

International Journal of Security and Networks

ISSN online: 1747-8413 - ISSN print: 1747-8405
https://www.inderscience.com/ijsn

Enabling secure modern web browsers against cache-based
timing attacks

Sangeetha Ganesan

DOI: 10.1504/IJSN.2023.10058114

Article History:
Received: 11 September 2022
Last revised: 14 June 2023
Accepted: 14 June 2023
Published online: 12 March 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijsn
https://dx.doi.org/10.1504/IJSN.2023.10058114
http://www.tcpdf.org

Int. J. Security and Networks, Vol. 19, No. 1, 2024 43

Copyright © 2024 Inderscience Enterprises Ltd.

Enabling secure modern web browsers against
cache-based timing attacks

Sangeetha Ganesan
Department of Artificial Intelligence and Data Science,
R.M.K College of Engineering and Technology,
Tiruvallur District, Tamil Nadu, India
Email: gsangeethakarthik@gmail.com

Abstract: Web applications have grown to be the foundation of any kind of system, ranging
from cloud services to the internet of things (IoT) systems. As a huge amount of sensitive data is
processed in web applications, user privacy shows as the most important concern in web security.
In the virtualisation system, cache side channel (CSC) attack techniques have become popular to
retrieve the secret information of other users. This paper presents a run-time detection and
prevention mechanism, called browser watcher (BW), for time-driven CSC attacks. The
computation overhead of the proposed BW java script engine is monitored and tabulated for the
different domains. The average cache miss rate is measured from 23% to 89%. Once the BW
system identifies the attacker, then it prevents stealing the secret information of the victim. This
makes it very hard for the attacker to find the memory access pattern of the victim.

Keywords: cache side channel; CSC attack; timing attack; BW system; cache attack prevention;
internet of things; IoT.

Reference to this paper should be made as follows: Ganesan, S. (2024) ‘Enabling secure modern
web browsers against cache-based timing attacks’, Int. J. Security and Networks, Vol. 19, No. 1,
pp.43–54.

Biographical notes: Sangeetha Ganesan received her BE degree in Computer Science and
Engineering from Periyar University Salem, ME degree in Computer Science and Engineering
from Anna University, Chennai, and PhD in Faculty of Information and Communication
Engineering, Anna University, Chennai. She is currently working as an Associate Professor in
R.M.K. College of Engineering and Technology, Puduvoyal. Her research interests are
distributed computing, cloud computing, security, data science and machine learning.

1 Introduction
Side channel analysis is the famous intelligent part of the
cryptanalytic attack (Kocher, 1996; Osvik et al., 2006;
Yarom and Falkner, 2014). The secret information is
emitted to the attacker from secure devices by analysing its
physical signals (temperature, power, radiation, heat, laser,
etc.) as it achieves any secure operation (Mangard et al.,
2007). A particular type of side channel (SC) attack which
is related to personal computers is the cache side channel
(CSC) attack. The CSC attack utilises the use of cache
memory as a shared memory set between different
processors and it releases secret information (Hu, 1992a;
Osvik et al., 2006). The CSC attack is a part of SC attacks
that utilise the difference in access times of a cached value
and an un-cached value (i.e., RAM value).

To secure the data of the cloud computing customer,
CSC attack detection and prevention is essential. Most of
the CSC attacks use one of the critical operations such as
accessing timestamps on the shared cache of the physical
CPU. Two of the famous CSC attacks are Prime + Probe
and Flush + Reload. Both techniques calculate the access
time slots to read a particular location from the memory.

The read operation will be done either by cache hit or cache
miss events.

Over the past 25 years, JavaScript (JS) has grown to be
the biggest language on the web. Out of the 10 million
majority popular websites, 94.7% use the JS language
(W3Techs, 2017). There are security and privacy issues as a
result of allowing every website to access APIs like the
battery status API and the Geolocation API (Popescu, 2016;
W3C, 2016a). Websites can utilise the sensors to get the
finger print of the user by identifying more sensors. It also
updates secure device values like battery level or
geo-location. Moreover, these data can increase the CSC
attacks on user input (Mehrnezhad et al., 2016; Cai and
Chen, 2011).

Micro-architectural attacks include both SC attacks and
covert channel attacks. These attacks are entirely
implemented in software. Microarchitectural attacks are also
feasible in JS. The timing side-channel attacks have been
established and observed to collect the browser history of a
web user (Felten and Schneider, 2000; Jang et al., 2010;
Weinberg et al., 2011), geolocation (Jia et al., 2015) of the
user, whether a user is logged in to any other websites
(Bortz and Boneh, 2007), and CSRF tokens (Heiderich
et al., 2012).

44 S. Ganesan

The suggested detection mechanisms rely on hardware
performance counters for detection and presumptively find
more cache hits and cache misses from all cache attacks
than from benign applications. Since the first use of clflush
is obviously a system function and the second assumes that
no other process has access to the data, we advise restricting
its use to memory pages that the process has write access to
and that the system permits clflush access to. Despite being
very efficient at recovering exponent bits, the attack has
some limitations. Another limitation is the length of the
secret key. A total of 2,200 cycles are required on the Dell
system to probe three memory locations. Time periods that
are shorter than that cannot therefore be used for the attack.
For shorter key lengths, time slots of 2,200 cycles or more
do not provide enough resolution to identify the victim. This
tactic’s primary flaw is that the attacker can create high
resolution clocks using alternative methods. Utilising
network data and running a ‘clock’ process in a different
execution core are two examples.

