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Abstract: Given the mounting anxieties surrounding the interpretability
of neural models, appraising interpretability remains an unsolved puzzle
owing to the ineffectual performance of existing interpretation techniques
and evaluation metrics. The architecture of neural network models varies
depending on the task at hand, making it challenging to devise a universal
method of explanation that can produce coherent justifications for each
model. This paper proposes a framework to enhance the interpretability of
text sentiment classification models using aspect sentiment words (ASW)
aggregation, which can be applied to web services to improve transparency,
accountability, and user trust. The proposed method extracts ASW from
sentences and consolidates the token importance scores to provide more
credible justifications. The paper also introduces new evaluation metrics
for faithfulness, which assess whether interpretations accurately reflect the
model’s decision-making process. The proposed metrics are effective in
evaluating the fidelity of rationales to models at the snippet-level.
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1 Introduction

Deep neural networks (DNNs) have enabled deep learning to make significant advances
in related fields such as natural language processing (NLP) (Yuan et al., 2020),
image processing (Wang et al., 2020), and speech recognition (Ho et al., 2020).
The success of deep neural networks is largely attributed to their deep structure,
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which allows for a complex combination of numerous nonlinear network layers to
automatically extract features from raw data at various levels of abstraction, thus
dramatically improving prediction performance. However, due to their high complexity,
multitudinous parameters, and low transparency, these end-to-end models behave like
black boxes, making it difficult to understand their decision-making mechanisms or to
assess the reliability of their decisions.

The research on interpretability of large artificial intelligence (AI) models can be
applied to web services to improve their transparency, accountability, and user trust. By
understanding how these models make decisions and which factors are most important
in producing their outputs, web service providers can better explain their actions to
users and address potential biases or errors in the models. This can lead to increased
user satisfaction and loyalty, as well as improved regulatory compliance and legal
defensibility. Furthermore, interpretability research can inform the development of more
explainable and trustworthy AI models that are optimised for deployment in web service
applications.

Table 1 Saliency map of word importance (see online version for colours)

True Predicted Word importance
label label (prob.)

English

1 1 (1.00) it ’s a charming and often affecting journey.
0 1 (0.93) this one is definitely one to skip , even for horror movie fanatics.

Chinese

1 1 (0.91)
0 1 (0.94)

Note: The greener the colour of the word, the more verdant the hue of a word, the
greater its significance in label prediction. Conversely, the more crimson its
shade, the less crucial it is, and may even exert a negative effect.

Presently, there exist primarily two approaches to attain interpretable models:

1 interpreting existing models through post-hoc techniques

2 designing inherently interpretable models.

Compared to the latter, we prefer post-hoc interpretations, as they provide a balance
between inner interpretability and model accuracy. And Jacovi and Goldberg (2020)
had warned that the claim of a method being ‘inherently interpretable’ should be
verified before it can be trusted. Generally, if a model has a simple structure and good
interpretability, its fitting ability will be limited, resulting in low prediction accuracy,
which may restrict the application scenarios of these algorithms.

Currently, there exist several deep neural network model architectures, such
as convolutional neural networks (CNN) (LeCun et al., 1998), recurrent neural
networks (RNN), long short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997), transformer (Vaswani et al., 2017), and bidirectional encoder representation
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from transformers (BERT) (Kenton and Toutanova, 2019), among others. These
models have yielded impressive results in tasks related to computer vision and NLP.
Nonetheless, devising a universal explanation method for these models to provide a
logical justification for their decision-making process is challenging. This is not only
because of the diversity of these network models but also due to the requirement
of defining distinct evaluation metrics for various processing tasks. For instance, the
interpretability evaluation criteria for image recognition and text sentiment classification
are evidently not universal. In this paper, we focus on the interpretability of text
sentiment classification models, as sentiment analysis is one of the most representative
tasks in NLP. Besides, it can be applied to various specific scenarios in web
services, including but not limited to customer feedback analysis, content moderation,
recommender systems and advertisement targeting.

