and Deb, 2013) algorithms. Section 5
includes a numerical example, the analysis of the computational results, and the
implementation of the algorithms in a case study. Section 6 concludes with some
conclusions and suggestions for the future.

2 Literature review

In recent years, many researchers have examined the OSSP. Despite this, open-shop
problems have a minimal share of the literature. In most cases, researchers used heuristic
and meta-heuristic algorithms to solve these problems. This section discusses some of
their studies.

Gonzalez and Sahni (1976) introduced OSSP in 1976. Since then, the OSSP has
drawn the attention of researchers around the world. Khuri and Miryala (1999) examined
the complexity of the open-shop scheduling problem and proved that it is NP-hard. Dror
(1992) solved the OSSP to minimise both the makespan and the average floating time
according to the machine’s time-dependent processing characteristic with a precise
algorithm. A mathematical model was proposed by Kyparisis and Koulamas (1997) to
minimise the completion time of an OSSP. Brisel and Hennes (2004) studied an open
shop problem, assuming that preemptions are allowed. They considered the average
completion time in their problem and proposed new scheduling models assuming that
preemptions are permitted.

Mosheiov and Yovel (2004) conducted a study on flow and open shop scheduling
problems (OSSP) considering a binding machine. They assumed that each job consisted
of a maximum of two operations. One of these two operations is common to all jobs.
Cheng and Shakhlevich (2005) worked on minimising independent objective functions
for OSSP simultaneously. Their study examined both the permissibility and the absence
of preemptions. The researchers calculated the completion times for a set of feasible
sequences. The resulting multidimensional scheduling properties showed that creating an
optimal sequence problem could be solved in polynomials to minimise a cost function
independent of completion time. Sedefio-Noda et al. (2006) proposed network flow
approaches for scheduling problems with preemption permissions.

Chen et al. (2008) examined mass sequences for OSSP. Their research investigated
the problem, assuming that there are restrictions on release times. Also, they have studied
the OSSP with the limitation or the absence of idle time of machines. Sedefio-Noda et al.
(2009) proposed a method based on network flow, assuming the existence of a time
window and the ability to pre-empt jobs. Their time window limits must also be strictly
enforced. They simultaneously selected two criteria for minimisation. Chen et al. (2013)
considered batch scheduling and delivery coordinates on two machines in the open shop
problem to minimise the completion time by developing an approximate algorithm.
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Kyparisis and Christos (2015) first considered the usual three-machine open-shop
problem to minimise completion time when all machines are loaded; otherwise, they used
an approximate solution to the three-machine problem. They also considered the problem
as a mixed shop and processed the remaining work with a flow shop. Bai et al. (2016)
investigated the static and dynamic state of the flexible open-shop problem with the
objective function of minimising the makespan.

Zhang et al. (2019) proposed a new integer programming model for an open-shop
problem using the clinic appointment schedule. The objective function was to minimise
makespan and total job processing time. In other words, they considered a combination of
minimising the clinic closure time and total patient waiting time. In their method,
possible solutions were obtained with a two-step heuristic method, which also provides a
lower bound for determining the quality of the solution. Next, they presented a two-stage
stochastic optimisation model in which the expected value solution was used to generate
two different patient entry patterns. Chen et al. (2020) studied open shop problems for
single jobs under precedence constraints to minimise makespan.

Abreu et al. (2022) studied an OSSP in which intermediate storage is forbidden
between adjacent production stages (zero buffers or machine blocking constraints). Their
goal was to complete jobs in the shortest amount of time possible (makespan). The NP-
hardness of this problem led them to propose a constraint programming method with two
stages. Dong et al. (2022) generalised the open shop scheduling and parallel machine
scheduling problems by introducing parallel multi-stage open shops. Under the constraint
that job preemption is not allowed, they attempted to process all jobs on identical k-stage
open shops with the minimum possible makespan. They developed an effective
polynomial-time approximation scheme (EPTAS). The EPTAS is based on a combination
of categorisation, scaling, and linear programming. Before scheduling different types of
jobs and/or operations, they are categorised carefully into multiple types before being
scaled and categorised into multiple types. An OSSP involving two machines was studied
by Yuan et al. (2022) provided that one machine is subject to a fixed maintenance
period. Minimising the makespan was the goal. They considered scenarios that were
non-resumable, meaning that if the job was started before the maintenance period, but
couldn’t be completed before the maintenance period, the job had to be restarted after the
maintenance period. They discussed only the maintenance period of the first machine,
whereas the maintenance period of the second machine was symmetrical.

Although the open-shop scheduling problem has a considerably ample solution space,
many researchers employed heuristic and meta-heuristic algorithms to solve it even for
the same jobs and machines. Even though binomial time algorithms can solve some
open-shop scheduling problems with unique structures, for many OSSPs, given their
NP-hard nature, using such algorithms to achieve optimal or near-optimal solutions is
inefficient. As such, many researchers employed various metaheuristics to solve OSSPs
with different complex structures. For instance, Fang and Ross (1994) proposed a hybrid
genetic algorithm with simple heuristic scheduling construction rules. They used this
algorithm to minimise the completion time. Btazewicz et al. (2004) considered the time
lag criterion in the jobs and used a genetic algorithm to solve it. Andresen et al. (2008)
proposed an algorithm based on simulated annealing and a genetic algorithm to minimise
total weighted tardiness in the open-shop scheduling problem. Tavakkoli-Moghaddam
and Seraj (2009) presented a new Tabu search algorithm for the bi-objective OSSP based
on a fuzzy multi-objective decision-making approach. They considered deterministic
parameters, in which they minimised the mean delay and the mean completion time at the
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same time. In their proposed model, setup times were deemed to be independent of the
sequence. In a study by Zobolas et al. (2009), a hybrid meta-heuristic approach was used
for an OSSP. The optimisation scale in this paper was to minimise the completion time.
The solution method consisted of three steps:

1 generating a random initial population
2 employing a heuristic solution to obtain the initial population
3 using a combination of the variable neighbourhood search and genetic algorithms.