Usually, web browsers cannot get the browsing
information on one website from being directly accessed by
another website. Nevertheless, any web applications
executed in the same browser share the same runtime
environment with the attackers. Such shared information
leads to SCs for malicious websites to find out information
of other origins. The proposed browser watcher (BW)
system identifies the attacker and secures the data of the
victim from the attacker. The BW system analyses the
modern web browser behaviour of the user and it classifies
the user as an attacker or a normal user. Once it identifies
the attacker, the attacker will be prohibited to fetch the
memory pattern of the victim.

This paper is structured as follows: Section 1 explains
the introduction of the attacks. Section 2 shows the related
works of the timing attack. Section 3 shows the working
principle of Attack methodologies. Section 4 explains the
proposed BW system model. Section 5 shows the
experimental results and section 6 gives the conclusion of
the work.

2 Related works of the timing attack
Modern processors use caches to retrieve data from the
memory. The cache works in a set-associative (2-way,
4-way, 8-way, 16-way) manner. These caches have an ‘S’
number of cache sets, each with an ‘N’ number of cache
lines that hold ‘B’ bytes in each cache line. When a program
tries to fetch data from the memory, the program initially
searches it in the cache. If the data is found the cache it is
defined as a cache hit. If the required data is not there in the
cache, then cache miss occurs. In the cache miss, with the
help of a hashing function, the required ‘B’ bytes are pulled
from the main memory and placed into a cache line (‘N’) of
the suitable cache set. If all cache lines (‘N’) are filled, then
the least used cache lines are ejected from the cache set and
leave a free empty room to place the retrieved ‘B’ bytes.
The access latency is less in cache memory when compared
with the main memory.

Figure 1 Cache architecture

The cache system has three levels: Level1, Level2, and
Level3 (lease level cache – LLC) caches (Figure 1). The
higher level (L1) cache is bigger and closer to the RAM.
The access time of L1 is less. A program initially attempts
to fetch data from the L1 cache and upon failure then tries
next-level caches one by one. For the variable access, the
multilayer cache system includes noise because the cache
hit may occur in any of the three levels. Based on the cache
hit/miss rate, the CSC attacks are classified into four
categories as shown in Table 1. This proposed solution
applies to time-based SC attacks. This suggested fix is only
applicable to time-based SC attacks in categories 1 and 3,
not all time-based SC attacks.

The BW system focuses on web browser time-based
probe attacks (Felten and Schneider, 2000; Jia et al., 2015;
Kotcher et al., 2013; Agrawal et al., 2003). It retrieves
private information such as cryptographic keys or the status
of other virtual machines (Agrawal et al., 2002, 2003).
Timing attacks are popular types of SC attacks. In the
timing attack, the time required to perform a secret
operation is observed and tried to fetch the private
information on the attacked system. Kocher (1996) showed
that accidentally the timing characteristics expose enough
information to fetch the complete secret key from a
vulnerable cryptosystem (Sangeetha and Ganesan, 2020).
Oren et al. (2015) demonstrated that the attacker could use
JS TypedArrays to calculate the instantaneous load on the
LLC with the help of high-resolution reference clock-like
performance.now(). Sangeetha introduced a new secure
allocation technique to prevent cache side-channel attacks
(Sangeetha and Ganesan, 2020).

Bortz and Boneh (2007) offered two types of web-based
timing attacks targeting dynamic web pages. In the first
web-based direct timing attack, an attacker can find the
response time from a website to attain information about the
website’s state. The second web-based timing attack is a
cross-site timing attack that permits an attacker to get details
on the position of a user at a cross-origin website.

To minimise the timing attack, the Tor Browser
developers decreased the resolution of the performance.now
timer to 100 ms. In response, the W3C (2016b), browser
vendors, and some major web browsers (Chrome, Firefox)
have applied similar techniques to reduce the timer
resolution to 5 μs to overcome Oren et al.’s (2015) cache
timing attack. But it is not possible to deliver the exact
timing to the user from this low-resolution timer. Hu
(1992b) proposed ‘fuzzy time’ ideas to build trusted

 Enabling secure modern web browsers against cache-based timing attacks 45

browsers. The fuzzy time system degrades all clocks either
internally or externally and also it shrinks the bandwidth of
all timing channels. Kotcher et al. (2013) identified two-
timing probing attacks using CSS default filters. In the first
timing probe attack, by exploiting the document object
model (DOM) rendering time difference, we can check
whether a particular user has an account on the website. In
the second timing probe attack, with the help of stealing
pixels, we can find the browsing history of the user or can
read the next token.

Rokicki et al. (2021) have studied the evolution in the
previous years and the current state of JS-based timers and
timing attacks for Chrome and Firefox, evaluating the
resolution and measurement overhead for the two most
efficient timers: performance.now() and Shared
ArrayBuffer. Timer-based countermeasures like clamping
the resolution and adding jitter do not prevent attacks, but
increase the time needed to exploit these attacks.

