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Abstract: This study employs the University of Bonn Dataset to address the 
importance of frequency information in EEG data and introduces a 
methodology utilising the short-time Fourier transform. The proposed method 
transforms conventional 1D EEG signals into informative 2D spectrograms, 
offering an approach for advancing the detection of neurological diseases. 
Integrating advanced CNN architectures with the conversion of EEG signals 
into 2D spectrograms forms the foundation of our proposed methodology. The 
1D CNN model utilised in this study demonstrates exceptional performance 
metrics, achieving a specificity of 0.996, an overall test accuracy of 0.991, a 
sensitivity of 0.987, and an F1 score of 0.989. Shifting to the 2D approach 
discloses a slight reduction in accuracy to 0.987, sensitivity of 0.976, 
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specificity of 0.988, and an F1 score of 0.97. This analysis provides nuanced 
insights into the performance of 1D and 2D CNNs, clarifying respective 
strengths in the context of neurological disease detection. 

Keywords: seizure prediction; epilepsy; EEG signals; 1D convolutional neural 
network; deep learning; classification. 
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1 Introduction 

Epilepsy is a chronic neurological disease resulting from sudden abnormal and 
synchronous electrical activities of brain neurons, affecting nearly 1% of the world’s 
population (Wang et al., 2021). Seizures are caused by a high level of electrical discharge 
in a cluster of brain neurons. Consequently, electroencephalography (EEG) is widely 
used for diagnosing and treating various neurological disorders. It does this by recording 
electrical activity in the brain (Roy et al., 2018). Recurrent and unpredictable seizures, 
which are brief episodes of involuntary movements and sometimes even result in a 
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momentary loss of consciousness, are the hallmarks of epilepsy, a chronic brain disease 
(Fisher et al., 2014). 

Neurological diseases present significant challenges in diagnosis and treatment, 
necessitating innovative solutions that harness the power of deep learning, a powerful 
technique for analysing complex data. Deep learning methods have recently become very 
popular in medical analysis because deep learning with autonomous learning capabilities 
can analyse statistical patterns in large datasets, offering applications from medical 
diagnoses to predicting stages in neurological diseases with results surpassing human 
accuracy (Lima et al., 2022). Deep learning methods, achieved through the combination 
of nonlinear modules, enable effective learning of intricate functions, especially in 
neurological disease classification, by emphasising crucial input aspects in higher layers 
and suppressing irrelevant variations for sharper and more meaningful outcomes (Lecun 
et al., 2015). Most current approaches focus on seizure prediction, detection, and 
classification of seizures. Research indicates that when antiepileptic medications (AEDs) 
are used appropriately, up to 70% of patients can receive successful treatment (Fisher  
et al., 2014). EEG is commonly used to diagnose epilepsy, but manual analysis by 
neurologists is time-consuming. Automated seizure detection techniques aim to speed up 
diagnosis and enhance accuracy. Examining frequency features in EEG seizure data is 
crucial for understanding seizure EEG (Rashed-Al-Mahfuz et al., 2021). 

This study delves into neurological disease detection, explicitly focusing on epileptic 
seizures, and utilises advanced 1D and 2D convolutional neural networks (CNNs) for 
EEG signal analysis. The complexity of EEG signals requires a sophisticated approach 
for accurate neurological disease detection. Traditional methods often treat EEG data as 
one-dimensional time series, overlooking crucial frequency information in the signals. 
Our study proposes a methodology that transforms 1D EEG signals into informative 2D 
spectrograms using the STFT to address one-dimensional limitations. This transformation 
enhances analysis by capturing frequency patterns, providing a more comprehensive 
understanding of neural activity. 