Doulabi et al. (2010) developed a mixed-integer programming mathematical model for
the open-shop scheduling problem with the least total weighted completion time
objective function. They solved the problem with a Tabu search algorithm. Naderi et al.
(2010) introduced a heuristic algorithm to improve the performance of the solution
algorithm. Roshanaei et al. (2010) employed a simulated annealing algorithm to solve the
OSSP problem. The ant colony optimisation method for the OSSP problem was
introduced by Panahi et al. (2011). Tanimizu et al. (2017) used a co-evolutionary
algorithm to obtain disassembly sequences and post-processing operations to solve the
open-shop problem. Benziani et al. (2018) presented a genetic algorithm for the
open-shop scheduling problem. They used a simple and efficient chromosome based on
the job occurrence, in which the fitness function represents the duration of the schedule.
They also developed heuristic approaches to generate the initial population and improve
the solutions obtained. Recently, Shareh et al. (2021) used the bat algorithm based on a
meta-heuristic function to solve OSSPs. Their heuristic function was designed to increase
the optimal solution convergence rate. For the OSSP, Kurdi (2022) proposed a new
metaheuristic algorithm (ACONEH). Using the proposed heuristic, ACO’s exploration
capability was enhanced as well as its ability to solve problems effectively. As a result of
this approach, ACONEH would avoid premature convergence and maintain an
exploration-exploitation balance. As a proportionate case, Adak et al. (2022) studied the
case where a task requires a fixed amount of processing time regardless of the job
identity. They proposed a model to minimise the makespan and to solve this problem,
they used an ant colony optimisation algorithm.

Researchers in the above works considered different processing restrictions. Research
on the open-shop scheduling problem with specific setup times is still limited despite its
theoretical and practical importance. A recent literature review on setup time and cost
scheduling issues highlighted this limitation (Allahverdi, 2015) and open-shop scheduling
problems. For example, Abreu et al. (2020) proposed a hybrid genetic algorithm for
OSSPs with SDST to minimise the time completion of the job. They also used two new
constructive heuristic methods to produce the initial population. Zhuang et al. (2019)
introduced a mixed-integer linear programming (MILP) model for an OSSP with two
SDSTs and transportation time) to get closer to real-world industrial environments. They
then introduced an improved artificial bee colony algorithm to solve the problem.
Noori-Darvish et al. (2012) considered OSSP with SDSTs, fuzzy processing times, and
fuzzy due dates.

Mosheiov and Oron (2008) discussed OSSP involving m machines and n jobs. They
assumed the processing times would be similar, and set-up times would depend on the
sequence based on the assumptions. Also, in the scenario they studied, the groups were
ready to process at any time. Their objective function was to reduce completion and flow
times as much as possible. They proposed a solution algorithm using a time complexity
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of o(n). Roshanaei et al. (2010) investigated a non-pre-emptive open-shop scheduling
problem with SDSTs that minimised the completion time. To solve the problem, the
researchers developed two new meta-heuristic algorithms called multi-neighbourhood
search simulated annealing and hybrid simulated annealing.

Additionally, they used two constructive heuristics methods called the longest total
processing time (LTMPT) and the longest total remaining processing time (LTMPT and
LTRMPT). Cankaya et al. (2019) proposed a mixed-integer programming model and
limited programming model for OSSPs with sequence-dependent post-setup times to
minimise (Cpa«). The integer programming model performed better for short-term
decisions based on their computational results, while the limited programming model
performed better for long-term decisions. Naderi et al. (2011) proposed an integer linear
programming model for OSSP with SDSTs to minimise the makespan. Due to the
complexity of the case study, the authors used the electromagnetic algorithm (EH). Based
on their computational results, EH and the proposed model performed better than the
other algorithms. Low and Yeh (2009) approached OSSP as a binary integer
programming model, minimising total job tardiness by considering independent setup
times and dependent removal times. Also, they proposed some hybrid genetic-based
heuristics to solve the problem in a logical computation time. Behnamian et al. (2021)
presented a bi-objective flexible open shop scheduling method with independent setup
time. The goal was to minimise the maximum completion time of jobs and total tardiness.
Using mixed integers, they developed a nonlinear programming model. Then, the
weighted Lp-metric method was used to address the multi-objective problem. They also
developed a scatter search algorithm to achieve near-optimal solutions.

Moradi and Yazdini (2021) proposed a mixed-integer programming model for the bi-
objective OSSP with limited human and machine dual resources. They employed two
Pareto-based meta-heuristic algorithms, namely non-dominated sorting genetic algorithm
II (NDSGAII) and multi-objective vibration damping optimisation (MOVDO), to solve
this problem.

Pastore et al. (2022) addressed a SDST scheduling problem. Using a mixed integer
linear programming (MILP) model, they developed a novel heuristic approach. To find
the exact solution of the model, the solution approach alternates between continuous
relaxation and rounding off a set of variables (the sequence variables). As a local search
phase in open shop scheduling with non-anticipatory SDST, Abreu and Nagano (2022)
hybridised an adaptive large neighbourhood search (ALNS) with constraint programming
(CP). Their objective function was makespan minimisation. They proposed a
non-anticipatory CP model based on the classic open shop model and to obtain reliable
solutions in time, they tested many approximations and exact algorithms due to the
NP-hardness of the problem.