In order to protect JS from web concurrency attacks,
Chen and Cao (2020) proposed JSKERNEL, the first
general outline that does so. In order to strengthen security,
the JS kernel, which was inspired by operating system
concepts, mandates the execution order of JS threads and
events. They put together a JSKERNEL prototype that
could be installed as add-on extensions for the three most
popular web browsers, Microsoft Edge, Mozilla Firefox,
and Google Chrome.2.1 JS and timing measurements.

JS is an object-based scripting language used by every
modern browser. The JS language is sandboxed and
conceals the concept of addresses and pointers. The native
code can provide a cycle-accurate timestamp from the
timestamp counter; that is not possible in the JS. In native
code, the user can obtain the timestamp counter through the
unprivileged assembler rdtsc instruction. Nevertheless, JS
cannot execute this arbitrary instruction. Instead, JS uses the
performance.now timestamp function to provide
high-resolution time in sub-millisecond. Based on the
high-resolution time application programming interface
(W3C 2016a), different attacks have been established.
Van Goethe et al. (2015) demonstrated that from the cross-
origin resources, the attacker can fetch the private data of
the user by measuring their access time.

Figure 2 shows how injecting java script advertisement
code permits an attacker to determine the victim’s memory
pattern. The victim’s multi-tabbed web browser was

compromised when the attacker’s code was introduced from
an untrusted website.

2.1 Micro-architectural attacks
Modern processors are optimised for computational
efficiency and power. Conversely, optimisations commence
side effects that can be oppressed in so-called
micro-architectural attacks. Micro-architectural attacks
include fault attacks and SCs on micro-architectural
components or exploits of micro-architectural elements,
e.g., caches, pipelines, DRAM and buses. Attacks on caches
have been examined widely in the past 20 years, using
cryptographic performances (Kocher, 1996; Bernstein,
2004). The time varies between a cache miss, and a cache
hit can be suppressed to discover secret information from
co-located virtual machines and processes. Modern attacks
exploit either Flush+ Reload (Yarom and Falkner, 2014), if
read-only shared memory is available or Prime+ Probe
(Osvik et al., 2006) otherwise. In these attacks, the attacker
operates the status of the cache and shortly checks whether
the status has altered. Moreover, attacks on cryptographic
executions (Osvik et al., 2006; Patil et al., 2011), these
attacks can be utilised to make covert-channels (Maurice
et al., 2017) or ASLR (Gras et al., 2017).

2.2 Micro-architectural and side-channel attacks in
JS

Micro-architectural attacks were only recently suppressed
by JS. As JS code is essentially single-threaded and
sandboxed, attackers look like a definite challenge in
contrast to attacks in native code. Recognised some
requisites that are the origin of micro-architectural attacks,
which is each attack, relies on at least one of these
primitives. Furthermore, sensors initiated on many mobile
devices, in addition to modern browsers, commence SCs
that can also be suppressed by JS. Table 1 provides a
summary of side-channel attacks and all 11 known
micro-architectural in JS and their requirements. Oren et al.
(2015) proposed 11 microarchitectural side-channel attacks
in JS. All these attacks are categorised into five groups:
shared data, memory addresses, multithreading, sensor API,
and accurate timing (Table 2).

Table 1 Categories of cache side-channel attack

 Time-based attack Access-based attack
Cache hit
based
attack

Category 1: Category 2:
If the victim gets more cache hits while executing their entire
critical/security operations, due to the reusing of its cache lines.

If the attacker gets less memory access time while
fetching the victim-fetched cache lines.

e.g., cache collision e.g., flush-and-reload
Attack Attack

Cache
miss
based
attack

Category 3: Category 4:
If the victim takes a longer execution time of their critical
operations, due to access to attacker-evicted cache lines.

If the attacker takes longer memory access time, due to
the victim’s eviction of the attacker’s cache lines.

e.g., evict-and-time attack e.g., prime-and-probe
 Attack

46 S. Ganesan

Figure 2 End-to-end web browser attack scenarios (see online version for colours)

Shared CPU

Normal browsing
mode

Cache
attack (JS)

Private browsing
mode

Sensitive
site

Victim browser Secure browser

Table 2 Requirements of state-of-the-art side-channel attacks in JS

 Memory
addresses

Accurate
timing Multithreading Shared

data
Sensor

API

Rowhammer.js (Gruss et al., 2016) 3 3 1 1 1
Practical memory deduplication attacks in Sandboxed Javascript
(Gruss et al., 2015)

2 3 1 1 1

Fantastic timers and where to find them (Schwarz et al., 2017) 3 3 2 2 1
ASLR on the line (Gras et al., 2017) 3 3 2 2 1
The spy in the sandbox (Oren et al., 2015) 2 3 1 1 1
Loophole (Vila and Kopf, 2017) 1 2 3 1 1
Pixel perfect timing attacks with HTML5 (Stone, 2013) 1 3 2 2 1
The clock is still ticking (Van Goethem et al., 2015) 1 3 2 1 1
Practical keystroke timing attacks in sandboxed JavaScript
(Lipp et al., 2017)

1 2 2 2 1

TouchSignatures (Mehrnezhad et al., 2016) 1 1 1 1 3
Stealing sensitive browser data with the W3C Ambient Light
Sensor API (Olejnik, 2017)

1 1 1 1 3

Note: 3 – high level requirements, 2 – medium level requirements 1 – low level requirements.

