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Abstract: The term ‘database security’ refers to the collection of rules, tools, 
and processes that have been developed to maintain and protect the databases’ 
confidentiality, integrity, and accessibility. The use of machine learning to 
improve database management security is becoming more common. The 
fundamental goal of employing machine learning in security is to make the 
process of malware detection more actionable, scalable, and successful than 
conventional techniques, which need the participation of humans. This may be 
accomplished by making the process more automated. The process entails 
overcoming problems posed by machine learning, which need to be managed in 
an effective, logical, and theoretical manner. Machine learning algorithm is 
applied in the critical paths of the tuner. The optimum configuration for the 
proposed system yields a throughput boost of between 22% and 35% and a 
latency reduction of around 60%. The method is robust to various attacks. 
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1 Introduction 

The concept of cloud computing refers to the provision of computing resources to users 
via a network, specifically the internet. Cloud service providers make use of the network 
for communication purposes, as well as for the exchange of data that is both private and 
confidential. The cloud is vulnerable to a wide variety of attacks because of its distributed 
nature. These attacks include denial of service (DoS), exploits, generic, reconnaissance, 
shellcode, zero-day attack, advanced persistent threat (APT), worms, and many more 
(Sahi et al., 2017). Worms are another type of attack that can target it. When such an 
attack is launched, the amount of resources that are being consumed by the server quickly 
begins to increase. The autoscaling feature allows the cloud manager to begin the process 
of adding additional resources to this server. If the attack is not identified and its effects 
are not mitigated, the process of resource allocation will continue with a significant loss. 
In addition, a single physical server can host the operation of several virtual machines 
(VMs) simultaneously (Roopa and Selvakumarraja, 2018). When a VM is attacked, it can 
have repercussions for other VMs running on a single server. These assaults are being 
carried out for the primary reasons of extortion and protest. Cloud security, coupled with 
the possibility of inflicting serious harm to the cloud, is a big worry for the most current 
attack models. This is because of the cloud’s reliance on distributed computing. As a 
consequence of this, a cyber-security risk management (CSRM) strategy is required in 
order to handle these issues, reduce the chance of risks that are connected with each 
other, and guarantee preparation for cyber resilience. It refers to the procedure of 
identifying potential threats to a network’s cyber security and developing 
countermeasures to combat those threats (Roopa and Selvakumarraja, 2017). Recent 
events have resulted in an increase in the severity of these assaults on the cloud. 

The majority of CSRM plans make use of basic deep neural network models and 
machine learning (ML) models to identify cyberattacks on hosts and network systems in 
order to defend themselves against these assaults (Challa et al., 2018). An example of an 
artificial neural network would be a straightforward deep neural network with just one or 
two hidden layers (HL) (ANN). Nevertheless, a deep network will have a great number of 
HLs in addition to a variety of diverse designs (Verma and Dey, 2015). The vast majority 
of researchers make extensive use of a technique called deep learning (DL), which is 
named for its capacity to simulate the natural processes that occur in the human brain via 
in-depth studies of computational processes (L-Ghamdi, 2021). In addition, the use of 
this technology has been shown to have exceptionally high rates of false-positive results, 
in addition to having problems recognising the most recent assault types (Cui, 2021). 

Conventional ML approaches have shown a number of drawbacks, including lengthy 
training time requirements, poor detection accuracy, and an alarmingly high proportion of 
false positives (Kanimozhi and Prem Jacob, 2019). As a consequence of this, the majority 
of artificial intelligence (AI) systems have shown typical adversary agnostic behaviour, 
which means that they do not acknowledge the potential of a hostile assault. As a result, 
there is a significant possibility of a hostile backdoor poisoning assault being carried out. 
Inaccurate identification of attacks and data breaches were also caused by a lack of 
tagged samples (Annarelli et al., 2020). In light of the aforementioned predicament, the 
research presented here suggests using HT-RLSTM for the purpose of providing 
intelligent cyber security defences and protections. 

The organisation of this paper is as follows: Section 2 provides a survey of the 
associated works regarding the proposed methodology. The methodology that has been 
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proposed is explained in Section 3. Section 4 describes the illustration of the results and 
discussion of the proposed methodology, which is based on performance metrics. The last 
part of the paper is Section 5, which discusses potential future research. 

2 Related works 

Tian et al. (2019) built a web attack detection system (ADS) that made advantage of the 
potential benefits of URL analysis. The technology, which was developed to operate on 
edge devices, was created with the intention of identifying harmful behaviour on the 
internet. In the edge of things (EoT) model, the cloud was able to successfully handle a 
wide range of problems. It was decided to make use of a large number of concurrent deep 
models in order to both improve the system’s overall stability and simplify the process of 
keeping the system up to date. The experiment was carried out on a platform that had two 
parallel deep models, and a large number of datasets were utilised to evaluate the 
performance of the platform in comparison to other platforms. The results of the testing 
demonstrated that the system was effective in identifying malicious web requests, with an 
accuracy of 99.41%, a true positive rate (TPR) of 98.91%, and a detection rate of normal 
requests of 99.55% (DRN). The strategy, on the other hand, proved ineffective when it 
came to defending computers against the most recent cyber security threats. 