The review concerning open-shop scheduling problems made by Ahmadian et al.
(2021) shows that there is no work in the literature on the re-entry open-shop scheduling
problems. However, certain products must be remanufactured, such as those in the
electronic manufacturing industry. Re-entering a product into a production line is
classified as reverse flow in production scheduling. Flow shops and job shops address
this problem. For example, Dehghan-Sanej et al. (2021) investigated a job shop
scheduling problem with reverse flows. Through robust programming, they were able to
account for uncertainties associated with processing time in real-world applications and
solve problems using simulation annealing (SA) and discrete harmony search (DHS).
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Nevertheless, there is only one study on the reverse flow of the OSSP by Aghighi et al.
(2021). They proposed a mathematical model and used the VDO algorithm to solve it.

The above literature review indicates that OSSP with reverse flows and SDSTs,
which occurs in many industrial environments, has not yet been studied. This paper aims
to minimise completion time and total tardiness by addressing these aspects. Numerous
studies discussed above demonstrate how heuristic methods can provide satisfactory
solutions to various problems. In contrast, setting appropriate heuristic rules for
large-scale problems remains challenging. Alternatively, meta-heuristic algorithms are
faster and more accurate. Meta-heuristic algorithms are being developed to solve OSSP
problems. While some meta-heuristic algorithms have been applied, others have not
(Anand and Panneerselvam, 2015). The MOVDO algorithm is used in this study to solve
the mentioned problem, which has been less used in previous research.

The next section considers OSSP with SDST and reverse flow. Then a bi-objective
integer programming is proposed to model the problem at hand.

3 Problem statement

An open shop consists of scheduling n jobs on m machines, with each job being
processed on each machine according to its objectives. Jobs are assigned to machines in
no particular order in this problem. The number of possible solutions to this problem is
(n!)" (Ahmadian et al., 2021).

1 When OSSP involves reverse flow, it involves a set of machines and jobs with
assembly and disassembly operations. The disassembly flow is the exact opposite of
the assembly flow, and both flows are performed on the same machine. Moreover,
these jobs have two operating ranges, which are as follows:

2 The jobs on the machines in the order M;, M, ..., M, respectively are arranged
(direct/straight jobs).

3 The jobs on the machines in the opposite direction as M,,, M1, ..., M\, respectively
are arranged (indirect/reverse jobs).

Here, M denotes a machine and {1,2,..., m} is the counter. Meanwhile, J represents a job
with an index in {1,2,..., n}. Besides, E1 is the set of direct jobs, and E2 are the set
involving reverse jobs. Moreover, jobs {1,2,...,s} are direct jobs and reverse jobs are in
theset {s+ 1, s +2,..., n}. Abdeljaouad et al. (2015) showed that the optimal solution to
an open shop problem involving jobs on different machines could be obtained when all
direct jobs are prerequisites for reverse jobs on the first machine and all reverse jobs are
prerequisites for direct jobs on the last machine. This certainly reduces the solution space
for an OSSP with reverse flow.

Figure 1 (Aghighi et al., 2021) illustrates OSSP with reverse flows. This figure
illustrates a six-machine {m, ma,..., m¢} OSSP in which jobs have two flows (direct and
reverse), and they are processed on the same machines. According to the rule proposed
by Abdeljaouad et al. (2015), in this figure, direct jobs {1, j2, ..., js} are processed on the
first machine (m,;) before reverse jobs {j; + 1, js + 2, ..., j.}, and reverse jobs are
processed on the last machine (ms) before direct jobs. At the same time, intermediary
machines perform direct and reverse operations in undetermined sequences and
processing routes.



A bi-objective MILP model for an open-shop scheduling problem 441

In other words, all direct and reverse jobs on machines are scheduled in an open shop
environment. This means there is no predetermined processing route or sequence. It
differs from one-flow open shop scheduling in the sense that a direct job is scheduled on
the first machine before a reverse job is scheduled on this machine, and a direct job on
the first machine is processed earlier than a reverse job. Solving the proposed
mathematical model determines the order and sequence of their processing. Also, reverse
jobs are scheduled on the last machine before direct jobs, and reverse jobs on the last
machine are processed earlier than direct jobs, but by solving the proposed mathematical
model, the order and sequence of their processing can be determined. In Figure 1, orange
and gray arrows represent the processing route for a direct (j;) and reverse (j,) job,
respectively. Besides, Figure 2 illustrates the Gantt chart related to Figure 1 with two
direct jobs {j1, j»} and two reverse jobs {3, j4}.

3.1 Assumptions

Based on the optimality condition proposed by Abdeljaouad et al. (2015), to reduce the
solution space, one of the main assumptions of the problem being investigated in this
paper is that in the first processing stage, direct jobs precede reverse jobs, and in the last
processing stage, reverse jobs precede direct jobs (on each machine).

Figure 1 Overview of job processing route with two opposite flows on the same machines in an
open shop environment (see online version for colours)

- —
Direct jobs (1, j2, .y jo) ) . [\ A £l

Reverse jobs (js-1, js+2, ..., ju) (e \ ms

Direct jobs flow (E1)
(=== Reverse jobs flow (E2)

Source: Aghighi et al. (2021)

Furthermore, each job has a specific due date and must be processed by all machines. In
this case, jobs can be processed on intermediate machines in any order (except the first
and last machines).

However, only one job can be processed on one machine at a time, and each machine
operation can only be performed once at a time. However, processing times may vary
depending on the machine. The work environment has only one type of machine, and
machine preemption and breakdown are not permitted. All machines are available from
the start. Processing times and delivery times are deterministic (rather than uncertain).
Jobs have reverse flow, and the setup times are sequence-dependent.
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In the next section, MILP is utilised to develop the OSSP to minimise both total
tardiness and completion time (makespan). Each open-shop production schedule should
include two decisions in the decision variables introduced to model the problem.
Sequencing the jobs on each machine and sequencing the machines for each job are two

of these decisions.