3 Attack methodologies
3.1 Prime + Probe attack
This technique involves two stages. In the prime stage: the
attacker (‘A’) removes all the data of the victim (‘V’)
iteratively from the targeted cache set by assigning an array
of memory blocks to that set. The target cache set is fixed
based on the action of the victim users such as keyboard
typing and mouse movement. If the ‘A’ reads the same
memory blocks again, the data will be accessed fast,
because it is retrieved from the cache, not from RAM. Then
the ‘A’ remains ideal for an interval before performing the
probe step. In the probe stage: the ‘A’ again reads the same
memory array which was read in the prime stage and also
calculates the access time period. If the time period is
greater than the certain threshold value, then the ‘A’ guesses
that the cache set has been fetched by the victim during the
interval time period. The ‘A’ repeats the same Prime and
Probe actions until it collects the cache access pattern of the

‘V’. The ‘V’ cache access pattern can be used by the ‘A’ to
extract the information about the ‘V’ operation. Refer to
Algorithm 1 for Prime + Probe Attack. In the algorithm, the
‘A’ passes the created array address and a threshold value
that finds the cache set details of the ‘V’.

Algorithm 1 Prime + Probe attack

1 Initialise address and threshold values
2 Initialise Boolean accessed [] to false
3 Read the address value
4 While(true) do
 a Wait () //Till the victim accesses the cache lines
 b Start = time () //Measure the time period
 c Read the address value
 d End = time () //Measure the time period
 e AccessTime = End – Start //Measure the access time
 f If (AccessTime > threshold) then

 Enabling secure modern web browsers against cache-based timing attacks 47

 accessed.push(true) //Cache Miss
 g else
 accessed.push(false) //Cache Hit
 h end if
 i end while
5 Returned accessed []

Only with the help of the timer function, the ‘A’ can fetch
the memory access pattern of the ‘V’. The proposed BW
system detects the ‘A’ based on the usage of the timer
function and secures the memory access pattern of the ‘V’.

3.2 Flush + Reload attack
The Flush + Reload (F+R) attack is an access-driven cache
attack.

The first thing the adventure does is flush a specific
memory line that the victim frequently uses. Following that,
the adventure waits until the victim has completed its
cryptography operation. The same memory lines are loaded
once more by the adventure. A longer reload time shows
that the victim used the memory line during the second step
of the adventure. In Algorithm 2, the Flush+ Reload attack
steps are listed.

Algorithm 2 Flush + Reload attack

Input: Memory line address addr, Plaintext PT, key K
Output: Time period
1 Flush(addr); // Which memory lines are mostly accessed by

the victim.
2 Wait ();
3 T1 ← Time ();
4 Encryption (PT, K);
5 Reload(addr);
6 T2 ← Time ();
7 Return (T2 – T1);

• Flushing stage: in this first stage, the adventurer
applies the clflush instruction to flush block ‘b’ from
the cache, therefore making sure that it has to get back
from the memory the next time it is required to be
accessed. The clflush instruction does not flush only the
memory block, but it is flushed from all the levels of
the caches of all the cores. The attack would perform
only if the attacker and victim processes were
co-residing on the same core. This would have needed a
stronger hypothesis than just being in the same physical
machine.

• Target access stage: the adventure waits until the target
executes a part of the code, which might utilise the
block ‘b’ that has been flushed in the initial stage.

• Reloading stage: The adventure reloads once more the
previously flushed block ‘b’ and calculates the time it
gets to reload. Using this rdtsc command counts the
hardware cycles tried in a process. Before reading the
block ‘b’ and the cycle counter value, make sure that
the mfence and lfence barrier instructions have
completed the load and store operations respectively.
Based on the reloading time, the adventurer decides
whether the victim has used the memory block or not.

4 Proposed BW system model
The BW system detects the runtime CSC attack and
prevents the attacker from fetching the memory pattern of
the victim. At time Ti, the secret variable is accessed from
memory and the memory access time is measured through
the performance.now() function. At time Ti+1 the same
variable is accessed again and the memory access time is
measured. If any time-based cache attack has not occurred
in the interval of Ti and Ti+1, then at time Ti+1 memory
access time will be lesser than the memory access time at Ti.
The TIMER_COUNT variable value will be increased
based on the usage of the performance.now() function.

Algorithm 3 Access time measurement

1 Set AccessTime_FlushedLLC = AccessTime_UnFlushedLLC = 0
2 Set AccessTime_UnFlushedLLC_Test = AccessTime_FlushedLLC_Test = 0
3 Repeat K times // k → Number of Rounds
 a Start = window.performance.now();
 b Access the ith page
 c end = window.performance.now();
 d Diff_flushed = start-end // Retrieval time of data from memory
 e Start = window.performance.now();
 f Access the same ith page
 g end = window.performance.now();
 h Diff_Unflushed = start-end // Retrieval of data from LLC
 i Start = window.performance.now();
 j Access the same ith page
 k end = window.performance.now();

