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Abstract: Web applications have grown to be the foundation of any kind of system, ranging 
from cloud services to the internet of things (IoT) systems. As a huge amount of sensitive data is 
processed in web applications, user privacy shows as the most important concern in web security. 
In the virtualisation system, cache side channel (CSC) attack techniques have become popular to 
retrieve the secret information of other users. This paper presents a run-time detection and 
prevention mechanism, called browser watcher (BW), for time-driven CSC attacks. The 
computation overhead of the proposed BW java script engine is monitored and tabulated for the 
different domains. The average cache miss rate is measured from 23% to 89%. Once the BW 
system identifies the attacker, then it prevents stealing the secret information of the victim. This 
makes it very hard for the attacker to find the memory access pattern of the victim. 

Keywords: cache side channel; CSC attack; timing attack; BW system; cache attack prevention; 
internet of things; IoT. 
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1 Introduction 
Side channel analysis is the famous intelligent part of the 
cryptanalytic attack (Kocher, 1996; Osvik et al., 2006; 
Yarom and Falkner, 2014). The secret information is 
emitted to the attacker from secure devices by analysing its 
physical signals (temperature, power, radiation, heat, laser, 
etc.) as it achieves any secure operation (Mangard et al., 
2007). A particular type of side channel (SC) attack which 
is related to personal computers is the cache side channel 
(CSC) attack. The CSC attack utilises the use of cache 
memory as a shared memory set between different 
processors and it releases secret information (Hu, 1992a; 
Osvik et al., 2006). The CSC attack is a part of SC attacks 
that utilise the difference in access times of a cached value 
and an un-cached value (i.e., RAM value). 

To secure the data of the cloud computing customer, 
CSC attack detection and prevention is essential. Most of 
the CSC attacks use one of the critical operations such as 
accessing timestamps on the shared cache of the physical 
CPU. Two of the famous CSC attacks are Prime + Probe 
and Flush + Reload. Both techniques calculate the access 
time slots to read a particular location from the memory. 

The read operation will be done either by cache hit or cache 
miss events. 

Over the past 25 years, JavaScript (JS) has grown to be 
the biggest language on the web. Out of the 10 million 
majority popular websites, 94.7% use the JS language 
(W3Techs, 2017). There are security and privacy issues as a 
result of allowing every website to access APIs like the 
battery status API and the Geolocation API (Popescu, 2016; 
W3C, 2016a). Websites can utilise the sensors to get the 
finger print of the user by identifying more sensors. It also 
updates secure device values like battery level or  
geo-location. Moreover, these data can increase the CSC 
attacks on user input (Mehrnezhad et al., 2016; Cai and 
Chen, 2011). 

Micro-architectural attacks include both SC attacks and 
covert channel attacks. These attacks are entirely 
implemented in software. Microarchitectural attacks are also 
feasible in JS. The timing side-channel attacks have been 
established and observed to collect the browser history of a 
web user (Felten and Schneider, 2000; Jang et al., 2010; 
Weinberg et al., 2011), geolocation (Jia et al., 2015) of the 
user, whether a user is logged in to any other websites 
(Bortz and Boneh, 2007), and CSRF tokens (Heiderich  
et al., 2012). 



44 S. Ganesan  

The suggested detection mechanisms rely on hardware 
performance counters for detection and presumptively find 
more cache hits and cache misses from all cache attacks 
than from benign applications. Since the first use of clflush 
is obviously a system function and the second assumes that 
no other process has access to the data, we advise restricting 
its use to memory pages that the process has write access to 
and that the system permits clflush access to. Despite being 
very efficient at recovering exponent bits, the attack has 
some limitations. Another limitation is the length of the 
secret key. A total of 2,200 cycles are required on the Dell 
system to probe three memory locations. Time periods that 
are shorter than that cannot therefore be used for the attack. 
For shorter key lengths, time slots of 2,200 cycles or more 
do not provide enough resolution to identify the victim. This 
tactic’s primary flaw is that the attacker can create high 
resolution clocks using alternative methods. Utilising 
network data and running a ‘clock’ process in a different 
execution core are two examples. 