2 Related work 

A proposed method used Arnold and Chaotic encryption to encrypt generated 
spectrogram images, achieving an accuracy of up to 86.11% and 84.72% for seizure 
detection when employing pre-trained CNN models (Ein Shoka et al., 2023). Researchers 
proposed a data integration framework for EEG seizure detection, and their method 
achieved up to 96.87% accuracy (Alharthi et al., 2022). In a different approach, a study 
proposed a novel EEG instance matching-based epilepsy classification using a CNN that 
achieved an accuracy of 99.3% (Lian et al., 2020). The authors used a novel CNN to 
analyse time, frequency, and channel information of EEG signals to predict epileptic 
seizures and the model accurately achieved 80.5% accuracy, 85.8% sensitivity, and 
75.1% specificity (Wang et al., 2021). Using a combination of raw EEG and frequency 
sub-bands as input, a CNN could detect interictal epileptiform discharges from EEGs at 
90% sensitivity (Prasanth et al., 2020). The authors used a CNN with 1D and 2D kernels 
to achieve a high-accuracy prediction of 93.5% on the intracranial dataset and 98.8% on 
the CHB-MIT scalp EEG dataset (Xu et al., 2020). Deep learning structure based on 
CNNs was designed to detect epilepsy using EEG signals using Bonn University datasets, 
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achieving an average accuracy of 98.67% (Abiyev et al., 2020) A proposed method 
involving the pre-processing of scalp EEG signals, automated feature extraction using a 
CNN, and classification with support vector machines achieved a sensitivity of 92.7% 
(Muhammad Usman et al., 2020; Zhou et al., 2018). Using CNNs, it was found that 
frequency domain signals yielded higher accuracies for epileptic signal detection than 
time domain signals, reaching 96.7% in Freiburg and 97.5% in CHB-MIT databases. The 
study found that using a 3D CNN with multi-channel EEG data outperformed traditional 
signal processing methods, achieving an accuracy of over 90% (Wei et al., 2018). In a 
different study using CNN and transfer learning, a % classification accuracy of 82.85% 
for epileptic seizure type recognition was achieved, surpassing conventional feature and 
clustering-based approaches (Raghu et al., 2020). The study presents CNN-based 
classifiers for seizure detection, incorporating signal-to-image conversion methods and 
proposing three classification methods with five classifiers, with the FT-VGG16 
achieving a top accuracy of 99.21% (Rashed-Al-Mahfuz et al., 2021). The TF-HybridNet 
model outperformed other models in training and testing, particularly with ten-fold  
cross-validation, showcasing the potential for enhanced performance with increased EEG 
data and achieving a notable 94.3% accuracy compared to the state-of-the-art method 
(Sui et al., 2021). In a separate study, the conversion of original EEG signals into 
spectrograms using STFT and a dual self-attention residual network (RDANet) was 
introduced for enhanced forecasting performance, achieving 92.07% accuracy (Yang  
et al., 2021). The study achieves a remarkable 98.22% average accuracy in classifying 
epilepsy seizures using STFT for non-stationary signal processing and a CNN model on 
EEG spectrogram images from the Bonn University dataset (Mandhouj et al., 2021). The 
2D CNN CWT + LSTM model applied to the Bonn AB-CD-E dataset achieved an 
accuracy of 97.30% (Varlı and Yılmaz, 2023). The combination of EEG signals 
processed STFT and continuous wavelet transform (CWT) has achieved an accuracy of 
91.3% through training a CNN (Xia et al., 2021). The proposed method with CBAM-3D 
CNN-LSTM achieved an accuracy of 97.95% and a sensitivity of 98.40% on an EEG 
dataset of 11 patients (Lu et al., 2023). 

Classification studies cover a diverse range of applications. In studies related to 
classification, the study focuses on breast cancer identification using mammography, 
introducing a multidimensional feature-based technique with enhanced grey-level  
co-occurrence matrix and contrast limited advanced histogram equalisation. Achieving 
92% of accuracy on the MIAS dataset (Surya and Muthukumaravel, 2023). The article 
highlights the need for automatic recognition of aggressive actions in videos and 
emphasises the importance of detecting violence to protect children from inappropriate 
content. The proposed approach achieves a commendable accuracy of 76.79% on the 
specified database test set (Chelliah et al., 2023a). The article explores epilepsy as a 
chronic neurological disorder leading to life-threatening seizures due to irregular brain 
activity. It aims to develop an automated seizure detection system using machine learning 
algorithms. 