The majority of researchers have employed post-hoc techniques to interpret text
sentiment classification models. In the domain of post-hoc techniques, saliency methods
are extensively utilised to explicate a model’s decisions by apportioning relevance
scores to the input tokens, thus representing their effects on predictions. As illustrated
in Table 1, the saliency methods were utilised to generate a heatmap depicting the
dependence of the model’s prediction on each word within text sentiment classification
tasks. Although these methods have advanced the performance of interpretation, there
is still ample opportunity for further enhancement. Additionally, an increasing number
of researchers are utilising faithfulness and plausibility as measures to evaluate the
rationales extracted by saliency methods, albeit with differing methodologies for
computing these metrics (Zhang et al., 2021; Madsen et al., 2022; Jacovi and Goldberg,
2020; Yin et al., 2022). Mathew et al. (2021) have employed the token F1-score
to assess the credibility of token-level rationales. Differently, DeYoung et al. (2020)
have proposed the intersection-over-union (IOU) F1-score and the area under the
precision-recall curve (AUPRC) as measures to evaluate the plausibility of snippet-level
rationales.

Compared to plausibility, faithfulness is more challenging to define and compute
owing to the limitations of human cognition regarding deep learning models. DeYoung
et al. (2020) offered explicit computations for faithfulness from the standpoints of
sufficiency and comprehensiveness. This definition solely considers the impact of the
sequential arrangement of multiple words within a single sentence on the prediction;
however, it may not precisely mirror the underlying semantics, potentially yielding
inaccuracies. Wang et al. (2022) utilised mean average precision (MAP) to compute the
coherence of rationales under perturbation, in order to assess faithfulness. Nonetheless,
there exists a degree of negative correlation between MAP and the plausibility metric,
and MAP breaches the faithfulness criterion (Jacovi and Goldberg, 2020). This implies
that it may not accurately evaluate interpretability.

In order to address the aforementioned issues, we put forth an interpretive framework
based on ASW aggregation, which extends current saliency methods by consolidating
individual tokens into ASW. This approach can enhance the effectiveness of saliency
methods and generate more plausible and accurate explanations. Additionally, a new
evaluation metric for interpretability is proposed to measure the faithfulness of generated
explanations.

Specifically, our contributions in this paper are as follows:
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• An augmented interpretive framework of ASW aggregation has been proposed,
thereby elevating both the rationality and fidelity of interpretations derived from
saliency methods within text sentiment classification models.

• To more accurately assess the interpretability of sentiment analysis models, we
suggest a more sound evaluation metric for fidelity, namely the RBO between two
rankings: one involving the sorting of model output based on rationales, and the
other pertaining to the sorting of token importance scores.

• We conducted experiments and provided a comprehensive analysis of our
framework, employing three standard models in conjunction with three commonly
used saliency methods. Furthermore, we present a comparative analysis between
the metrics we propose and those that currently exist.

2 Related work

In this section, our primary focus will be on saliency methods, evaluation metrics for
interpretability, and ASW extraction models. The crux of our work involves presenting
an augmented interpretive framework centred on ASW aggregation, which heightens the
interpretability of text sentiment analysis models. Additionally, we also introduce novel
metrics for measuring fidelity.

2.1 Saliency methods

In the domain of post-hoc explanation technique, saliency methods are commonly
utilised to comprehend the decision-making process of models. These methods distribute
importance scores across input tokens as a means of illuminating their impact on
model predictions (Simonyan et al., 2014; Murdoch et al., 2018; Ribeiro et al.,
2016). Interpretability can be classified into two categories based on the target of
interpretation: those grounded in input features (Zeiler and Fergus, 2014; Lundberg
and Lee, 2017; Ahern et al., 2020; Smilkov et al., 2017; Ribeiro et al., 2016;
Sundararajan et al., 2017) and those anchored in intermediate process features
(Selvaraju et al., 2017; Wang et al., 2019; Abnar and Zuidema, 2020; Yuan et al.,
2021). Furthermore, interpretability can also be divided into four categories based on
feature attribute methods: fit-based, attention-based, removal-based, and gradient-based.
Fit-based methods utilise a straightforward and comprehensible model to partially align
the consequence of the evaluated model (Alvarez-Melis and Jaakkola, 2017; Ribeiro
et al., 2016; Ahern et al., 2020). Attention-based methods are particularly suitable
for models that employ attention mechanisms, as they utilise attention weights as
a means of providing explanations (Jain and Wallace, 2019; Wiegreffe and Pinter,
2019). Removal-based methods provide explanations for the behaviour of the model
by comparing the changes in model output before and after the removal of tokens (Li
et al., 2016; Feng et al., 2018). Gradient-based methods reveal the decision-making
behaviour of the model by calculating the gradient of the model during the training
process (Simonyan et al., 2014; Lundberg and Lee, 2017; Sundararajan et al., 2017;
Smilkov et al., 2017; Selvaraju et al., 2017). Each of these methods has its own unique
advantages and disadvantages in terms of factors such as computational efficiency,
interpretability performance, and so forth (De Cao et al., 2020; Sixt et al., 2020).
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2.2 Interpretability metrics