Usually, web browsers cannot get the browsing 
information on one website from being directly accessed by 
another website. Nevertheless, any web applications 
executed in the same browser share the same runtime 
environment with the attackers. Such shared information 
leads to SCs for malicious websites to find out information 
of other origins. The proposed browser watcher (BW) 
system identifies the attacker and secures the data of the 
victim from the attacker. The BW system analyses the 
modern web browser behaviour of the user and it classifies 
the user as an attacker or a normal user. Once it identifies 
the attacker, the attacker will be prohibited to fetch the 
memory pattern of the victim. 

This paper is structured as follows: Section 1 explains 
the introduction of the attacks. Section 2 shows the related 
works of the timing attack. Section 3 shows the working 
principle of Attack methodologies. Section 4 explains the 
proposed BW system model. Section 5 shows the 
experimental results and section 6 gives the conclusion of 
the work. 

2 Related works of the timing attack 
Modern processors use caches to retrieve data from the 
memory. The cache works in a set-associative (2-way,  
4-way, 8-way, 16-way) manner. These caches have an ‘S’ 
number of cache sets, each with an ‘N’ number of cache 
lines that hold ‘B’ bytes in each cache line. When a program 
tries to fetch data from the memory, the program initially 
searches it in the cache. If the data is found the cache it is 
defined as a cache hit. If the required data is not there in the 
cache, then cache miss occurs. In the cache miss, with the 
help of a hashing function, the required ‘B’ bytes are pulled 
from the main memory and placed into a cache line (‘N’) of 
the suitable cache set. If all cache lines (‘N’) are filled, then 
the least used cache lines are ejected from the cache set and 
leave a free empty room to place the retrieved ‘B’ bytes. 
The access latency is less in cache memory when compared 
with the main memory. 

Figure 1 Cache architecture 

 

The cache system has three levels: Level1, Level2, and 
Level3 (lease level cache – LLC) caches (Figure 1). The 
higher level (L1) cache is bigger and closer to the RAM. 
The access time of L1 is less. A program initially attempts 
to fetch data from the L1 cache and upon failure then tries 
next-level caches one by one. For the variable access, the 
multilayer cache system includes noise because the cache 
hit may occur in any of the three levels. Based on the cache 
hit/miss rate, the CSC attacks are classified into four 
categories as shown in Table 1. This proposed solution 
applies to time-based SC attacks. This suggested fix is only 
applicable to time-based SC attacks in categories 1 and 3, 
not all time-based SC attacks. 

The BW system focuses on web browser time-based 
probe attacks (Felten and Schneider, 2000; Jia et al., 2015; 
Kotcher et al., 2013; Agrawal et al., 2003). It retrieves 
private information such as cryptographic keys or the status 
of other virtual machines (Agrawal et al., 2002, 2003). 
Timing attacks are popular types of SC attacks. In the 
timing attack, the time required to perform a secret 
operation is observed and tried to fetch the private 
information on the attacked system. Kocher (1996) showed 
that accidentally the timing characteristics expose enough 
information to fetch the complete secret key from a 
vulnerable cryptosystem (Sangeetha and Ganesan, 2020). 
Oren et al. (2015) demonstrated that the attacker could use 
JS TypedArrays to calculate the instantaneous load on the 
LLC with the help of high-resolution reference clock-like 
performance.now(). Sangeetha introduced a new secure 
allocation technique to prevent cache side-channel attacks 
(Sangeetha and Ganesan, 2020). 

Bortz and Boneh (2007) offered two types of web-based 
timing attacks targeting dynamic web pages. In the first 
web-based direct timing attack, an attacker can find the 
response time from a website to attain information about the 
website’s state. The second web-based timing attack is a 
cross-site timing attack that permits an attacker to get details 
on the position of a user at a cross-origin website. 