Figure 2 Gantt chart example of Figure 1 (see online version for colours)

B T

m6 | 4 :
o [TE]

i3

e

. ]

i |

o
o

- [ ]
o I | ] |

j4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

3.2 Mathematical modelling
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In this section, a MILP model is developed to formulate the problem. In many
manufacturing workshops, preparation must be done before a job can be handled on a
machine. Depending on their order, there may be some setup required between two
consecutive jobs on the same machine. These operations are heavily dependent on what

preceded them on a single machine. This is known as SDST (Naderi et al., 2011).

This research aims to develop a mathematical model for open-shop scheduling
problems with reverse flow and SDST restrictions (based on the model presented in
Tavakkoli-Moghaddam and Seraj, 2009)). In this model, reverse flow is applied based on
the principle that all direct jobs on the first machine are prerequisites to reverse jobs. In
addition, all reverse jobs on the last machine are prerequisites to direct jobs. For this

purpose, the indices, sets, parameters, and decision variables are first defined.

3.2.1 Indices and sets

i,J,g jindices for jobs; i, j, g,/ € {1, 2, ..., n} and n is the number of jobs.
E\={Ji, o, ..., Js} is the set of direct jobs

Ey={Js+1,Js+2, ..., Ju} 1s the set of reverse jobs

k, I: indices for machines; k, [ € {1, 2, ..., m} and m is the number of machines.

3.2.2 Parameters
m  The number of machines
n  The number of jobs

pix  The processing time of the job J; on machine M



A bi-objective MILP model for an open-shop scheduling problem

d;  The due date of the job J;
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sejir The setup time of the machine M for job J;, if the job J; precedes job J; on machine

M;

M A large positive number

3.2.3 Variables

T; Tardiness of job J;

st The starting time of job J; on machine M

ci  The completion time of job J; on machine M

cmax The makespan

Y fjob J; on machine M precedes the same job on the machine M, then Yy = 1;

otherwise Yy, =0

Xiir If job J; precedes job J; on machine M;, then Xji = 1; otherwise X =0

3.2.4 Problem formulation

The mathematical model of the problem mentioned in this paper is as follows:

Imnz=(amn§:E)
i

Subject to:
Sty + i —d; <Tj;
Stic + Pik < Ciks
St 2 ¢t
Stim 2 Ci'm,
Sty + pi + Z/# seux e —M (1-Yy) < sty;
Sty + pi + Zj# sejixjiy — MYy < sty ;
Sty + pi + Z/,#. S i — M (1= xi ) < sty
St +pi+ zgﬂ_ Segik Xgit — My < sty ;
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Crmax 5Cik ’Stik BTIV' 2 Oxl]k S Yikl = {031} Viak>l3 .] (13)

Equation (1) describes the objective functions of the problem for minimising the
maximum completion time and minimising the total tardiness. According to equation (2),
tardiness at each job is calculated as follows: 7; = max{0, max {Cu}—d;};i=1, 2, ..., n;
k=12, ..., m (Tavakkoli-Moghaddam and Seraj, 2009). Equation (3) considers the
relationship between starting, processing, and completion times. Equations (4) and (5)
establish the relationship between a direct and reverse job on the first and last machine in
the shop where similar machines are used for direct and reverse jobs. Assuming the
disassembly flow is the opposite of the assembly flow, equation (4) ensures that all direct
jobs are processed on the first machine before reverse jobs (the time to complete a direct
job on this machine is longer than the time to start a reverse job on this machine). In
addition, equation (5) ensures that all reverse jobs on the last machine are processed
before direct jobs (the time to complete the reverse jobs on this machine exceeds the start
time of direct jobs). According to equations (6) and (7), the processing route of direct and
reverse jobs on intermediate machines is determined by the SDST and the job starting
time. Equations (8) and (9) illustrate the sequence of direct and reverse jobs on each
intermediate machine based on the sequence-dependent setup and job start times. In other
words, equation (6) requires the completion time of job i on machine & to be less than the
start time of job i on the next machine /, while constraint 7 requires the completion time
of job i on machine / to be greater than the starting time of job i on the previous machine
k. Furthermore, equation (8) requires that the completion time of job i on machine &k
should be less than the start time of the next job on machine & and according to equation
(9), the completion time of job j on machine k£ should be longer than the time it takes to
start the job on this machine. The order in which two jobs are processed on a machine is
determined by equation (10). Equation (11) specifies the order between two consecutive
operations of a job. Equation (12) calculates the maximum completion time, and
equation (13) indicates the non-negativity and integral conditions of the variables used.

4 Problem-solving method

The optimisation field requires practical methods for solving problems after presenting
the model. Researchers are increasingly interested in combinatorial optimisation
problems today. Numerous optimisation methods such as linear, nonlinear, and dynamic
programming have been applied as exact methods, and various heuristic methods have
also been proposed to solve them. The computation time of exact methods is usually very
long. With the increasing complexity of the problem, it becomes impossible to solve this
type of problem.

The OSSP with reverse flows is an NP-hard problem with a high complexity (Dondo
and Méndez, 2016). It is challenging to provide an accurate way to optimise the problem
in a reasonable time. In this research, a multi-objective vibrating damping optimisation
(MOVDO) meta-heuristic algorithm is used to solve the OSSP with reverse flows in
medium and large sizes when the setup times are sequence-dependent. The results
obtained from this algorithm are compared with the results obtained from other
competing meta-heuristic algorithms, including MO-Cuckoo search, MOACO, and
NSGA-II. The Taguchi approach is used in the design of experiments to calibrate the
parameters of all the solution algorithms. The algorithms are compared using five
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indicators, including the number of Pareto solutions (NPS), mean ideal distance (MID),
diversification metric (DM), computation time, and spacing.