The model evaluates eight algorithms on the Bonn University dataset, with random 
forest and Gaussian Naive Bayes achieving 100% accuracy, sensitivity, specificity, 0.01 
FPR, and 0.99 AUC with feature extraction. Even without feature extraction, these 
algorithms perform exceptionally well (Patel et al., 2022). The study introduces a novel 
multi-view, multi-depth learning framework for soil temperature prediction, 
demonstrating its effectiveness, especially when employing support vector regression 
(SVR) as the base learner, and highlighting its unprecedented application in estimating 
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soil temperature using both time series and machine learning methods (Tuysuzoglu et al., 
2022). This paper introduces a two-stage approach, utilising multi-objective SALP 
optimisation for efficient detection of two-locus epistasis associations among single 
nucleotide polymorphisms, demonstrating superior performance compared to MACOED 
and CSE (Priya and Manavalan, 2022). The research focuses on deep learning in image 
classification, natural language process and speech recognition, emphasising the 
prevalence of unrealistic adversarial samples in model security. True hostile attacks are 
understudied but compromise real-world applications. The study assesses the efficacy of 
unreal hostile samples in protecting models using real-world cases, revealing comparable 
success with realistic examples. The findings contribute insights into neural network 
adversarial resilience (Chelliah et al., 2023b). The study utilised geocell as a ground 
enhancement technology to improve the tensile properties of poor soil, exploring the 
effects of varying reinforcement depths, layers, and relative densities. Settlement 
predictions in poor sand were made using the recommended recurrent neural network 
(RNN) method, outperforming alternative models when applied to geocell with 
independent variables (Jeyanthi et al., 2023). 

3 Proposed methodologies 

This section applies automated methods for classifying epilepsy diseases using the 
University of Bonn dataset (Andrzejak et al., 2001). Our proposed approach comprises 
two key stages: feature extraction and classification. 

The crucial first stage involves extracting informative features from raw EEG data. 
We leverage a technique that integrates time-frequency domain analysis via the STFT. 
This innovative approach captures richer temporal and spectral information compared to 
traditional methods. Further, we transform these extracted features into spectrogram 
images, providing a readily interpretable visual representation for improved 
classification. 

For the subsequent classification task, we employ a CNN as the model. CNNs excel 
at processing image data like spectrogram images, extracting visual patterns directly from 
the pixel-based input. 

3.1 Dataset description 

The dataset utilised for this study was acquired by a research team affiliated with the 
University of Bonn (Andrzejak et al., 2001). It comprises five subsets labelled A through 
E, amounting to 500 EEG signals. Each signal within the A to E sets comprises 100 
channels, and each dataset includes 4,096 sampling points, reflecting 23.6 seconds. To 
remove artefacts related to muscle activity and eye movements, the gathered data was 
visually inspected. In EEG recordings, noises from various muscle movements have been 
eliminated. The EEG recording was conducted following standardised techniques for 
electrode placement. Five patients experiencing epileptic seizures were chosen for this 
study. Five segments were carefully selected and extracted from the continuous  
multi-channel EEG recordings after a visual inspection to identify contaminants. 
Segments A and B were explicitly taken from the EEG recording surface and represent 
data from healthy individuals. Segment A reflects the eyes-open state, while segment B 
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pertains to the eyes-closed state of a healthy volunteer. The remaining C, D, and E 
segments are associated with brain activity during epileptic seizures. Sets C and D 
exclusively contain intervals of seizure-free brain activity. Set E comprises EEG signals 
exclusively recorded during seizure activity. The EEG signal was recorded at 173.61 Hz 
after being converted from analogue to digital by a 12-bit converter. 