To minimise the timing attack, the Tor Browser 
developers decreased the resolution of the performance.now 
timer to 100 ms. In response, the W3C (2016b), browser 
vendors, and some major web browsers (Chrome, Firefox) 
have applied similar techniques to reduce the timer 
resolution to 5 μs to overcome Oren et al.’s (2015) cache 
timing attack. But it is not possible to deliver the exact 
timing to the user from this low-resolution timer. Hu 
(1992b) proposed ‘fuzzy time’ ideas to build trusted 



 Enabling secure modern web browsers against cache-based timing attacks 45 

browsers. The fuzzy time system degrades all clocks either 
internally or externally and also it shrinks the bandwidth of 
all timing channels. Kotcher et al. (2013) identified two-
timing probing attacks using CSS default filters. In the first 
timing probe attack, by exploiting the document object 
model (DOM) rendering time difference, we can check 
whether a particular user has an account on the website. In 
the second timing probe attack, with the help of stealing 
pixels, we can find the browsing history of the user or can 
read the next token. 

Rokicki et al. (2021) have studied the evolution in the 
previous years and the current state of JS-based timers and 
timing attacks for Chrome and Firefox, evaluating the 
resolution and measurement overhead for the two most 
efficient timers: performance.now() and Shared 
ArrayBuffer. Timer-based countermeasures like clamping 
the resolution and adding jitter do not prevent attacks, but 
increase the time needed to exploit these attacks. 

In order to protect JS from web concurrency attacks, 
Chen and Cao (2020) proposed JSKERNEL, the first 
general outline that does so. In order to strengthen security, 
the JS kernel, which was inspired by operating system 
concepts, mandates the execution order of JS threads and 
events. They put together a JSKERNEL prototype that 
could be installed as add-on extensions for the three most 
popular web browsers, Microsoft Edge, Mozilla Firefox, 
and Google Chrome.2.1 JS and timing measurements. 

JS is an object-based scripting language used by every 
modern browser. The JS language is sandboxed and 
conceals the concept of addresses and pointers. The native 
code can provide a cycle-accurate timestamp from the 
timestamp counter; that is not possible in the JS. In native 
code, the user can obtain the timestamp counter through the 
unprivileged assembler rdtsc instruction. Nevertheless, JS 
cannot execute this arbitrary instruction. Instead, JS uses the 
performance.now timestamp function to provide  
high-resolution time in sub-millisecond. Based on the  
high-resolution time application programming interface 
(W3C 2016a), different attacks have been established.  
Van Goethe et al. (2015) demonstrated that from the cross-
origin resources, the attacker can fetch the private data of 
the user by measuring their access time. 

Figure 2 shows how injecting java script advertisement 
code permits an attacker to determine the victim’s memory 
pattern. The victim’s multi-tabbed web browser was 

compromised when the attacker’s code was introduced from 
an untrusted website. 

2.1 Micro-architectural attacks 
Modern processors are optimised for computational 
efficiency and power. Conversely, optimisations commence 
side effects that can be oppressed in so-called  
micro-architectural attacks. Micro-architectural attacks 
include fault attacks and SCs on micro-architectural 
components or exploits of micro-architectural elements, 
e.g., caches, pipelines, DRAM and buses. Attacks on caches 
have been examined widely in the past 20 years, using 
cryptographic performances (Kocher, 1996; Bernstein, 
2004). The time varies between a cache miss, and a cache 
hit can be suppressed to discover secret information from 
co-located virtual machines and processes. Modern attacks 
exploit either Flush+ Reload (Yarom and Falkner, 2014), if 
read-only shared memory is available or Prime+ Probe 
(Osvik et al., 2006) otherwise. In these attacks, the attacker 
operates the status of the cache and shortly checks whether 
the status has altered. Moreover, attacks on cryptographic 
executions (Osvik et al., 2006; Patil et al., 2011), these 
attacks can be utilised to make covert-channels (Maurice  
et al., 2017) or ASLR (Gras et al., 2017). 

2.2 Micro-architectural and side-channel attacks in 
JS 

Micro-architectural attacks were only recently suppressed 
by JS. As JS code is essentially single-threaded and 
sandboxed, attackers look like a definite challenge in 
contrast to attacks in native code. Recognised some 
requisites that are the origin of micro-architectural attacks, 
which is each attack, relies on at least one of these 
primitives. Furthermore, sensors initiated on many mobile 
devices, in addition to modern browsers, commence SCs 
that can also be suppressed by JS. Table 1 provides a 
summary of side-channel attacks and all 11 known  
micro-architectural in JS and their requirements. Oren et al. 
(2015) proposed 11 microarchitectural side-channel attacks 
in JS. All these attacks are categorised into five groups: 
shared data, memory addresses, multithreading, sensor API, 
and accurate timing (Table 2). 