4.1 Multi-objective vibration-damping optimisation algorithm

Mehdizadeh and Tavakkoli-Moghaddam (2009) proposed a vibration-damping
optimisation (VDO) algorithm. The idea was inspired by the damping of oscillation
amplitude in vibration theory. In damping, the oscillation amplitude is reduced over time
until it tends to zero. The method starts from a random initial solution (in the initial
domain). The new solution is generated randomly and compared to the previous solution
using a neighbourhood structure. When the new solution is worse, it is accepted by the
Rayleigh probability distribution (Rayleigh’s probability distribution allows the system to
escape the local solution). When it is better, the new solution is selected as acceptable.
This process continues until the stop condition is reached.

A multi-objective version of VDO referred to as MOVDO, was proposed by Hajipour
et al. (2014) to solve multi-objective optimisation problems. It is based on two concepts;

1 fast non-dominated sorting (FNDS)
2 crowding distance (CD).

The algorithm begins by identifying all non-dominated primary chromosomes and then
selects them based on the concept of dominance. To find successive layers of non-
dominated chromosomes, one temporarily ignores the solutions for the previous layer
until all chromosomes are layered. Finally, the tournament method is used to find the next
generation of solutions. This method involves selecting # initial populations at random.
The non-dominated solutions are ranked. The parameter of solutions with the same rank
is determined. Lower-ranked solutions are selected. The CD method is used to select the
solution with the highest CD among those with the same rank. In terms of elitism, one
selects the n population of new generations from the obtained population and then
continues until the stop condition for this operation is reached.

A MOVDO algorithm includes the following parameters: number of iterations,
population size, primary domain (4o), maximum number of iterations per domain (L),
damping coefficient (y), and standard deviation. An algorithm’s quality depends greatly
on the number of iterations and population size. The solution time is reduced when these
parameters are lower. Nevertheless, low-quality solutions can be obtained. Additionally,
high values can improve solutions but will take more time. To accept worse solutions, the
initial domain and damping coefficient are important parameters. The probability that the
worse solution will be accepted is as follows:

l—exp(—z—zj (14)

o

where A is obtained by equation (15) in each iteration’s domain.
A=Aoexp(_7yt) (15)

Clearly, in lower iterations, there is a higher domain value, and that increases the
probability that the worse solutions will be accepted. The probability of accepting the
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worst solutions increases as the number of iterations increases. Each iteration’s domain
value is directly affected by the damping coefficient parameter. It decreases the domain
and makes it more likely that worse solutions will be accepted. With further iterations,
this probability decreases, but initially, the probability of accepting a worse solution is
high. As a result, initial iterations search a wide space, and final iterations can find a
solution that is congruent with the initial one. Rather than getting rid of near-optimal
solutions (by accepting the worst possible ones), the value of these solutions should be
improved. In contrast, this incrementing in each domain lengthens the search time (Yazdi
and Moghaddam, 2018).

4.2 Pseudo-code

The pseudo-code of the MOVDO algorithm for further clarification of its solution
process is shown in Figure 3.

Figure 3 Pseudo-code of MOVDO algorithm

Start
Setting values for maximum iteration (MaxIt), Initial Population (nPop), Initial Domain (A¢), maximum iteration in each

domain (L), damping coefficient (y) and standard deviation (o)
Generating itial population P and t=1
Assessing initial population
Performing non-dominant sorting (FINDS) and calculating ranks
Calculating the crowding distance (CD)
Serting the pepulation based on the CD and ranks
1. Do while the stopping condition is not met

2. Repeat for each particle (X € P)

3. Let I=1 and Do
4. Create a neighbourhood (¥) and assess it
3. If ¥ domunates X' let =1’ otherwise. go to the next step
6. Randomly select a number from (0, 1), if it is less than a specific number, let X=1; otherwise,
20 to next step
7. If i=L then go to next step: otherwise, /=/+1 and go to Step 4

8. Performung the FNDS and calculating ranks

9. Calculating the CD

10. Sorting the population based on the CD and ranks

11. Updating the domain and =t+1
12. If =MaxlIt, then go to the next step; otherwise, go to Step 2
Show the first Pareto frontier
End

Source: Yazdi and Moghaddam (2018)

4.3  Main steps in the MOVDO algorithm

The previous section described the general steps of the MOVDO. Below is how the bi-
objective problem stated in this article is solved using this algorithm. A description of the
solution display method is first provided to achieve this. After that, the procedure for
obtaining the initial population and the neighbourhood solutions are discussed. Finally,
we discuss the process of stopping the mentioned algorithm following the description of
the fitness function.

4.3.1 Solution representation

In the MOVDO algorithm proposed in this research, to determine the assignment of jobs
to machines, the solutions are considered an n x m matrix (» is the total number of jobs
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and m is the total number of machines). The rows indicate the assignment of each job to
the machines. Therefore, the first row represents the first job, the second row represents
the second job, etc., and the last row represents the nth job on each machine. Table 1
shows the solution for the processing routes of all jobs (direct {ji, j2, j3} and reverse jobs
{ja, js}). For example, the number 4 in the second position in row three indicates that job
3 is processed on the first machine and then on the fourth machine. In other words, in
Table 1, the order of processing job 3 on machines is Mi-Ms-M3-M>-Ms. On the other
hand, to sequence jobs on machines, the solutions are displayed as a matrix m x n, which
has m rows for the total number of machines and n columns for the total number of jobs.
Accordingly, the rows represent the sequence of jobs on each machine, i.e., the first row
represents the sequence of jobs on the first machine, the second row represents the
sequence of jobs on the second machine, etc., and the last row also represents the
sequence of jobs on the last machine. In Table 2, each job on the machines is shown in
sequence; for example, the number 3 in column two indicates that job 3 is processed after
job 2 on machine 1. In other words, in Table 2, the order in which jobs are assigned to the
machine is Jz-J3-J1 -J5-J4.