48 S. Ganesan

 l Diff_Unflushed_Test = start-end // Testing of retrieving data from Unflushed LLC
 m Flush out LLC cache to Prime eviction set
 n Start = window.performance.now();
 o Access the same ith page
 p end = window.performance.now();
 q Diff_flushed_Test = start-end // Testing of retrieving data from flushed LLC
 r AccessTime_FlushedLLC = AccessTime_FlushedLLC + Diff_flushed
 s AccessTime_UnFlushedLLC = AccessTime_UnFlushedLLC + Diff_Unflushed
 t AccessTime_UnFlushedLLC_Test = AccessTime_UnFlushedLLC_Test + Diff_Unflushed_test
 u AccessTime_FlushedLLC_Test = AccessTime_FlushedLLC_Test + Diff_flushed_Test
4 Find Fulshed_Avg = AccessTime_FlushedLLC/k
5 Find UnFulshed_Avg = AccessTime_UnFlushedLLC/k
6 Find UnFulshed_Avg_Test = AccessTime_FlushedLLC_Test/k
7 Find Fulshed_Avg _Test = AccessTime_FlushedLLC_Test/k

The BW detection system will detect the attack with the
help of the TIMER_COUNT variable value. If the
TIMER_COUNT variable value is greater than
MAX_COUNT, then the average cache miss rate (CMR) is
again calculated by using our existing model (Sangeetha
and Ganesan, 2020). If the average CMR value is greater
than the lower bound (LB) threshold value and lesser than
the upper bound (UB) threshold value, then the modified
performance.now() function will be called (Listing: 1) to
reduce the efficiency of the attacker. If the average CMR is
greater than the UB then the user accepts that the cache
flush function will be called by the BW system to prevent
the attacker. Then the attacker could not find the next
memory pattern of the victim in their next iteration. Figure 3
shows how the normal, blocked, modified and with user
permission wrapper java script function works in the BW
system.

4.1 Cache access time measurement
The attacker can find the memory access blueprint of the
victim only if the attacker has accessed the cache repeatedly
after the operation of the victim. If any other user has
accessed the cache memory in the meanwhile of the wait
function of the attacker (Algorithm 1: Step4a), then the
attacker will not be able to find the memory access pattern
of the victim. So, calculate the access time of the flush and
unflushed cache memory with the help of Algorithm 3. In
Figure 4, the proposed BW protected system model, the
permission system performs as an abstraction layer between
the interfaces offered to a JS developer and the JS engine.

Created a buffer with a total size of 131 k cache lines
across 8,192 cache sets. There are more than 12 cache lines
in a cache set. Therefore, we could emit a variable from the
cache by filling it with 12 cache lines. As per the second
step of the Prime + Probe attack, we could fill-up the LLC
cache set by JS code. Created an 8 MB buffer array in JS
and iterated over the array to replace the data in the cache
set with the data in the 8 MB buffer array.

Figure 3 Workflow model for BW system, (a) normal function,
(b) blocked function, (c) modified function,
(d) function with user permission

Script

Original
function

 Return Call

(a)

Script

Function
override

 Return Call

Original
function

(b)

 Original
function

Script

Function
wrapper

Return

Call

 Return Call

(c)

 Enabling secure modern web browsers against cache-based timing attacks 49

Figure 3 Workflow model for BW system, (a) normal function,
(b) blocked function, (c) modified function,
(d) function with user permission (continued)

Call
Return

Return

 Permission

Original
function

Script

Function
wrapper

Return
modified

Call

Call

(d)

Algorithm 3 is used to measure the access time of a variable
from the flushed cache set and unflushed cache set.
Repeated tests have been taken to confirm the access time
of the flushed and unflushed cache LLC.

Figure 4 Proposed BW protected system model (see online
version for colours)

JavaScript engine

Objects, functions, · · · Conditions,
Loops,
Arithmetic,… Permission system

(Malicious) JavaScript Code

4.2 Detection of cache based timing-attack
A BW system is developed to detect timing-based probe
attacks in web applications. The objective of the proposed
system is to examine every web application run time
behaviour and to identify timing-based attacks. Most CSC
attacks happen with the help of the timestamp function
which gives information to the attacker about the memory
access pattern of the victim. In the prime + probe attack, the
memory footage of the victim will be identified by invoking
the timer function in the probe stage. Used the virtual
machine layering (VML) methodology to provide security
and enlarge it for objects using proxy objects. The VML
was established for low-overhead dynamic monitoring of
functions (Lavoie et al., 2014).

Listing 1 VML method to call the original function via
reference

1 var actual_ref = window.performance.now;
2 window.performance.now = function () {return 0;};
3 alert(window.performance.now()); // call new function via

function name
4 alert (actual_ref.call(window.performance.now)); // call the

original function via reference

Listing 2 Modified performance.now function

(function (){
var timer = window.performance.now ();
window.performance.now= function () {
return Math.floor ((timer.call(window.
Performance))/1000.0) * 1000.0”}
};
})();

• Listing 1: show that the VML calls the window.
performance.now() function through the reference
variable. With the help of VML technology without
modification of a web browser, we can call the function
instead of the original function.

• Listing 2: show that the modified performance.now
function. This function will be called if the
TIMER_COUNT value is crossed by the
MAX_COUNT value.