Table 1 Categories of cache side-channel attack 

 Time-based attack Access-based attack 
Cache hit 
based 
attack 

Category 1: Category 2: 
If the victim gets more cache hits while executing their entire 
critical/security operations, due to the reusing of its cache lines. 

If the attacker gets less memory access time while 
fetching the victim-fetched cache lines. 

e.g., cache collision e.g., flush-and-reload 
Attack Attack 

Cache 
miss 
based 
attack 

Category 3: Category 4: 
If the victim takes a longer execution time of their critical 
operations, due to access to attacker-evicted cache lines. 

If the attacker takes longer memory access time, due to 
the victim’s eviction of the attacker’s cache lines. 

e.g., evict-and-time attack e.g., prime-and-probe 
 Attack 



46 S. Ganesan  

Figure 2 End-to-end web browser attack scenarios (see online version for colours) 
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Table 2 Requirements of state-of-the-art side-channel attacks in JS 

 Memory 
addresses 

Accurate 
timing Multithreading Shared 

data 
Sensor 

API 

Rowhammer.js (Gruss et al., 2016) 3 3 1 1 1 
Practical memory deduplication attacks in Sandboxed Javascript 
(Gruss et al., 2015) 

2 3 1 1 1 

Fantastic timers and where to find them (Schwarz et al., 2017) 3 3 2 2 1 
ASLR on the line (Gras et al., 2017) 3 3 2 2 1 
The spy in the sandbox (Oren et al., 2015) 2 3 1 1 1 
Loophole (Vila and Kopf, 2017) 1 2 3 1 1 
Pixel perfect timing attacks with HTML5 (Stone, 2013) 1 3 2 2 1 
The clock is still ticking (Van Goethem et al., 2015) 1 3 2 1 1 
Practical keystroke timing attacks in sandboxed JavaScript  
(Lipp et al., 2017) 

1 2 2 2 1 

TouchSignatures (Mehrnezhad et al., 2016) 1 1 1 1 3 
Stealing sensitive browser data with the W3C Ambient Light 
Sensor API (Olejnik, 2017) 

1 1 1 1 3 

Note: 3 – high level requirements, 2 – medium level requirements 1 – low level requirements. 

 
3 Attack methodologies 
3.1 Prime + Probe attack 
This technique involves two stages. In the prime stage: the 
attacker (‘A’) removes all the data of the victim (‘V’) 
iteratively from the targeted cache set by assigning an array 
of memory blocks to that set. The target cache set is fixed 
based on the action of the victim users such as keyboard 
typing and mouse movement. If the ‘A’ reads the same 
memory blocks again, the data will be accessed fast, 
because it is retrieved from the cache, not from RAM. Then 
the ‘A’ remains ideal for an interval before performing the 
probe step. In the probe stage: the ‘A’ again reads the same 
memory array which was read in the prime stage and also 
calculates the access time period. If the time period is 
greater than the certain threshold value, then the ‘A’ guesses 
that the cache set has been fetched by the victim during the 
interval time period. The ‘A’ repeats the same Prime and 
Probe actions until it collects the cache access pattern of the 

‘V’. The ‘V’ cache access pattern can be used by the ‘A’ to 
extract the information about the ‘V’ operation. Refer to 
Algorithm 1 for Prime + Probe Attack. In the algorithm, the 
‘A’ passes the created array address and a threshold value 
that finds the cache set details of the ‘V’. 

Algorithm 1 Prime + Probe attack 

1 Initialise address and threshold values 
2 Initialise Boolean accessed [] to false 
3 Read the address value 
4 While(true) do 
 a Wait () //Till the victim accesses the cache lines 
 b Start = time () //Measure the time period 
 c Read the address value 
 d End = time () //Measure the time period 
 e AccessTime = End – Start //Measure the access time 
 f If (AccessTime > threshold) then 
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   accessed.push(true) //Cache Miss 
 g else 
   accessed.push(false) //Cache Hit 
 h end if 
 i end while 
5 Returned accessed [] 

Only with the help of the timer function, the ‘A’ can fetch 
the memory access pattern of the ‘V’. The proposed BW 
system detects the ‘A’ based on the usage of the timer 
function and secures the memory access pattern of the ‘V’. 