Figure 1 Seizure and normal EEG signal samples (see online version for colours) 

 

The dataset’s limited number of instances presents a challenge for training an effective 
deep-learning model. Obtaining a substantial quantity of EEG signals for this issue is 
impractical, and the expert labelling required by neurologists adds to the difficulty (Wu 
and Fokoue, 2017). To address this, we require an augmentation approach to augment the 
dataset sufficiently for training a generalised CNN model, which demands ample training 
data for optimal performance. While the EEG dataset (Andrzejak et al., 2001) is small 
enough to train a model, the risk of overfitting is apparent. To address this challenge, the 
original dataset (Andrzejak et al., 2001) has undergone modifications and restructuring, 
resulting in an enhanced version derived from a commonly utilised epileptic seizure 
detection dataset (Wu and Fokoue, 2017) for improved usability. The original dataset, 
segmented into 23 chunks, each representing one second of EEG recording, results in 
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11,500 rows of data. Each row contains 178 data points, comprehensively representing 
EEG signals across different segments. The dataset is divided into two classes: a  
non-epileptic class of 9,200 rows and an epileptic class of 2,300. 

Figure 2 Scatter plot of maximum and minimum values (see online version for colours) 

  

Figure 3 Visual representation of epileptic and non-epileptic conditions (see online version  
for colours) 

 

Class 1 signifies recordings of seizure activity, indicating that the individual is 
experiencing an epileptic seizure. Class 2 indicates EEG recordings from the area where 
the tumour was located, providing insights into the tumour’s potential impact on brain 
activity. Class 3 identifies the tumour region in the brain with EEG activity recorded 
from the healthy brain area, aiding in understanding the tumour’s location and extent. 
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Class 4 indicates recordings with the patient’s eyes closed, reflecting the patient’s state of 
rest or relaxation. Class 5 denotes EEG recordings taken with the patient’s eyes open. In 
this approach, the epileptic seizure class is considered the positive class, and the 
remaining categories are the negative class. This allows focusing on identifying the 
characteristics distinguishing seizure segments from non-seizure segments. 

Figure 3 visualises epileptic and non-epileptic conditions, representing the dataset 
obtained during the analysis of EEG recordings. Most points in the epileptic class are 
concentrated in an area with higher x and y values. Conversely, most points in the  
non-epileptic class are concentrated in an area with lower x and y values. This distinction 
suggests that two features of EEG signals could potentially be utilised in diagnosing 
epilepsy. 

The widespread distribution of signals representing epilepsy symptoms suggests 
abnormal electrical activity in various brain regions, offering insights into the origins and 
mechanisms of seizures. On the other hand, the clustering of non-epileptic signals in a 
narrow area implies regular brain function. These observations could inform the 
development of new strategies for epilepsy diagnosis and treatment, representing a 
crucial step in improving patient interventions and quality of life. 

3.2 Feature extraction 

The short-time Fourier transform (STFT) was introduced by Gabor in 1946 and has since 
been extensively utilised to analyse nonlinear and non-stationary signals. Fourier 
transform (FT) provides valuable insights into the frequency components of a signal. FT 
assumes a signal’s frequencies remain constant over time. This assumption becomes 
problematic when dealing with non-stationary EEG signals where frequencies fluctuate 
dynamically (Sui et al., 2021). 

Extracting distinct frequency components (delta, theta, alpha, beta, and gamma) from 
EEG signals unlocks the potential for in-depth frequency-dependent analysis. This 
analysis can inform the identification of these bands as biomarkers, contributing to a 
deeper understanding of brain activity (Beeraka et al., 2022). To address the limitations 
of FT with EEG, the STFT offers a refined approach. The STFT is a technique in which 
the fast Fourier transform (FFT) is calculated for each data frame (Keerthi Krishnan and 
Soman, 2021). It divides the signal into multiple, shorter segments, each assumed to be 
approximately stationary within its limited timeframe. This segmentation is achieved by 
applying a window function, which isolates individual segments for analysis. The FT is 
then applied to each stationary segment, yielding a time-dependent spectral 
representation known as the spectrogram. This 2-dimensional representation captures 
temporal and spectral variations within the signal, allowing us to visualise how 
frequencies change over time (Loh et al., 2022). The inherent non-stationarity of EEG 
signals often renders conventional time-frequency analysis methods, like the FT, less 
effective in extracting key features. However, the spectrograms generated by STFT 
effectively capture the dynamic nature of EEG signals, enabling the extraction of features 
that can successfully distinguish between EEG signals associated with epilepsy (Sui  
et al., 2021). By segmenting the signal and analysing each segment’s frequency content 
independently, STFT acts as a moving window, revealing the frequency evolution of the 
signal over time. A large window provides less resolution in time and more resolution in 
frequency. Along with the window length, window type decides the time frequency 
distribution, since the strong time-variable signal causes frequency aliasing  
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(Keerthi Krishnan and Soman, 2021). The usual mathematical expression of the STFT (1) 
is shown by: 