When it comes to highlight-based rationales, interpretability is frequently evaluated
in terms of plausibility and faithfulness from the standpoint of both humanity
comprehension and the actual decision-making process of models. DeYoung et al.
(2020) suggested employing IOU F1 score and AUPRC to gauge the plausibility
of snippet-level rationales. DeYoung et al. (2020) also offered specific equations for
evaluating faithfulness in terms of both the sufficiency and comprehensiveness of
rationales. Nevertheless, this evaluation metric carries with it uncontrollable factors
that could impact interpretability evaluation. Jacovi and Goldberg (2020) proposed
several criteria for the definition and assessment of fidelity. Ding and Koehn (2021)
assessed the trustiness of saliency methods on NLP models by measuring the consistency
of rationales under perturbations. Wang et al. (2022) employed the correspondence
between the rationales offered on instances prior to and following perturbation, which
are skilfully designed to preserve the model’s decision-making process, as a metric for
evaluating faithfulness.

2.3 ASW extraction model

The task of aspect term extraction (ATE) (Yin et al., 2016; Li et al., 2018; Ma et al.,
2019) centres on recognising aspect targets, whereas opinion term extraction (OTE)
(Yang and Cardie, 2012; Klinger and Cimiano, 2013; Yang and Cardie, 2013) aims
to extract opinion words or phrases that chiefly influence the sentiment polarity of
the sentence or the corresponding target term. The most recently proposed subtask of
aspect-based sentiment analysis (ABSA) (Zhang and Liu, 2012; Pontiki et al., 2014)
is aspect sentiment triplet extraction (ASTE) (Peng et al., 2020), which forms a more
complete picture of sentiment information through a triplet consisting of an aspect
target term, its corresponding opinion term, and the expressed sentiment. Xu et al.
(2021) proposed a span-based approach for learning the interaction between target words
and opinion words, and introduced a dual-channel span pruning strategy to reduce
the computational cost brought by span enumeration, which we use for English ASW
extraction.

Furthermore, semantic dependency analysis can be leveraged for the extraction of
ASW, as there frequently exists a dependency relation between opinion words and
aspect words. Zhuang et al. (2006), Kobayashi et al. (2006), Somasundaran and Wiebe
(2010) and Kessler and Nicolov (2009) utilise the parsing of sentence dependency
relationships to identify the targets modified by sentiment words. Qiu et al. (2011)
further generalise this approach using a double-propagation method to simultaneously
extract both targets and opinion words. Recognising that evaluative targets may comprise
of noun or verb phrases, rather than just single words, Wu et al. (2009) employ the
semantic dependencies between phrases in a sentence to identify candidate targets, which
are then filtered using a language model.

3 Methods

When individuals assess the emotional orientation of a sentence, they frequently base
their judgment on the presence of ASW within the sentence. Therefore, this paper
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proposes an interpretation framework based on ASW aggregation, which takes into
account human cognitive tendencies when assessing the sentiment of a sentence.
Figure 1 provides an overview of our augmented interpretive framework, which initially
extracts ASW using either syntactic dependency analysis or deep learning models,
and then consolidates the token scores obtained by saliency methods based on the
ASW. Subsequently, we will provide a detailed account of the implementation of the
framework and the proposed metrics that are more suitable for evaluating loyalty.

Figure 1 Overview of our augmented interpretive framework (see online version for colours)

3.1 An augmented interpretive framework for enhancing saliency methods based on
ASW aggregation

For the extraction of ASW, this paper utilises two methods:

1 syntactic dependency analysis for both English and Chinese

2 ASTE (Xu et al., 2021) for English and sentiment knowledge enhanced
pre-training for sentiment analysis (SKEP) (Tian et al., 2020) for Chinese.