3.2 Flush + Reload attack 
The Flush + Reload (F+R) attack is an access-driven cache 
attack. 

The first thing the adventure does is flush a specific 
memory line that the victim frequently uses. Following that, 
the adventure waits until the victim has completed its 
cryptography operation. The same memory lines are loaded 
once more by the adventure. A longer reload time shows 
that the victim used the memory line during the second step 
of the adventure. In Algorithm 2, the Flush+ Reload attack 
steps are listed. 

Algorithm 2 Flush + Reload attack 

Input: Memory line address addr, Plaintext PT, key K 
Output: Time period 
1 Flush(addr); // Which memory lines are mostly accessed by 

the victim. 
2 Wait (); 
3 T1 ← Time (); 
4 Encryption (PT, K); 
5 Reload(addr); 
6 T2 ← Time (); 
7 Return (T2 – T1); 

• Flushing stage: in this first stage, the adventurer 
applies the clflush instruction to flush block ‘b’ from 
the cache, therefore making sure that it has to get back 
from the memory the next time it is required to be 
accessed. The clflush instruction does not flush only the 
memory block, but it is flushed from all the levels of 
the caches of all the cores. The attack would perform 
only if the attacker and victim processes were  
co-residing on the same core. This would have needed a 
stronger hypothesis than just being in the same physical 
machine. 

• Target access stage: the adventure waits until the target 
executes a part of the code, which might utilise the 
block ‘b’ that has been flushed in the initial stage. 

• Reloading stage: The adventure reloads once more the 
previously flushed block ‘b’ and calculates the time it 
gets to reload. Using this rdtsc command counts the 
hardware cycles tried in a process. Before reading the 
block ‘b’ and the cycle counter value, make sure that 
the mfence and lfence barrier instructions have 
completed the load and store operations respectively. 
Based on the reloading time, the adventurer decides 
whether the victim has used the memory block or not. 

4 Proposed BW system model 
The BW system detects the runtime CSC attack and 
prevents the attacker from fetching the memory pattern of 
the victim. At time Ti, the secret variable is accessed from 
memory and the memory access time is measured through 
the performance.now() function. At time Ti+1 the same 
variable is accessed again and the memory access time is 
measured. If any time-based cache attack has not occurred 
in the interval of Ti and Ti+1, then at time Ti+1 memory 
access time will be lesser than the memory access time at Ti. 
The TIMER_COUNT variable value will be increased 
based on the usage of the performance.now() function. 

Algorithm 3 Access time measurement 

1 Set AccessTime_FlushedLLC = AccessTime_UnFlushedLLC = 0 
2 Set AccessTime_UnFlushedLLC_Test = AccessTime_FlushedLLC_Test = 0 
3 Repeat K times // k → Number of Rounds 
 a Start = window.performance.now(); 
 b Access the ith page 
 c end = window.performance.now(); 
 d Diff_flushed = start-end // Retrieval time of data from memory 
 e Start = window.performance.now(); 
 f Access the same ith page 
 g end = window.performance.now(); 
 h Diff_Unflushed = start-end // Retrieval of data from LLC 
 i Start = window.performance.now(); 
 j Access the same ith page 
 k end = window.performance.now(); 



48 S. Ganesan  

 l Diff_Unflushed_Test = start-end // Testing of retrieving data from Unflushed LLC 
 m Flush out LLC cache to Prime eviction set 
 n Start = window.performance.now(); 
 o Access the same ith page 
 p end = window.performance.now(); 
 q Diff_flushed_Test = start-end // Testing of retrieving data from flushed LLC 
 r AccessTime_FlushedLLC = AccessTime_FlushedLLC + Diff_flushed 
 s AccessTime_UnFlushedLLC = AccessTime_UnFlushedLLC + Diff_Unflushed 
 t AccessTime_UnFlushedLLC_Test = AccessTime_UnFlushedLLC_Test + Diff_Unflushed_test 
 u AccessTime_FlushedLLC_Test = AccessTime_FlushedLLC_Test + Diff_flushed_Test 
4 Find Fulshed_Avg = AccessTime_FlushedLLC/k 
5 Find UnFulshed_Avg = AccessTime_UnFlushedLLC/k 
6 Find UnFulshed_Avg_Test = AccessTime_FlushedLLC_Test/k 
7 Find Fulshed_Avg _Test = AccessTime_FlushedLLC_Test/k 