( , ) ( ) ( ) jωtSTFT t ω x t ω t τ e dt
+∞

−
−∞

= −  (1) 

The variable t represents the specific moment in the signal, while ω stands for the angular 
frequency. The signal function in the time domain is denoted as x(t). The term ω(t – τ) 
represents a window function centred around t – τ in the time domain. The complex 
exponential term e–jωt modulates the signal in the frequency domain, and dt signifies an 
infinitesimal change in time. The integral is computed over all time, from negative 
infinity to positive infinity, capturing the product of the signal, window function, and the 
complex exponential for different values of τ and ω. 

3.3 Convolutional neural networks 

Artificial neural networks refine their functions by adjusting weights through iterative 
learning from training data. This process aims to minimise prediction errors and improve 
accuracy over time. Generalising for unseen inputs is a key advantage of machine 
learning models, achieved by connecting multiple units in a neural network (Aggarwal, 
2018). 

CNNs represent a subset of deep learning architecture, comprising an input layer, an 
output layer, and multiple hidden layers. The initial hidden layers typically consist of 
convolutional layers, which extract feature maps by applying convolution kernels to input 
data (Sui et al., 2021). These convolutional layers, also known as filters, form the 
foundational elements of the network. They generate a feature map of the input data 
through repetitive application, achieved by sliding a window across the dataset (Beeraka 
et al., 2022). 

The convolutional layer detects local patterns. The pooling layer merges similar 
features by calculating the maximum of local patches. The technique helps in expanding 
the position of each feature for reliable perception. Combining two or three stages of 
convolution, linearity, and pooling, followed by additional convolutional and fully 
connected (FC) layers, facilitates backpropagation through the CNN, allowing training of 
all weights in the filters (Lecun et al., 2015). 

In deep learning, each layer’s learning process depends on completing the previous 
layer’s learning. Although input values are standardised during normalisation, layers may 
face challenges such as gradient loss or slower, less stable training (Varlı and Yılmaz, 
2023). Neural networks rely on nonlinear activation functions to translate incoming data 
into meaningful outputs, enabling them to tackle complex tasks (Rosenberg Johansen  
et al., 2018). Rectified linear unit (ReLU) function is utilised following each 
convolutional layer. ReLU (2) denoted as: 

( ) max(0, )f x x=  (2) 

As the CNN progresses to deeper layers, the focus shifts to learning higher-level features 
and breaking down inputs into intricate structures. In contrast, the initial layers 
concentrate on understanding basic features through filtering (Keerthi Krishnan and 
Soman, 2021). Pooling layers play a crucial role in CNNs by strategically reducing the 
dimensionality of data, effectively mitigating overfitting, and easing computational 
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demands. They operate by down-sampling the output matrix of the preceding 
convolutional layer, either selecting the maximum value within each region or averaging 
the values. During the training phase, dropout layers deactivate a randomly chosen set of 
neuron units, reducing the model’s workload and preventing overfitting. The learned 
features combine the previously extracted features in the FC layer by linking each node in 
the previous layer to each node in the FC layer. Each FC layer, except the last one, 
incorporates an activation function to optimise CNN network performance (Xia et al., 
2021). The flattened layer plays a crucial role in this process by converting the data into a 
one-dimensional array, serving as the input for the FC layer. This prepares the data for 
subsequent FC layers, where each input is linked to every neuron in the network (Varlı 
and Yılmaz, 2023). 

3.4 Transformation from 1D signals to 2D spectrograms using STFT 

CNN is a deep learning network that can be used on single, two, or three-dimensional 
data (Varlı and Yılmaz, 2023). CNNs have become widely adopted in machine learning 
research, particularly in adapting 1D and 2D architectures for diagnosing and predicting 
diseases using biological signals (Shoeibi et al., 2021). 