Syntactic analysis is of paramount importance in NLP tasks such as opinion extraction.
It has the capability to unearth the remote lexical dependencies in sentences that
are arduous to acquire through lexical analysis, and aids in extracting the semantic
information that is obscured in a more profound hierarchical stratum. For instance, in
the sentence “this mobile phone is too expensive and not fashionable”, the intricate
annotation details of the dependency relationship within the sentence are illustrated in
Figure 2.

In the dependency analysis of a sentence, every dependency is portrayed as directed
edges, where the origin of the arrow denotes the modified dominant word, and the
destination indicates the subordinate word that functions as the modifier. Ultimately,
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the semantic dependencies of the sentence are derived through the edge annotations,
revealing the interrelatedness between the words. Based on the outcomes of dependency
parsing, a definite relationship between aspect words and opinion words can be
discerned. Hence, it can be employed to extract aspect words and their corresponding
sentiment words.

Figure 2 Dependency parsing tree (see online version for colours)

As for the alternative technique for extracting ASW, we utilise SKEP (Tian et al.,
2020) to formulate an ASW extraction model for Chinese, and Span-ASTE (Xu et al.,
2021) for English. With respect to SKEP, we can extract the aspects in sentences
and their corresponding opinions through sequence labelling. To achieve this objective,
we have expanded the labelling system founded on the begin inside outside (BIO)
sequence labelling system, encompassing B-aspect, I-aspect, B-opinion, I-opinion, and
O. The initial two labels are employed to indicate aspects, the subsequent two labels are
employed to indicate the related opinions, while the last label represents neither aspect
nor opinion. Regarding Span-ASTE, further details on extracting ASW from English
sentences can be found in Lu’s publication (Xu et al., 2021).

In summary, the framework for enhancing saliency methods through ASW
aggregation involves the following steps:

Input: an input sentence X , the text sentiment classification model f(x), and the
specific feature attribution method Ω.

Output: the importance score w of each token in the sentence X .

1 Given a saliency method Ω, we first compute the original token importance score
w0 = Ω(X, f) by Ω

2 Use Arc-Standard (Nivre, 2003) to perform dependency analysis on the input
sentence and extract ASW sets S = {[(a0, ..., ai), (o0, ..., oj)], ...} according to the
defined rules or use deep learning models like Span-ASTE and SKEP to extract
them, where ai is the token that makes up aspect words and oj is the composition
of sentiment section.

3 Traverse the set of ASW in S and accumulate their scores as follows: for each set
Sk = [(a0, ..., ai), (o0, ..., oj)]k, calculate the score sk, and assign the score
tik = sk + h ∗ l for each token i belonging to Sk. Here, h is a small constant
which we set to 0.001 and l is the reverse position of the token in the ASW.

4 Store these scores in each token’s list ti = (ti0, ..., tik), where ti0 represents the
original token score and tik represents the cumulative value calculated above if
the token belongs to Sk.

5 Set the ultimate feature score of token i in the sentence as wi = max(ti), where
max(ti) represents the maximum value in ti.
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3.2 Interpretability metrics

In line with prior research (DeYoung et al., 2020; Ding and Koehn, 2021; Mathew et al.,
2021), we assess interpretability based on the criteria of plausibility and faithfulness.
In regards to models for analysing sentiment at the sentence-level, plausibility is
determined by the degree to which the justifications produced by saliency techniques
correspond with those annotated by human. Fidelity refers to whether the token
importance scores generated by saliency methods accurately reflect the decision-making
process of the model, meaning whether the model’s prediction of the dependency on
each part of the input is consistent with the token importance scores obtained.

Unlike previous studies, we have chosen to use Token-F1 (Wang et al., 2022) to
evaluate plausibility. However, for faithfulness, we have proposed new metrics, RBO
sufficiency (RBO-Suf) and RBO comprehensiveness (RBO-Com). These metrics eliminate
the negative correlation with Token-F1, unlike MAP, and adhere to the rules proposed
by Jacovi and Goldberg (2020). Compared to DeYoung et al. (2020), calculating the
confidence score based on all rationales selected from the ranking of token importance
scores is more reasonable. This approach provides an overall assessment of the results
obtained by saliency methods, rather than relying on a single explanation.

RBO (Webber et al., 2010), as defined in equation (1), is a metric used to evaluate
the similarity between two lists. In equation (1), S and T represent two arbitrary lists. p
is a parameter that can be specified. Sc:d represents the set of all elements from position
c to position d in the list. The value of this metric ranges between 0 and 1, with a value
closer to 1 indicating a higher degree of similarity between the two lists.