 
The BW detection system will detect the attack with the 
help of the TIMER_COUNT variable value. If the 
TIMER_COUNT variable value is greater than 
MAX_COUNT, then the average cache miss rate (CMR) is 
again calculated by using our existing model (Sangeetha 
and Ganesan, 2020). If the average CMR value is greater 
than the lower bound (LB) threshold value and lesser than 
the upper bound (UB) threshold value, then the modified 
performance.now() function will be called (Listing: 1) to 
reduce the efficiency of the attacker. If the average CMR is 
greater than the UB then the user accepts that the cache 
flush function will be called by the BW system to prevent 
the attacker. Then the attacker could not find the next 
memory pattern of the victim in their next iteration. Figure 3 
shows how the normal, blocked, modified and with user 
permission wrapper java script function works in the BW 
system. 

4.1 Cache access time measurement 
The attacker can find the memory access blueprint of the 
victim only if the attacker has accessed the cache repeatedly 
after the operation of the victim. If any other user has 
accessed the cache memory in the meanwhile of the wait 
function of the attacker (Algorithm 1: Step4a), then the 
attacker will not be able to find the memory access pattern 
of the victim. So, calculate the access time of the flush and 
unflushed cache memory with the help of Algorithm 3. In 
Figure 4, the proposed BW protected system model, the 
permission system performs as an abstraction layer between 
the interfaces offered to a JS developer and the JS engine. 

Created a buffer with a total size of 131 k cache lines 
across 8,192 cache sets. There are more than 12 cache lines 
in a cache set. Therefore, we could emit a variable from the 
cache by filling it with 12 cache lines. As per the second 
step of the Prime + Probe attack, we could fill-up the LLC 
cache set by JS code. Created an 8 MB buffer array in JS 
and iterated over the array to replace the data in the cache 
set with the data in the 8 MB buffer array. 

Figure 3 Workflow model for BW system, (a) normal function, 
(b) blocked function, (c) modified function,  
(d) function with user permission 
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Figure 3 Workflow model for BW system, (a) normal function, 
(b) blocked function, (c) modified function,  
(d) function with user permission (continued) 
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Algorithm 3 is used to measure the access time of a variable 
from the flushed cache set and unflushed cache set. 
Repeated tests have been taken to confirm the access time 
of the flushed and unflushed cache LLC. 

Figure 4 Proposed BW protected system model (see online 
version for colours) 
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4.2 Detection of cache based timing-attack 
A BW system is developed to detect timing-based probe 
attacks in web applications. The objective of the proposed 
system is to examine every web application run time 
behaviour and to identify timing-based attacks. Most CSC 
attacks happen with the help of the timestamp function 
which gives information to the attacker about the memory 
access pattern of the victim. In the prime + probe attack, the 
memory footage of the victim will be identified by invoking 
the timer function in the probe stage. Used the virtual 
machine layering (VML) methodology to provide security 
and enlarge it for objects using proxy objects. The VML 
was established for low-overhead dynamic monitoring of 
functions (Lavoie et al., 2014). 

Listing 1 VML method to call the original function via 
reference 

1 var actual_ref = window.performance.now; 
2 window.performance.now = function () {return 0;}; 
3 alert(window.performance.now()); // call new function via 

function name 
4 alert (actual_ref.call(window.performance.now )); // call the 

original function via reference 

 

 

Listing 2 Modified performance.now function 

(function (){ 
var timer = window.performance.now (); 
window.performance.now= function () { 
return Math.floor ((timer.call(window. 
Performance))/1000.0) * 1000.0”} 
}; 
})(); 

• Listing 1: show that the VML calls the window. 
performance.now() function through the reference 
variable. With the help of VML technology without 
modification of a web browser, we can call the function 
instead of the original function. 