Transforming 1D EEG data into 2D spectrograms, presenting a comprehensive 
approach to enhance signal analysis for epileptic seizure detection. The method employs 
an STFT to convert the time-domain EEG signals into a frequency-domain 
representation, providing valuable insights into the underlying patterns and dynamics of 
the neural activity. Analysing EEG data is essential in neurology and medical signal 
processing to identify abnormalities like epileptic seizures. Conventional methods 
frequently ignore the rich frequency information inherent in EEG signals by treating them 
as 1D time-series data. An approach to convert the 1D EEG data into 2D spectrograms is 
introduced to take advantage of this frequency-domain information. 

Figure 4 Example of a signal and its spectrogram-transformed version (see online version  
for colours) 

 

The transformation process is executed using a sliding window technique, where each 
segment of EEG data undergoes STFT. The parameters for this transformation include a 
window size of 100 samples and a specified number of frequencies set at 256. The 
sampling frequency is also set to 1,000 Hz, ensuring an accurate representation of the 
EEG signals. The resulting spectrograms are saved as images, where each image 



   

 

   

   
 

   

   

 

   

    New approaches to epileptic seizure prediction based on EEG signals 95    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

corresponds to a unique EEG recording. The resulting spectrograms provide a visually 
rich representation of the frequency content of EEG signals. This approach holds promise 
for enhancing the accuracy of epileptic seizure detection algorithms by capturing intricate 
frequency patterns that may not be fully discernible in the time domain. The images can 
be seamlessly integrated into machine learning models, paving the way for more 
comprehensive and practical EEG signal analysis in neurology. 

3.5 1D CNN 

1D CNN was trained on EEG signals, while 2D CNN was trained using corresponding 
spectrogram images. The dataset was evenly split for both models, with 80% allocated 
for training and 20% for testing. This balanced distribution aimed to evaluate the model’s 
performance comprehensively. The strategy involved utilising 80% of the data for 
training to optimise the model’s learning and generalisation capabilities, with the 
remaining 20% reserved for thorough assessment. The proposed 1D CNN architecture 
was developed for epilepsy detection, featuring various layers tailored to effectively 
capture and analyse EEG data. The model uses three convolutional layers with 32, 64, 
and 128 filters. Each convolutional layer uses a kernel of size 6 and 3. The model’s 
structure encompasses an input layer, convolution layers equipped with batch 
normalisation, and max-pooling layers to systematically extract hierarchical features from 
the EEG signals. The initial convolution layer processes a signal of size 173 with 32 
filters with a five-unit kernel, is followed by batch normalisation and max-pooling. 

Further enhancing its capacity, the architecture introduces two additional convolution 
layers, each incorporating larger filter sizes, 64 and 128, respectively. Batch 
normalisation is strategically applied to these layers to bolster model stability and 
convergence. 

Figure 5 Framework of the proposed 1D CNN method (see online version for colours) 

 

Utilising max-pooling layers facilitates the down-sampling of feature maps, thereby 
reducing dimensionality while preserving crucial information. The flattened layer 
transforms the output into a one-dimensional array, seamlessly connecting to dense layers 
for robust classification. Two FC dense layers with 64 and 32 neurons contribute to the  
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model’s ability to comprehend intricate patterns within the data. Dropout layers are 
seamlessly integrated to prevent overfitting in the training phase. The final dense layer 
housing two neurons is the output layer, effectively conveying binary classifications 
indicative of epilepsy detection. 

Figure 6 Proposed 1D CNN and 2D CNN models (see online version for colours) 

 

3.6 2D CNN 

The optimised network is designed as a 2D CNN to improve classification performance 
in detecting epileptic seizures. This CNN structure encompasses multiple layers 
strategically designed to extract hierarchical features from the input EEG data. 
Commencing with an input layer, the model incorporates three convolutional layers, each 
leveraging ReLU activation functions to facilitate robust feature extraction. Following 
each convolutional layer, batch normalisation is applied to bolster the stability and 
efficiency of the network. After these layers, max-pooling operations with 2 × 2 pooling 
sizes are employed to down-sample spatial dimensions, effectively capturing crucial 
patterns while mitigating computational complexity. The output from the final max is in 
Figure 7. 