Table 1 Order of machines for each job

Jobs Machines

1 2 1 5 3 4
2 5 2 4 1 3
3 1 4 3 2 5
4 4 3 1 5 2
5 3 5 2 4 1

Table 2 Order of jobs on each machine

Machines Jobs

1 2 3 1 5 4
2 1 2 4 3 5
3 5 4 2 1 3
4 3 1 5 4 2
5 4 5 3 2 1

4.3.2 Initial solution and neighbouring structure

It is crucial to select appropriate operators to move in the search space and extract and
explore better solutions. The neighbourhood structure in the vicinity of the previous
solution is used to generate and evaluate a random new solution. If a new solution
reduces oscillation energy, it will be accepted as an acceptable solution in the search
space, while if it increases the objective function, it will be accepted with the possibility
of Rayleigh distribution.

In this paper, the initial solution is generated randomly, and the new solution is
generated using the ‘adding-or-subtracting-a-small-value’ method. As a result of using
this method, some values of the previous solution are changed by adding or subtracting
small values calculated using equation (16) (Aghighi et al., 2021)
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dd iw. (16)

In equation (16), the function rand () provides a uniformly distributed random number in
(0, 1), the range is the range of possible values for the parameter, and 10 (the
denominator value) ensures a small change in d (Aghighi et al., 2021).

Figures 4 and 5 show a method of finding a new solution to a problem with six jobs
and three machines. In Figure 4, the number 0.97 is randomly selected, from which the
value of 0.57 is reduced, and the value of 0.31 is added to the number 0.46. Figure 5 also
shows a value of 0.41 is added to 0.11, and 0.2 is subtracted from 0.43. Figure 4
illustrates sequencing on each machine, the previous solution is 5-4-3-6-1-2, and the new
solution is 5-4-2-6-1-3, respectively. Figure 5 shows the processing route of each job on
the machines. Accordingly, the previous solution is 4-1-3-2, and the new solution is
3-1-4-2.

Figure 4 Neighbourhood structure to find a new solution (sequencing) (see online version
for colours)

Thnldmmion|a.ss[0.9?]0.4[;[0.21]0.14|o.5?]|:>| s[a[3]s]1]2]

The new solution| o,ss|0_.10|:1.;;|o.21|0.1a|o_57||::>| s|al2a]e]1]a]

Figure 5 Neighbourhood structure to find a new solution (processing route) (see online version
for colours)

The old solution| 0.28 | 0.91 [ 0.43] 0.11] CoPa[ 132 |

The new solution| 0.28 | 0.91 | 0.23 | 0.52 | = NN R

In Figures 4 and 5, decimal numbers are numbered from small to large, and these
numbers indicate the number of each entry. For instance, in Figure 4, the decimal
numbers are arranged from small to large, which is 5, 6, 3, 2, 1, 4. In the new solution
vector, the decimal numbers are arranged from small to large, which is 5, 3, 6, 2, 1, 4.
According to the number of the entry change, a new solution is derived based on the
obtained numbers. In Figure 6, the steps shown as entries 6, 3 change to entries 3, 6.

Figure 6 An example of finding a new solution (sequencing) (see online version for colours)

The number of entry § 6 3 2 1 4 1 2 3 4 5 6
Theoldsolutionlo.ss|o.97|o.45|o.z1|o.14|o.s7|[:>| s+ IEW s | : A

5 3 6 2 1 4 1 2 3574 536
The new solution | 0.68 [ 040 0.77[0.21]014[057|=>[ s [a [ 2 [ 6 [ 1 [ 3]

Figure 6 shows the sequence of jobs in the previous solution as 5-4-3-6-1-2, while in the
new solution, they are 5-4-2-6-1-3.
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4.3.3 Fitness function

The fitness function is only one criterion for guiding the algorithm in searching for
suitable solutions. Usually, it is taken directly from the target performance and is defined
to evaluate the set of solutions obtained randomly or described using the neighbourhood
structure. The fitness value is stored to be used later in the selection method. In this
research, fitness is the objective function of the algorithm.

MOVDO determines the order and route of direct and reverse jobs on machines to
solve the problem. Based on the order of jobs on the machines according to the
processing time, due date, and SDST, C,.. and total tardiness are calculated. Considering
this is a bi-objective open-shop scheduling problem, the Epsilon-constrained method
(Bérubé et al., 2009) is utilised to obtain Pareto solutions (best values for objective
functions).

4.3.4 Stop criterion

Different criteria can be considered for stopping the algorithm. In this paper, the
MOVDO and other comparative algorithms are stopped once the maximum number of
iterations has been reached.

4.4 Parameter tuning

Due to the highly dependent nature of the output of meta-heuristic algorithms on the
parameters entered, 30 examples of small and large scales are solved in this section using
the MOVDO algorithm. Because of its stochastic nature, each instance is tackled 20
times; based on the average solution, Taguchi’s experimental design is employed to tune
the parameters. An orthogonal array (OA) L9 is used based on the number and level of
parameters.

Due to the multi-objective nature of the model, the distance from the ideal point is
used to determine the optimal values of the parameters. The input parameters include y
damping coefficient, Rayleigh distribution o, initial amplitude 40, and the maximum
number of iterations at each amplitude L. The proposed levels of the MOVDO parameters
are shown in Table 3, and the diagrams obtained from the parameter setting results are
demonstrated in Figure 7. Statistical computations and diagrams are performed using
Minitab 16 software.

Table 3 The investigated levels of MOVDO parameters

Level 1 Level 2 Level 3
A0 5 10 20
c 1 5 10
Y 30 50 100
L 40 60 80

As seen in Figure 7, the parameters o, y and L in their second level and parameter 40 in
its first level determine the best condition. In other words, the best combination of the
MOVDO algorithm includes ¢ =5, y = 50, 40 = 5, and L = 60. Also, the results of setting
the parameters of the other competing algorithms are as follows. The MOACO
algorithm’s conversion fitness rate to pheromones = 0.7, and the distance deviation
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rate = 1. In the NSGA-II algorithm, the percentage of mutation, the crossover percentage,
and the tournament size are 2, 0.3, and 0.8, respectively. In the MO-Cuckoo search
algorithm, the probability of identifying cuckoo eggs and moving the nest to a new
location (P,) is 0.25, and the step size is 0.01.