• Listing 2: show that the modified performance.now 
function. This function will be called if the 
TIMER_COUNT value is crossed by the 
MAX_COUNT value. 

5 Experimental results 
The BW system is implemented in Windows and 
Ubuntu14.04. The outline of the proposed BW system is 
explained in Pseudcode 1. Initially, The Prime + Probe and 
Flush + Reload attacks are implemented in JS as per 
Algorithms 1 and 2. In the prime stage, a buffered array is 
created as the size of an LLC and filled by the data of the 
attacker. In the probe stage, the attacker waits until the 
victim completes his operation. The attacker finds the 
current time by the function of performance.now(). While 
the attacker accesses any random page from the buffer, the 
access time is measured. The access latency shows whether 
the page was accessed by the victim. 

Pseudocode 1 Outline of the proposed BW system 

1 Monitoring and extracting the runtime behaviour of the web 
user. 

2 TIMER_COUNT variable is incremented based on Listing: 
III 

3 If(TIMER_COUNT < MAX_COUNT) 
  Identified as normal user. 
 else 
  Average CMR is calculated 
4 If (average CMR = = LB_Threshold ) 
  Identified the user as Attacker 
  Implemented Listing II to reduce the efficiency of the 

attacker. 
 else if ( average CMR = = UB_Threshold ) 
  The cache is flushed as per user conformation. 
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5.1 Stage 1: extracting runtime behaviours 
The base of the proposed system is to monitor the behaviour 
of the web user by analysing every website at runtime. The 
BW system intercepts JS API calls to characterise the 
behaviour of a web application because most of the web 
application dynamic behaviours are written in JS. The BW 
system records the API together with its parameters. To 
recognise the user behaviour and distinguish APIs, the BW 
system extracts the runtime JS stack of the API. Need to 
extract the runtime behaviours without modifying the web 
browser, so build the BW system as a browser extension 
shown in Figure 5 and Figure 6. Since it focuses only on 
timing-related behaviours, the interception mechanism is 
flexible to allow the users to specify General JS APIs to 
monitor. Lavoie et al. (2014) proposed a VML technique to 
monitor JS applications at runtime. 

Listing 3 Detection and prevention model 

1 (function () { 
2 var original_ref = window.performance.now; 
3 window.performance.now = function (){ 
4 COUNT=COUNT + 1; 
5 if (LevelI_TH < COUNT) 
6 Low-resolution Timer () 
7 else if (LevelII_TH < COUNT) 
8 return Clear_LLC; 
9 else {return original_ref.call(window.performance.now); 
10 };} 
11 Clear_LLC = function (){ // we use this buffer to evict 

everything from LLC 
12 var evictionBuffer = new ArrayBuffer (8192 * 1024); // 

8MB buffer 
13 var evictionView = new DataView (evictionBuffer); 
14 var current,offset = 64; 
15 for (var i = 0; i < ((8192 * 1023) / offset); i++) { 
  current = evictionView.getUint32(i * offset); 
16 })(); 
17 };} 

5.2 Stage 2: detection of the attacker 
The proposed BW system detects the attacker and avoids 
leaking any memory footage information about the victim. 
The BW system continuously monitors the behaviour of the 
user by watching the TIMER_COUNT variable. The 
TIMER_COUNT variable will be incremented as per the 
number of times the performance.now() function is invoked 
by the web user (Listing: 3). If the TIMER_COUNT value 
is lesser than the MAX_COUNT variable, then the user is 
treated as a normal user. Otherwise, the average CMR is 
calculated again. If it reaches the LB_Threshold variable 
value, then the user is treated as an attacker. The modified 
performance.now() function will be invoked and it returns a 

low-resolution timestamp (Listing 2) to reduce the 
attacker’s efficiency. 