5 Experimental results
The BW system is implemented in Windows and
Ubuntu14.04. The outline of the proposed BW system is
explained in Pseudcode 1. Initially, The Prime + Probe and
Flush + Reload attacks are implemented in JS as per
Algorithms 1 and 2. In the prime stage, a buffered array is
created as the size of an LLC and filled by the data of the
attacker. In the probe stage, the attacker waits until the
victim completes his operation. The attacker finds the
current time by the function of performance.now(). While
the attacker accesses any random page from the buffer, the
access time is measured. The access latency shows whether
the page was accessed by the victim.

Pseudocode 1 Outline of the proposed BW system

1 Monitoring and extracting the runtime behaviour of the web
user.

2 TIMER_COUNT variable is incremented based on Listing:
III

3 If(TIMER_COUNT < MAX_COUNT)
 Identified as normal user.
 else
 Average CMR is calculated
4 If (average CMR = = LB_Threshold)
 Identified the user as Attacker
 Implemented Listing II to reduce the efficiency of the

attacker.
 else if (average CMR = = UB_Threshold)
 The cache is flushed as per user conformation.

50 S. Ganesan

5.1 Stage 1: extracting runtime behaviours
The base of the proposed system is to monitor the behaviour
of the web user by analysing every website at runtime. The
BW system intercepts JS API calls to characterise the
behaviour of a web application because most of the web
application dynamic behaviours are written in JS. The BW
system records the API together with its parameters. To
recognise the user behaviour and distinguish APIs, the BW
system extracts the runtime JS stack of the API. Need to
extract the runtime behaviours without modifying the web
browser, so build the BW system as a browser extension
shown in Figure 5 and Figure 6. Since it focuses only on
timing-related behaviours, the interception mechanism is
flexible to allow the users to specify General JS APIs to
monitor. Lavoie et al. (2014) proposed a VML technique to
monitor JS applications at runtime.

Listing 3 Detection and prevention model

1 (function () {
2 var original_ref = window.performance.now;
3 window.performance.now = function (){
4 COUNT=COUNT + 1;
5 if (LevelI_TH < COUNT)
6 Low-resolution Timer ()
7 else if (LevelII_TH < COUNT)
8 return Clear_LLC;
9 else {return original_ref.call(window.performance.now);
10 };}
11 Clear_LLC = function (){ // we use this buffer to evict

everything from LLC
12 var evictionBuffer = new ArrayBuffer (8192 * 1024); //

8MB buffer
13 var evictionView = new DataView (evictionBuffer);
14 var current,offset = 64;
15 for (var i = 0; i < ((8192 * 1023) / offset); i++) {
 current = evictionView.getUint32(i * offset);
16 })();
17 };}

5.2 Stage 2: detection of the attacker
The proposed BW system detects the attacker and avoids
leaking any memory footage information about the victim.
The BW system continuously monitors the behaviour of the
user by watching the TIMER_COUNT variable. The
TIMER_COUNT variable will be incremented as per the
number of times the performance.now() function is invoked
by the web user (Listing: 3). If the TIMER_COUNT value
is lesser than the MAX_COUNT variable, then the user is
treated as a normal user. Otherwise, the average CMR is
calculated again. If it reaches the LB_Threshold variable
value, then the user is treated as an attacker. The modified
performance.now() function will be invoked and it returns a

low-resolution timestamp (Listing 2) to reduce the
attacker’s efficiency.

5.3 Stage 3: getting user confirmation
If the average CMR value is crossed over the UB_Threshold
value, then the user confirmation is invoked to flush the
cache. The attacker has to get opportunities to access the
LLC to find the memory access pattern of the victim after
the immediate use of the cache memory of the victim.
Nevertheless, the BW system flushed out the cache memory
to remove the memory footage of the victim before the
attacker accessed the LLC. Evict the corresponding data
from all cache levels by using the clflush instruction. But
the clflush instruction implementation is not possible in JS.
The BW system reads the same 8 MB buffer array when
needed to execute clflush instruction. If the attacker gets the
cache miss in the probe stage, then the attacker assumes that
it was accessed by the victim.

Algorithm 3 states that the access time of the average
flushed test rate is larger than the average unflushed test
rate. Due to the cache clflush instruction, the CMR will be
high for the victim. The average memory access time
(AMAT) is calculated as follows,

+AMAT HT MR CMP= ∗ (1)

where the hit time, miss rate, and cache miss penalty are
denoted as HT, MR, and CMP respectively. CMP is defined
as the additional processor halt caused by the next-level of
cache access or memory access. The BW system is
implemented on the Chrome web browser and evaluates the
effectiveness of the BW system approach using malicious
probing websites. The BW system efficiency is measured in
terms of the cache MR of the attacker.

Figure 7 shows the Avg_CMR of different data sizes at
Ti. The same data is accessed at Ti+1 and Avg_CMR is
calculated. If none of the timing attacks have occurred in the
interval of Ti and Ti+1, then the Ti(Avg_CMR) > Ti+1
(Avg_CMR).

As per Algorithm 2, the average of flushed and
unflushed variable access time is measured. Algorithm 2
illustrates that the CMR is high in the flushed cache
memory. Figure 8 shows the access latency between the
flushed and unflushed variables. In comparison, the flushed
variable access latency is higher than the unflushed variable.