RBO(S, T, p) = (1− p)
∞∑
d=1

pd−1 ·Ad (1)

where

Ad =
|Id|
d

=
S1:d ∩ T1:d

d

RBO-Com: inspired by DeYoung et al. (2020), we construct a contrast example for xi,
denoted as x̃i, which is obtained by removing the predicted rationals ri from xi. ri
represents the rationale of xi, and xi\ri represents its non-rationale. First, we calculate
the output F (xi\ri) provided by a specified deep learning model F according to the
xi\ri. Then we calculate whether F (xi\ri) rankings is consistent with the rationals
ri rankings. We can measure this through calculating RBO between the two rankings
as equation (2), where xi is the ith sentence, rij is the top-j elements of ri and ki
represents the length of ri.

RBO-Com =
1

N

N∑
i=1

{RBO[argsort(L0), L]i} (2)

where

L0 = [1− F (xi\ri1), 1− F (xi\ri2), ..., 1− F (xi\riki)]

L = [1, 2, ..., ki]
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RBO-Suf: this captures the degree to which the snippets within the extracted rationales
are adequate for a model to make a prediction. We let F (ri) be the prediction provided
by a model F according to rationales from the token importance scores ranking. Then
we calculate whether F (ri) rankings is consistent with the rationals ri rankings. We
also measure this through calculating RBO between the two rankings as equation (3).

RBO-Suf =
1

N

N∑
i=1

{RBO[argsort(L0), L]i} (3)

where

L0 = [F (ri1), F (ri2), ..., F (riki)]

L = [1, 2, ..., ki]

4 Experiments

4.1 Datasets

Wang et al. (2022) proposed interpretable evaluation benchmark datasets where our
experiment is conducted. The dataset comprises 1,500 randomly selected instances
from the dev/test sets of the Stanford Sentiment Treebank (SST) (Socher et al., 2013),
along with 400 instances from the test set of the movie reviews (Zaidan and Eisner,
2008) dataset for English. Additionally, the dataset includes 60,000 randomly sampled
instances from the logs of an open sentiment analysis (SA) application programming
interface (API) for Chinese, with the permission of its users.

Table 2 shows the size of the original and perturbed pairs, as well as the average
ratio of rationale length to input length (RRL) and the number of rationale sets in an
input (NRS) across all data.

Table 2 Overview of datasets

English Chinese

Size RRL NRS Size RRL NRS

1,999 20.1% 2.1 2,160 27.6% 1.4

Source: Wang et al. (2022)

4.2 Models

Similar to Wang et al. (2022), we use a robustly optimised BERT pretraining approach
(RoBERTa-base), RoBERTa-large (Zhuang et al., 2021) and LSTM (Hochreiter and
Schmidhuber, 1997) to evaluate interpretability on these two datasets. To fine-tune our
English and Chinese models, we used the training sets of SST and ChnSentiCorp,
respectively. However, due to the low accuracy of the Chinese model on the evaluation
dataset, we artificially marked 1/4 of the test set and retrained the model to prevent
impact on the evaluation of model interpretation. Table 3 presents the model’s
performance on the original dataset and the evaluation dataset.
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Table 3 Accuracy of models

Models LSTM RoBERTa-base RoBERTa-large

English

Acct 88.6 94.3 95.6
Acco 80.4 92.3 92.8

Chinese

Acct 90.4 93.2 94.7
Acco 61.2 60.4 66.8
Accr 84.8 92.9 93.8

Note: Acct represents the accuracy of the models on the training sets, Acco

represents the accuracy on the original test sets, and Accr represents the
accuracy of the retrained models after labelling 1/4 of the test dataset.

4.3 Saliency methods

• Attention (ATT) (Jain and Wallace, 2019; Wiegreffe and Pinter, 2019):
attention-based methods utilising attention weights to measure the importance of
each token in the input sequence.

• Integrated gradient (IG) (Sundararajan et al., 2017): integrating the gradients from
a baseline input (zero embedding) to the original input taken along a direct route
and utilising the gradients as indicators of token significance.

• Local interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016):
adding slight perturbations to the input samples and observing the changes in the
output of the model to be explained, training a linear model on the original input
based on these changes, and using the linear model to locally approximate the
predictions of the model to be explained, representing the weights of the linear
model as importance scores of the tokens in the original input.