5.3 Stage 3: getting user confirmation 
If the average CMR value is crossed over the UB_Threshold 
value, then the user confirmation is invoked to flush the 
cache. The attacker has to get opportunities to access the 
LLC to find the memory access pattern of the victim after 
the immediate use of the cache memory of the victim. 
Nevertheless, the BW system flushed out the cache memory 
to remove the memory footage of the victim before the 
attacker accessed the LLC. Evict the corresponding data 
from all cache levels by using the clflush instruction. But 
the clflush instruction implementation is not possible in JS. 
The BW system reads the same 8 MB buffer array when 
needed to execute clflush instruction. If the attacker gets the 
cache miss in the probe stage, then the attacker assumes that 
it was accessed by the victim. 

Algorithm 3 states that the access time of the average 
flushed test rate is larger than the average unflushed test 
rate. Due to the cache clflush instruction, the CMR will be 
high for the victim. The average memory access time 
(AMAT) is calculated as follows, 

+AMAT HT MR CMP= ∗  (1) 

where the hit time, miss rate, and cache miss penalty are 
denoted as HT, MR, and CMP respectively. CMP is defined 
as the additional processor halt caused by the next-level of 
cache access or memory access. The BW system is 
implemented on the Chrome web browser and evaluates the 
effectiveness of the BW system approach using malicious 
probing websites. The BW system efficiency is measured in 
terms of the cache MR of the attacker. 

Figure 7 shows the Avg_CMR of different data sizes at 
Ti. The same data is accessed at Ti+1 and Avg_CMR is 
calculated. If none of the timing attacks have occurred in the 
interval of Ti and Ti+1, then the Ti(Avg_CMR) > Ti+1 
(Avg_CMR). 

As per Algorithm 2, the average of flushed and 
unflushed variable access time is measured. Algorithm 2 
illustrates that the CMR is high in the flushed cache 
memory. Figure 8 shows the access latency between the 
flushed and unflushed variables. In comparison, the flushed 
variable access latency is higher than the unflushed variable. 

Once the attacker is identified with the help of the BW 
system, the LLC cache memory is flushed out and the 
memory footage of the victim is removed. So, both the 
attacker and victim CMR will be higher. Figure 9 
demonstrates the protected and unprotected mode 
Computation overhead of the JS engine. The result of the 
proposed BW system with the different domains is shown in 
Table 3. The BW extension is enabled while visiting Alexa 
Top websites and measuring protection levels. Figure 10 
shows the CMR and cache hit rate in the chrome web 
browser. Even though the victim cache performance was 
low due to the exploitation of the attacker, the secret data of 
the victim is secured. 
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Figure 5 BW developer system (see online version for colours) 

 

Figure 6 BW developer system (see online version for colours) 

 

Figure 7 Average CMR in timing attack (Ti, Ti+1) (see online version for colours) 

  
Figure 8 Access latency between flushed and unflushed variables in BW (see online version for colours) 
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Figure 9 Computation overhead of the java script engine 

  

Figure 10 BW system – cache performance (see online version for colours) 

  

Table 3 Result of proposed BW system with different domain 

Domain 
Avg_CMR 

TIMER_COUNT Permission for wrapper 
function 

Permission for original 
function % 

facebook.com 47 57  √ 
google.co.in 87 84 √  
google.com 94 97 √  
reddit.com 69 35  √ 
taobao.com 78 59 √  
wikipedia.org 45 67  √ 
yahoo.com 84 76 √  
baidu.com 89 81 √  
rediff.com 23 32  √ 
amazon.com 94 96 √  
twiter.com 87 90 √  
live.com 85 84 √  
instagram.com 76 87 √  
sina.com.cn 28 24  √ 
weibo.com 67 79 √  
inkedin.com 74 83 √  
netflix.com 91 94 √  
ebay.com 89 84 √  

 
6 Conclusions 
The proposed system monitors and avoids the time-based 
cache side-channel attack. The system avoids all  
timestamp-related attacks. Most of the existing defences 

against time-based attacker systems are providing a solution 
using a zero-timer function. Normal users also get affected 
by the solution of the existing system. The proposed work 
reduces the cache performance of the victim while the 
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attacker frequently tries to access his/her memory pattern. 
Instant of concentrating on the cache performance, the BW 
system focuses on the security of the secret key of the 
victim user. Once the attacker starts to steal the data of the 
victim, then the cache LLC will be flushed out to protect the 
secret key of the victim. The CMR will be high for the 
victim, as the memory footage is saved from the attacker. 
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