Figure 7 Framework of the proposed 2D CNN method (see online version for colours) 

 

The pooling layer is then fed into two FC dense layers, with 128 and 64 neurons, utilising 
ReLU activation functions. A dropout layer is introduced after the second dense layer to 
prevent overfitting. The ultimate layer is a dense layer featuring two neurons, employing 
a SoftMax activation function to yield probability distributions for the two classes 
relevant to seizure detection. The training process utilises the Adam optimiser, and sparse 
categorical cross-entropy is the chosen loss function. 
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Figure 8 2D CNN architecture for EEG spectrogram classification (see online version  
for colours) 

 

Table 1 Proposed methods for neural networks 

1D CNN layers Output shape 2D CNN layers Output shape 
Conv1D (173, 32) Conv2D (28, 28, 32) 
Batch normalisation (173, 32) Batch normalisation (28, 28, 32) 
MaxPooling1D (87, 32) MaxPooling2D (14, 14, 32) 
Conv1D (85, 64) Conv2D (14, 14, 64) 
Batch normalisation (85, 64) Batch normalisation (14, 14, 64) 
MaxPooling1D (43, 64) MaxPooling2D (7, 7, 64) 
Conv1D (41, 128) Conv2D (7, 7, 128) 
Batch normalisation (41, 128) Batch normalisation (7, 7, 128) 
MaxPooling1D (21, 128) MaxPooling2D 196 
Flatten 128 Flatten 128 
Dense 64 Dense 128 
Dropout 64 Dropout 64 
Dense 32 Dense 64 
Dropout 32 Dropout 32 
Dense 2 Dense 2 

4 Results and discussion 

A successful deep learning model generates highly classifiable features through  
multi-layered feature extraction. To evaluate the performance of a model, various metrics 
are used in this study. These include true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN), which indicate the model’s ability to identify and 
differentiate between positive and negative cases correctly. Additionally, accuracy  
(Acc) (3), sensitivity (Sen) (4), specificity (Spe) (5), precision (Pre) (6), and F1-score (7) 
provide comprehensive insights into the model’s overall effectiveness and balance in 
terms of correct predictions and error rates. 
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1D CNN demonstrated exceptional performance, achieving a specificity of 0.996, 
signifying its proficiency in correctly identifying instances without seizures. The overall 
test accuracy reached 0.991, underscoring the model’s robustness. Furthermore, the 
sensitivity 0.987 highlights the model’s effectiveness in accurately detecting seizure 
occurrences. The calculated F1-score is 0.989, confirming the outstanding performance 
of the 1D CNN. Upon converting the dataset into a 2D format, the CNN’s accuracy 
experienced a slight decrease to 0.987. 

Nevertheless, the sensitivity remained commendable at 0.976, indicating the model’s 
sustained effectiveness in capturing TP instances of seizures. The specificity 0.988 
underscores the model’s capacity to accurately classify samples without seizures, 
comparable to the 1D CNN. Although there was a slight decrease in accuracy, the 2D 
CNN demonstrated an F1-score of 0.97. 

5 Conclusions 

This study explores the impact of dimensionality on the performance of CNNs in the 
context of epileptic seizure detection. First, the employed dataset was in a 1D format and 
subsequently transformed into 2D. We evaluated the model’s effectiveness based on key 
metrics, including specificity, accuracy, sensitivity, and F1-score. The 1D CNN 
demonstrated noteworthy test results with an accuracy of 0.991 and sensitivity of 0.987. 
This shows its remarkable ability to identify seizure and non-seizure cases correctly. 
Despite limitations in frequency information utilisation and feature extraction flexibility, 
its efficiency and lightweight nature make it an appealing option for practical 
applications. While the 2D CNN showed slightly lower accuracy (0.987) than the 1D 
model, its sensitivity remained high at 0.976, indicating strong efficacy in detecting 
seizures. Additionally, its ability to learn richer spatiotemporal features holds potential 
for further accuracy improvements. However, the increased computational cost and data 
pre-processing requirement must be considered. Because of its lower time-frequency 
resolution, the STFT cannot capture some crucial time-frequency information in 
spectrograms, which results in insufficient input images for the deep learning model. 