4.4 Metrics

For evaluation metrics, we employ Token-F1 (Wang et al., 2022) to evaluate the
rationality of interpretations. We also utilise MAP (Wang et al., 2022), Score-Suf
(DeYoung et al., 2020), and Score-Com (DeYoung et al., 2020) compared with RBO-Suf
and RBO-Com to collectively assess the faithfulness of the explanation.

Token-F1, as defined in equation (4), is computed by assessing the degree of overlap
between the predicted and ground truth rationale tokens.

Token-F1 =
1

N

N∑
i=1

(
2× Pi ×Ri

Pi +Ri

)
(4)

where

Pi =
|Sp

i ∩ Sg
i |

|Sp
i |

and Ri =
|Sp

i ∩ Sg
i |

|Sg
i |
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where Sp
i and Sg

i represent the rationale set of ith instance provided by models and
human respectively; N is the total number of instances.

Mean average precision (MAP), as defined in equation (5), is utilised to gauge the
coherence of rationales under perturbations, thereby serving as a metric to evaluate the
faithfulness.

MAP =

|Xp|∑
i=1

i∑
j=1

1
iG(xp

j , X
o
1:i)

Xp
(5)

where Xo and Xp represent the sorted rationale token list of the original and perturbed
inputs, according to the token important scores assigned by a certain saliency method.
|Xp| represents the number of tokens in Xp. Xo

1:i consists of top-i important tokens of
Xo. The function G(x, Y ) is to determine whether the token x belongs to the list Y ,
where G(x, Y ) = 1 iff x ∈ Y .

Equation (6) demonstrates the Score-Suf and Score-Com. A lower Score-Suf
indicates that the rationale is more than sufficient, while a higher Score-Com signifies
that the rationale has a greater impact on the output. For a rationale to be considered
faithful, it should possess a low Score-Suf and a high Score-Com.

Score-Suf =
1

N

N∑
i=1

(F (xi)j − F (ri)j)

Score-Com =
1

N

N∑
i=1

(F (xi)j − F (xi\ri)j)

(6)

where F (xi)j represents the prediction probability provided by the model F for class j
on the inputxi; ri represents the rationale of xi, and xi\ri represents its non-rationale;
N is the total number of datasets.

5 Results and discussions

Tables 4 and 5 presents a comparison of the experimental results between the augmented
interpretive framework based on ASW aggregation and the original interpretation
method. The metric denoted by the upward arrow signifies that a higher score
corresponds to superior performance. Conversely, a lower score indicated by the
downward arrow is indicative of commendable performance. The acronym ‘ASW-DA
(dependency analysis)’ denotes the ASW aggregation framework, which is founded
upon dependency analysis. On the other hand, ‘ASW-DL (deep learning)’ relies on
deep learning models. Moreover, ‘Pla.’ is a succinct representation of ‘plausibility’,
whereas ‘Fai.’ abbreviates ‘faithfulness’. ‘Suf’ serves as an abbreviation for ‘Score-Suf’,
‘Com” stands for ‘Score-Com’, ‘R-Suf’ represents ‘RBO-Suf’, and ‘R-Com’ signifies
‘RBO-Com’.
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Table 4 Interpretability evaluation results on English datasets
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Table 5 Interpretability evaluation results on Chinese datasets
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The results unequivocally demonstrate that the explanations generated by our framework
based on ASW aggregation have significantly improved the rationality compared to the
original saliency method. The loyalty metrics MAP, RBO comprehensiveness and RBO
sufficiency have also seen a slight improvement, albeit not as much as the rationality
indicator Token-F1. These results demonstrate that our method is capable of generating
more plausible explanations while maintaining the fidelity of the original method to the
model, with a slight improvement on this basis. Subsequently, the results obtained from
the experiment will be scrutinised in detail from the three perspectives of evaluation
metrics, interpretation methods, and models. We also deliberate upon the merits and
demerits of this approach in the end.