Figure 7 Computational results of parameter tuning in S/N ratio plot (see online version
for colours)
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4.5 The efficiency of the solution algorithms

A multi-objective meta-heuristic solution algorithm’s two main objectives are
convergence to Pareto optimal solutions and providing density and variability to the
obtained solutions. Consequently, the multi-objective solution algorithms presented in
this paper are compared using some multi-objective performance measures. These
measures are the NPS, MID, DM, CPU time (TIME), and spacing metric (SM), one at a
time. They are briefly described below.

e NPS index: The NPS found by the algorithm is considered. The higher this measure
number is, the better the algorithm’s performance.

e  MID index: This indicator indicates the Pareto distance from the ideal solution. An
ideal solution is the best solution for each objective function. The lower the index
value, the better the algorithm performs (Czyzzak and Jaszkiewicz, 1998).

e  SM index: The distance between the non-dominated solutions is the standard
deviation of the index. In other words, it calculates the relative distance between
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consecutive Pareto solutions. Generally, the higher the index value, the more
efficient the algorithm is Chambari et al. (2012).

e DM index: The Euclidean distance between the initial and final solutions in the
Pareto solution set is represented by this metric. This index measures the space cube
diameter of the objective’s set of non-dominated solutions. The higher the value of
this index, the better the algorithm’s performance (Zitzler and Thiele, 1998).

e TIME index: This index represents the CPU time an algorithm requires to find a
solution. It is one of the most important metrics for comparing algorithms. Lower
values indicate better performance.

5 Computational results

In this section, the MOVDO algorithm is compared to an Epsilon-constrained method
(Bérubé et al., 2009) to analyse Pareto solutions.
The steps of the e-constraint method are as follows:

1 Select one of the objective functions as the main objective function

2 Each time according to one of the objective functions, solve the problem and obtain
the optimal values of each objective function.

3 Divide the interval between two optimal values of sub-objective functions by a
predetermined number and obtain a table of values for e, ..., &.

4 Each time, solve the problem with the main objective function with each of the values
E2y vuny En.

5 Find the Pareto solutions and report them.

This study analyses problems using the Epsilon-constraint method by minimising
makespan as the main objective. Two categories of small and medium size problems are
solved using MOVDO in MATLAB software version 2016b and the Epsilon-constrained
method in GAMS software version 3.1.25. Four to six jobs with two to four machines are
considered for small-size problems, and between eight and forty jobs for medium
problems are considered with three to eleven machines. Randomly generated problems
consist of processing times between [1-13], as well as due date and SDSTs that are
randomly generated proportional to the processing time, with uniform distributions. A
notebook with five cores and 5.2 GHz and 6 GB of memory is used to solve the
problems. In the Epsilon-constraint method, three intervals were considered for each
objective function, giving a maximum of 6 Pareto solutions. Table 4 shows the best
solution among the Pareto solutions for the Epsilon constraint method and MOVDO
algorithm, along with the total time it takes to solve the problem.
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Comparison between MOVDO algorithm and e-constraint method results

Table 4
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The results in Table 4 show that medium-sized examples take longer to solve. To solve
the problems within a reasonable time limit, the GAMS software is employed for a time
limit of 3,600 seconds. There is an average gap of 80% between near-optimal and optimal
solutions during this time. As shown in Table 4, GAMS cannot deal with larger problems
(problems 13—14) in this timeframe when the problem size increases. In the meantime,
the MOVDO algorithm takes longer to solve a problem as its size increases. It can be
seen from this table that GAMS software takes longer to solve problems (3—14).
However, the proposed algorithm performs similarly to GAMS software in small
problems. It is also possible to determine the effects of increasing jobs and machines by
considering the time it takes to solve problems.

Table 5 Instance generation
Problem number Problem Number of direct jobs

Small 1 6 x2a i(1,2)
2 6 x2b j[1-3]
3 6 x 2c j[2-4]
4 6 x2d i2,3)
5 5x3a j[1-3]
6 5x3b ij(1,2)
7 5x3c¢ i1,2)
8 5x3d i4,5)
9 4 x4a j[2-4]
10 4 x 4b j[1-3]
11 4 x 4c i(1,2)
12 4 x4d i3

Medium and 13 10 x 6a j[4-10]

large 14 10 % 6b i[1-5]
15 10 x 6¢ j[1-6]
16 10 x 6d j[2-5]
17 12 x 7a j[1-10]
18 12 x7b j[1-3]
19 12 x7¢c j[1-5]
20 12 x7d j[2-10]
21 15 x 8a j[1-8]
22 15 x 8b j[3-12]
23 15 x 8¢ j[1-9]
24 15 x8d j[5-10]
25 30 x 9a j[1-22]
26 30 x 9b j[1-24]
27 30 x 9¢ j[1-15]
28 30 x9d j[1-14]

Source: Tavakkoli-Moghaddam and Seraj (2009)
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The performances of the solution algorithms in solving sample problems

Table 6
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The performances of the solution algorithms in solving sample problems (continued)

Table 6
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Figure 8 The Pareto solutions obtained by the MOVDO algorithm for example 28 (see online
version for colours)
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Figure 9 The Pareto solutions obtained by the MO-CUCKOO search algorithm for example 28
(see online version for colours)
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5.1 FEvaluating the solution algorithms

Table 5 tests several problems generated in small, medium, and large dimensions. Table 6
gives the averages of the performance metrics for each algorithm after solving each
problem 10 times.

