Energy consumption optimisation for unmanned aerial vehicle based on reinforcement learning framework
by Ziyue Wang; Yang Xing
International Journal of Powertrains (IJPT), Vol. 13, No. 1, 2024

Abstract: The average battery life of drones in use today is around 30 minutes, which poses significant limitations for ensuring long-range operation, such as seamless delivery and security monitoring. Meanwhile, the transportation sector is responsible for 93% of all carbon emissions, making it crucial to control energy usage during the operation of UAVs for future net-zero massive-scale air traffic. In this study, a reinforcement learning (RL)-based model was implemented for the energy consumption optimisation of drones. The RL-based energy optimisation framework dynamically tunes vehicle control systems to maximise energy economy while considering mission objectives, ambient circumstances, and system performance. RL was used to create a dynamically optimised vehicle control system that selects the most energy-efficient route. Based on training times, it is reasonable to conclude that a trained UAV saves between 50.1% and 91.6% more energy than an untrained UAV in this study by using the same map.

Online publication date: Tue, 16-Apr-2024

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Powertrains (IJPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com