5.1 Comparison between evaluation metrics

It can be observed from the experimental results that there is a certain degree of negative
correlation between the Token-F1 and MAP, i.e. the higher the Token-F1, the lower the
corresponding MAP. The intrinsic reason behind this phenomenon can be attributed to
the fact that the calculation of MAP involves perturbing the evidence words through
synonymous or antonymous substitution, which results in a change in the evidence
words. As a consequence, the more reasonable the evidence extracted, the lower the
consistency between the evidence words before and after the perturbation, leading to a
decrease of MAP. However, this problem does not exist for RBO comprehensiveness
and RBO sufficiency. These metrics we proposed measure the model’s trust in the token
importance score rankings obtained by the interpretation method, so there is no conflict
with Token-F1.

The resemblance in trends between sufficiency and our proposed metrics is evident
across all three models and saliency methods. Our proposed metrics surpass those of
DeYoung et al. (2020) in precision by comprehensively considering all rationales, rather
than a singular explanation. Calculating the confidence score based on the ranking
of token importance scores is a more cogent approach. As such, this method affords
a comprehensive evaluation of results obtained through saliency methods, in lieu of
dependence on a solitary explanation.

5.2 Evaluation of models

Our framework generates superior explanations with maintaining the fidelity for all three
models, across all explanation methods. Meanwhile, our experimental outcomes reveal
that our proposed framework more effectively enhances the performance of transformer
models than that of LSTM, across all saliency methods. This outcome may be attributed
to the superior impact of ASW aggregation on transformer models.

When evaluating model interpretability, our focus is specifically directed towards
the IG and ATT, given that the LIME remains agnostic to the model. In comparison to
LSTM, based on the IG method, transformer models exhibit superior performance on
plausibility and faithfulness for English. However, for Chinese, LSTM is competitive
in terms of faithfulness and performs better on plausibility. Conversely, when using
ATT, LSTM surpasses transformer models on plausibility for both English and Chinese.
In our comparison of RoBERTa-base and RoBERTa-large, we discover that the former
outperforms the latter on plausibility for both English and Chinese, utilising these two
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saliency methods. However, RoBERTa-large outperforms RoBERTa-base on plausibility
with ATT for Chinese. Interestingly, in terms of faithfulness evaluation, RoBERTa-base
outperforms RoBERTa-large with both the IG and ATT methods, for both English and
Chinese.

5.3 Evaluation of saliency methods

The findings indicate that our framework yields the most significant improvement
in LIME, followed by ATT, with IG exhibiting the lowest improvement, among the
three saliency methods. Based on our assessment, it is evident that LIME outperforms
other methods in terms of Token-F1, sufficiency, R-Suf, and R-com metrics. This is
attributed to the fact that LIME’s rationales more precisely emulate the decision-making
mechanism of deep learning models. In comparing IG and ATT, it is noticeable that ATT
demonstrates better performance in terms of plausibility, whereas IG exhibits superior
performance with respect to faithfulness.

5.4 Advantages and limitations

Our proposed framework significantly enhances the plausibility of explanations
generated by attribution methods across all three models, while preserving their original
fidelity. This improvement can be attributed to our framework’s foundation of utilising
ASW aggregation to construct explanations, which we augment to improve their
effectiveness. Furthermore, we observe that in contrast to the framework that relies on
dependency analysis, the one that is founded upon deep learning models exhibits a
competitive level of faithfulness and yields superior results in plausibility. This can be
attributed, in significant part, to the heightened precision of deep learning models in
extracting ASW.

Last but not least, our framework still has some limitations. The most significant
issue is how to extract the final interpretations based on token scores, given that the
current ratio-based method is not particularly effective. Additionally, there is scope for
improving the extraction of ASW, with better methods that could enhance the rationality
of subsequent explanations.

6 Conclusions

This paper proposed an augmented interpretive framework based on ASW aggregation to
bolster the coherence and precision of interpretations yielded by saliency methods used
in text sentiment classification models. In addition, we also proposed more reasonable
loyalty metrics, namely RBO comprehensiveness and RBO sufficiency. These metrics
evaluated the faithfulness of interpretations extracted by saliency methods through
calculating RBO between two rankings. They eliminated the negative correlation with
Token-F1, unlike MAP, and adhere to the rules proposed by Jacovi and Goldberg
(2020). Compared to DeYoung et al. (2020), they are more reasonable to calculate the
confidence score based on all rationales selected from the ranking of token importance
scores, rather than a singular explanation. The experimental results demonstrated that
our proposed framework significantly enhances the rationality of explanations extracted
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by saliency methods on three typical models, while preserving the faithfulness to the
models.
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