5.1.1 Instance generation

In the literature, n jobs and m machines scheduling problems are generated randomly by
a classical method. As shown below, this method is implemented.

Figure 10 The Pareto solutions obtained by the NSGA-II algorithm for example 28 (see online
version for colours)
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The processing times and due dates are uniformly distributed in the intervals [0, 100] and
[p(l—T—gj, P(l—T+§ﬂ respectively. The sets {0.2, 0.6, 1.0} and {0.4, 0.6, 0.8}

each take into account two parameters, R and T. The mean of total processing times p
for m machines and # jobs scheduling can also be calculated as P=(m+ n —1)p. A

small-sized problem can have 4 to 6 jobs and 2 to 4 machines using this instance
generation method. Additionally, the number of jobs for medium-sized and large
problems can range from 10, 12, 15, and 30, and the number of machines can range from
6 to 9. Whenever a manufacturing environment is specified for these random instances,
the manufacturing system is defined as the number of jobs x the number of machines,
for example, 15 x 8 indicates an environment with 15 jobs x 8 machines
(Tavakkoli-Moghaddam and Seraj, 2009). Due to the lack of set-up times in this method,
the duration of sequence-dependent set-up times is defined as a uniform distribution over
the range [1, 100], and also for each example, the number of direct and reverse jobs was
determined randomly as shown in Table 5. The Pareto diagrams for example 28, (with the
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results in Table 6) can be found in Figures 8 through 11 using MOVDO, NSGA-II,
MOACO, and MO-CUCKOO Search algorithms, respectively.

Based on the results shown in Table 6, the values obtained for each index (NPS, MID,
DM, TIME, and SM) are compared in Figures 12 to 16.

Figure 11 The Pareto solutions obtained by the MOACO algorithm for example 28 (see online
version for colours)
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Figure 12 NPS diagram (see online version for colours)
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As shown in Figure 12, the MOVDO algorithm performs better in finding more Pareto
solutions for most test problems.

As shown in Figure 13, both MOVDO algorithms perform better than the other
algorithms in terms of solution uniformity.

Figure 14 shows the performances in terms of the MID index. The lower the index is,
the closer the solutions to the ideal point are. As shown in Figure 14 the MOVDO

a8

performs well in comparison with the other algorithms discussed in this study.
06
0.4
a2 ‘
a

1234567 3 5101112153141516171819202]1 22 2324352637 28

Figure 13 SM diagram (see online version for colours)
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Figure 14 MID diagram (see online version for colours)

IJ |

345 67 3 91011121314151617 151920 212223 24252627 28



460 S. Aghighi et al.

As immense diversity is desired for the solutions, Figure 15 shows that MOVDO,
MO-Cuckoo search, and NSGA-II algorithms perform better than the MOACO algorithm
in terms of DM.

Figure 15 DM diagram (see online version for colours)
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The algorithms’ solution time increases as the problem size increases, as shown in
Figure 16. NSGA-II takes less time than the other algorithms in this diagram.

Figure 16 TIME diagram (see online version for colours)
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Computational results from the case study obtained by MOVDO and GAMS

Table 7
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Computational results from the case study obtained by MOVDO and GAMS

(continued)

Table 7
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Computational results from the case study obtained by MOVDO and GAMS

(continued)
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In general, based on the above graphical comparison, when each of the four algorithms
solved each of the 28 problems of different sizes 10 times, the parameter-tuned MOVDO
outperforms each of the other algorithms in terms of four performance metrics.

5.2 A case study

Partial data from the Arman Shahr Atrin Company from the burglar alarm panel
production workshop is used to demonstrate the validity and applicability of the proposed
model. This workshop presents an OSSP with the reverse flow and SDST. Ten models of
alarms are assembled in this workshop according to customer orders. In addition,
defective models returned from the market are disassembled to reuse their parts.
According to the parts used and their features, there are 10 different models, ranging from
SP1 to SP10.In this paper, assembling each model is considered a direct job, whereas
disassembling each model is considered a reverse job, and each machine should process
all jobs.

For direct jobs, the first machine engraves the logo and product model on the chassis
of the alarm panel. For reverse jobs, the previous information is erased or rewritten. The
last machine determines the quality of the final or re-entered product. In addition,
intermediate machines are used to assemble input parts or disassemble re-entered
products.

During two weeks of studies, six assembly and disassembly cases were ordered to the
workshop. Table 7 lists the cases that have been solved with the mathematical model
proposed in this research. This table considers setup time between 60 and 180 seconds,
where all times are expressed in seconds.

It can be seen in Table 7 that the assembly and disassembly times of products are
reduced using the suggested model, comparing the results of the proposed model with
those observed in the real system. This proves that the proposed model efficiently reduces
total tardiness and Cax.

6 Conclusion and suggestions for future research

The open-shop scheduling problem under SDSTs was investigated in this study. There
was no model for this problem in the literature, so a mathematical formulation was first
proposed by considering the objective function of minimising the maximum completion
time and minimising the total tardiness of all jobs. Due to the NP-hard nature of the
problem, it was solved with the multi-objective MOVDO meta-heuristic. After that, the
MO-Cuckoo Search, MOACO, and NSGA-II algorithms were used to compare the
results. In terms of four multi-objective performance criteria, the MOVDO algorithm
performed better than the other proposed algorithms. Furthermore, the proposed model
was implemented in a workshop of Arman Shahr Atrin Company to produce burglar
alarm panels. Results obtained from implementing the proposed model show an
improvement compared to those obtained from the real world.

We recommend the following for future research: developing a mathematical model
of the problem by taking into account other processing constraints such as breakdowns,
machine eligibility restrictions, and batch processing. Under uncertainty, we suggest
considering other objective functions or using heuristics or meta-heuristics to solve the
problem.
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