Nevertheless, it has drawbacks, including increased computational cost and the need 
for data pre-processing. In conclusion, the presented results highlight the nuanced 
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performance variations between 1D and 2D CNNs in the context of epileptic seizure 
detection. Understanding these nuances is crucial for selecting the most suitable model 
architecture based on a given application’s specific requirements and priorities. 
Table 2 Comparative analysis between the proposed system and existing work 

Method Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Arnold and Chaotic encryption + CNNs (Ein Shoka  
et al., 2023) 

86.11, 
84.72 

- - 

Dominant channel selection + 1D-CNN, bi-LSTM and 
attention (Alharthi et al., 2022) 

96.87 96.98 96.85 

CNN-based EEG instance matching (Lian et al., 2020) 99.3 99.5 99.6 
CNN for time, frequency and channel information 
(Wang et al., 2021) 

80.5 85.8 75.1 

CNN with raw EEG and frequency sub-bands 
(Prasanth et al., 2020) 

- 90 79 

1D and 2D CNN Kernels (Xu et al., 2020) 93.5, 98.8 - 0.981, 
0.988 

CNNs for Bonn University Datasets (Abiyev et al., 
2020) 

98.67 97.67 98.83 

Scalp EEG pre-processing + CNN + SVM  
(Muhammad Usman et al., 2020) 

- 92.7 90.8 

Frequency domain CNN (Zhou et al., 2018) 96.7, 95.6, 
59.5 

- - 

3D CNN with multi-channel EEG Data (Wei et al., 
2018) 

90 88.90 93.78 

CNN and transfer learning (Raghu et al., 2020) 82.85 - - 
CNN FT-VGG16 (Rashed-Al-Mahfuz et al., 2021) 99.21 99.04 99.38 
RDANET (Yang et al., 2021) 92.07 93.02 91.26 
2D CNN LSTM CWT (Varlı and Yılmaz, 2023) 97.3 97.3 98.35 
CNN STFT (Mandhouj et al., 2021) 98.22 97.77 98.6 
CNN CWT STFT (Xia et al., 2021) 91.3 - - 
TF-HybridNet STFT (Sui et al., 2021) 94.3 - - 
CBAM-3D CNN-LSTM (Lu et al., 2023) 97.95 98.4 - 
1D CNN (ours) 99.1 98.7 99.6 
2D CNN (ours) 98.7 97.6 98.8 

This study provides valuable insights into the performance of 1D and 2D CNNs in 
epileptic seizure detection, but certain limitations need acknowledgment. Firstly, the 
study relies on the widely accepted University of Bonn dataset which may not fully 
capture the variability in diverse populations, potentially limiting generalisability. The 
small sample size also raises concerns about the broader applicability of the proposed 
methodology. Additionally, dataset modifications made for usability enhancements 
introduce the possibility of biases impacting real-world scenarios. The deep learning 
method employed has its constraints. The large dimensions of 2D CNN layers may strain 
GPU capacity, requiring larger GPUs or parallel processing and incurring additional 
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costs. The computational cost, particularly with deeper models, can extend training times 
and increase resource intensity, especially with large datasets. Adding more layers and 
parameters increases model complexity, demanding more training data. While the 1D 
CNN demonstrated remarkable performance, the 2D CNN’s slightly lower accuracy 
should be interpreted considering its potential for richer spatiotemporal feature learning. 
However, trade-offs must be considered, including increased computational costs and 
data pre-processing. 

The findings contribute valuable insights to the ongoing research to optimise deep 
learning models for medical image analysis and seizure detection tasks. This study 
contributes to the evolving landscape of deep learning applications in neurology by 
unravelling the intricacies of CNN performance in epileptic seizure detection. The 
findings emphasise the significance of choosing the appropriate model architecture based 
on specific application requirements. As the field advances, optimising deep learning 
models for medical image analysis and seizure detection tasks remains a paramount 
objective, guided by insights from such studies. 
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