Once the attacker is identified with the help of the BW
system, the LLC cache memory is flushed out and the
memory footage of the victim is removed. So, both the
attacker and victim CMR will be higher. Figure 9
demonstrates the protected and unprotected mode
Computation overhead of the JS engine. The result of the
proposed BW system with the different domains is shown in
Table 3. The BW extension is enabled while visiting Alexa
Top websites and measuring protection levels. Figure 10
shows the CMR and cache hit rate in the chrome web
browser. Even though the victim cache performance was
low due to the exploitation of the attacker, the secret data of
the victim is secured.

 Enabling secure modern web browsers against cache-based timing attacks 51

Figure 5 BW developer system (see online version for colours)

Figure 6 BW developer system (see online version for colours)

Figure 7 Average CMR in timing attack (Ti, Ti+1) (see online version for colours)

Figure 8 Access latency between flushed and unflushed variables in BW (see online version for colours)

52 S. Ganesan

Figure 9 Computation overhead of the java script engine

Figure 10 BW system – cache performance (see online version for colours)

Table 3 Result of proposed BW system with different domain

Domain
Avg_CMR

TIMER_COUNT Permission for wrapper
function

Permission for original
function %

facebook.com 47 57 √
google.co.in 87 84 √
google.com 94 97 √
reddit.com 69 35 √
taobao.com 78 59 √
wikipedia.org 45 67 √
yahoo.com 84 76 √
baidu.com 89 81 √
rediff.com 23 32 √
amazon.com 94 96 √
twiter.com 87 90 √
live.com 85 84 √
instagram.com 76 87 √
sina.com.cn 28 24 √
weibo.com 67 79 √
inkedin.com 74 83 √
netflix.com 91 94 √
ebay.com 89 84 √

6 Conclusions
The proposed system monitors and avoids the time-based
cache side-channel attack. The system avoids all
timestamp-related attacks. Most of the existing defences

against time-based attacker systems are providing a solution
using a zero-timer function. Normal users also get affected
by the solution of the existing system. The proposed work
reduces the cache performance of the victim while the

 Enabling secure modern web browsers against cache-based timing attacks 53

attacker frequently tries to access his/her memory pattern.
Instant of concentrating on the cache performance, the BW
system focuses on the security of the secret key of the
victim user. Once the attacker starts to steal the data of the
victim, then the cache LLC will be flushed out to protect the
secret key of the victim. The CMR will be high for the
victim, as the memory footage is saved from the attacker.

References
Agrawal, D., Archambeault, B., Rao, J.R. and Rohatgi, P. (2003)

‘The EM side-channel(s)’, in Proceedings of the 4th
International Workshop on Cryptographic Hardware and
Embedded Systems, Shores, CA, USA, 13–15 August 2002,
Springer: Berlin/Heidelberg, Germany.

Bernstein, D.J. (2004) Cache-Timing Attacks on AES [online]
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

Bortz, A. and Boneh, D. (2007) ‘Exposing private information by
timing web applications’, in WWW’07.

Brier, E. and Joye, M. (2002) ‘Weierstraß elliptic curves and
side-channel attacks’, Public 42Key Cryptography, Springer:
Berlin/Heidelberg, Germany.

Cai, L. and Chen, H. (2011) ‘TouchLogger: inferring keystrokes
on touch screen from smartphone motion’, in USENIX
Workshop on Hot Topics in Security – HotSec.

Chen, Z. and Cao, Y. (2020) ‘Jskernel: fortifying javascript against
web concurrency attacks via a kernel-like structure’, 2020
50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), IEEE.

Felten, E.W. and Schneider, M.A. (2000) ‘Timing attacks on web
privacy’, in CCS.

Gras, B., Razavi, K., Bosman, E., Bos, H. and Giuffrida, C. (2017)
‘ASLR on the line: practical cache attacks on the MMU’, in
NDSS’17.

Gruss, D., Bidner, D. and Mangard, S. (2015) ‘Practical
memory deduplication attacks in sandboxed javascript’, in
ESORICS’15.

Gruss, D., Maurice, C. and Mangard, S. (2016) ‘Rowhammer.js: a
remote software-induced fault attack in JavaScript’, in
DIMVA’16.

Heiderich, M., Niemietz, M., Schuster, F., Holz, T. and
Schwenk, J. (2012) ‘Scriptless attacks: stealing the pie
without touching the sill’, in Proceedings of the 2012 ACM
Conference on Computer and Communications Security,
ACM, pp.760–771.

Hu, W-M. (1992a) ‘Lattice scheduling and covert channels’, in
1992 IEEE Computer Society Symposium on Research in
Security and Privacy, IEEE Computer Society, Oakland, CA,
USA, 4–6 May, pp.52–61.

Hu, W-M. (1992b) ‘Reducing timing channels with fuzzy time’, in
Proceedings of IEEE Security and Privacy (‘Oakland’),
Jthenal of Computer Security, Vol. 1, Nos. 3–4, pp.233–254.

Jang, D., Jhala, R., Lerner, S. and Shacham, H. (2010) ‘An
empirical study of privacy violating information flows in
javascript web applications’, in CCS’10.

Jia, Y., Dong, X., Liang, Z., Saxena, P. (2015) ‘I know where
you’ve been: geo-inference attacks via the browser cache’,
IEEE Internet Computing, Vol. 19, No. 1, pp.44–53.

Kocher, P.C. (1996) ‘Timing attacks on implementations of
Diffe-Hellman, RSA, DSS, and other systems’, in Crypto’96,
pp.104–113.

Kotcher, R., Pei, Y., Jumde, P. and Jackson, C. (2013)
‘Cross-origin pixel stealing: timing attacks using CSS filters’,
in Proceedings of the 2013 ACM Conference on Computer
and Communications Security, Berlin, Germany,
4–8 November.

Lavoie, E., Dufthe, B. and Feeley, M. (2014) ‘Portable and
efficient run-time monitoring of javascript applications using
virtual machine layering’, in European Conference on
Object-Oriented Programming.

Lipp, M., Gruss, D., Schwarz, M., Bidner, D., Maurice, C. and
Mangard, S. (2017) ‘Practical keystroke timing attacks in
sandboxed JavaScript’, in ESORICS’17.

Mangard, S., Oswald, E. and Popp, T. (2007) Power Analysis
Attacks – Revealing the Secrets of Smart Cards, Vol. 31,
Springer Science &Business Media.

Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D.,
Boano, C.A., Mangard, S. and Romer, K. (2017) ‘Hello from
the other side: SSH over robust cache covert channels in the
cloud’, in NDSS’17.

Mehrnezhad, M., Toreini, E., Shahandashti, S.F. and Hao, F.
(2016) ‘Touchsignatures: identification of user touch actions
and pins based on mobile sensor data via javascript’, Jthenal
of Information Security and Applications, Vol. 26, pp.23–38.

Olejnik, L. (2017) Stealing Sensitive Browser Data with
the W3C Ambient Light Sensor API [online]
https://blog.lukaszolejnik.com/stealing-sensitive-browser-
datawith-the-w3c-ambient-light-sensor-api (accessed March).

Oren, Y., Kemerlis, V.P., Sethumadhavan, S. and Keromytis, A.D.
(2015) ‘The spy in the sandbox: practical cache attacks in
JavaScript and their implications’, in Kruegel, C. and Li, N.
(Eds.): Proceedings of CCS 2015, ACM Press, Oct.

Osvik, D.A., Shamir, A. and Tromer, E. (2006) ‘Cache attacks and
countermeasures: the case of AES’, in Pointcheval, D. (Ed.):
Topics in Cryptology-CT-RSA 2006, The Cryptographers’
Track at the RSA Conference 2006, San Jose, CA, USA,
13–17 February, Proceedings, Vol. 3860 of Lecture Notes in
Computer Science, Springer, pp.1–20.

Patil, K., Dong, X., Li, X., Liang, Z. and Jiang, X. (2011)
‘Towards fine-grained access control in javascript contexts’,
in 31st International Conference on Distributed Computing
Systems (ICDCS).

Popescu, A. (2016) Geolocation API Specification 2nd Edition
[online] https://www.w3.org/TR/geolocation-API (accessed
June 2016).

Rokicki, T., Maurice, C. and Laperdrix, P. (2021) ‘Sok: in search
of lost time: a review of javascript timers in browsers’, 2021
IEEE European Symposium on Security and Privacy
(EuroS&P), IEEE.

Sangeetha, G. and Ganesan, S. (2020) ‘An optimistic technique to
detect cache based side channel attacks in cloud’, in
Peer-to-Peer Networking and Applications, Vol. 14, No. 4,
pp.2473–2486, https://doi.org/10.1007/s12083-020-00996-1.

Sangeetha, G. and Ganesan, S. (2021) ‘A multi-objective secure
optimal VM placement in energy-efficient server of cloud
computing’, Intelligent Automation & Soft
Computing, Vol. 30, No. 2, pp.387–401, DOI: 10.32604/
iasc.2021.019024.

Schwarz, M., Maurice, C., Gruss, D. and Mangard, S. (2017)
‘Fantastic timers and where to find them: high-resolution
microarchitectural attacks in javascript’, in FC’17.

Stone, P. (2013) Pixel Perfect Timing Attacks with HTML5;
Context Information Security, White Paper, London, UK.

54 S. Ganesan

Van Goethem, T., Joosen, W. and Nikiforakis, N. (2015) ‘The
clock is still ticking: timing attacks in the modern web’, in
CCS’15.

Vila, P. and Kopf, B. (2017) ‘Loophole: Timing attacks on shared
event loops in chrome’, in USENIX Security Symposium.

W3C (2016a) Battery Status API [online] https://www.w3.org/
TR/battery-status/.

W3C (2016b) High Resolution Time Level 2 [online]
https://www.w3.org/TR/hr-time/.

W3Techs (2017) Usage of JavaScript for Websites, Aug. [online]
https://w3techs.com/technologies/details/cp-javascript/all/all
(accessed July 2017).

Weinberg, Z., Chen, E.Y., Jayaraman, P.R., Jackson, C. (2011) ‘I
still know what you visited last summer: leaking browsing
history via user interaction and side channel attacks’, in
S&P’11.

Yarom, Y. and Falkner, K. (2014) ‘Flush+Reload: a high
resolution, low noise, L3 cache side-channel attack’, in
USENIX Security Symposium.