Agarwal et al. (2021) created a P-estimation detection system that was capable of 
efficiently detecting assaults. This was carried out using a number of trained DL-LSTM 
models and was centred on the logs from the web server. After deriving an estimate of 
the attack percentage, the data from that model was utilised to implement an appropriate 
detection strategy. This strategy takes into consideration the dynamic nature of websites, 
which means that the degree of popularity enjoyed by specific web pages may alter over 
the course of time as a consequence of the constant updating of detection models. The 
FNR and FPR that could be achieved with this technology were 0.0059% and 0%, 
respectively, and it had the capacity of detecting attacks with an intensity as low as 2%. 
In addition, this article contained strategies for mitigating their effects and assigning 
blame in order to recognise and prevent such assaults. Nevertheless, the method required 
a significant number of training samples. In this way, large computational difficulties 
were also found for the identification of APT attacks. 

The method of auto-encoder-based DL was used in the study that was conducted by 
Abdullayeva et al. (2021). A high classification rate was achieved with this method 
thanks to the identification of intricate relationships between the features. In addition, the 
approach made the task of classifying enormous volumes of data more simpler by cutting 
down on the amount of data stored in the encoder. An unsupervised analysis of the useful 
characteristics that were derived from network traffic data was carried out after the 
deployment of an auto-encoder neural network at the beginning of the process. Following 
that, the SoftMax regression layer was added to the top layer of the newly formed  
auto-encoder network for the categorisation of APT attacks. The statistics indicated that 
the method was correct 98.32% of the time. On the other hand, it was difficult to stop 
opponents from stealing or physically altering the evidence. 

Using a strategy known as previously-selected-server-first (PSSF), AdiMaheswara A 
method that is both dynamic and scalable for the placement of VM was developed. In this 
technique, the number of movements that could be computed was restricted. The acquired 
set of movements served as the basis for the construction of the greedy baseline design. 
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When a new VM placement request was being processed, the highest priority was given 
to previously hosted servers or VMs that were already being hosted by a user who had a 
profile in PSSF that was comparable to the new request. This ensured that the new VM 
could be placed as quickly as possible. The performance of this method was analysed 
using 20 distinct VMs that were hosted on four distinct servers. In terms of both hit rate 
and loss rate, as well as resource loss, the newly developed method demonstrated 
significantly higher levels of efficiency when compared to previously utilised strategies 
for the placement of VM. The accuracy of this method, on the other hand, did not meet 
my expectations. 

Kushwah and Ranga (2020) recently presented the most up-to-date method for 
detecting distributed DoS attacks in a cloud computing environment. A voting extreme 
learning machine was the component that made up this method. Both the NSL-KDD and 
the ISCX intrusion detection datasets were utilised so that the experiments could be 
evaluated. According to the results of the tests, the detection rate of the system for the 
assaults was 92.11% with the ISCX dataset and 99.18% with the NSL-KDD dataset 
respectively. The developed system’s performance, which was centred on  
back-propagation ANN, was compared to the performance of other systems. In order to 
train the ANN, we made use of black hole optimisation, random forest, extreme learning 
machine, and Adaboost. The method, on the other hand, had some shortcomings due to 
an unacceptable level of network overhead, most notably with regard to latency. 

The researchers Yesin et al. (2021a) present a method for assessing the safety of 
relational databases that is based on an improved version of the Clements-Hoffman 
theoretical model. When calculating the level of security, an integral quantitative metric 
is used. When security precautions are in place, this metric is the inverse of the overall 
residual risk that is connected to the potential for threats to be implemented in connection 
to a database item. This study focuses on the main strategies that have been used to 
ensure the integrity of data and permanently stored database modules in response to the 
recommendations of the Clark-Wilson model. The authors provide a method to guarantee 
the reliability of both the programmes and the data contained in databases. This 
mechanism is underpinned by the principles of relational database theory, the row level 
Security technology, the potential of the contemporary blockchain model, and the 
capabilities of the database management system (DBMS) that is implemented on the 
platform that databases with the universal basis of relations are used on. Because of the 
application of this mechanism, it is ensured that the saved data and programmes will not 
be corrupted, altered, or distorted while being kept intact. 

3 Research methodology 

Database management systems, often known as DBMSs, are the most essential part of 
any programme that handles large amounts of data. They are able to deal with enormous 
volumes of data and demanding workloads. The issue is that there are hundreds of 
configuration ‘knobs’ that control things like how often data should be sent to storage and 
how much RAM should be used for caches. This makes them tough to maintain. Tuning 
tasks are often delegated to experts by organisations, but the excessively high costs of 
specialists prevent many from doing so. 
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Figure 1 The ML pipeline (see online version for colours) 

 

The technology that is being presented is able to automatically determine suitable settings 
for the configuration knobs of a DBMS. The purpose of this paper is to make it simpler 
for anybody to implement a DBMS, even individuals who have no prior experience 
managing databases. It is unique among DBMS configuration tools in that it applies the 
expertise obtained from adjusting earlier DBMS deployments to the process of tuning 
new DBMS installations. As a result, the time and resources needed to fine-tune a new 
DBMS deployment are significantly reduced. In order to do this, the system under 
consideration keeps a store of tuning data that was compiled from earlier sessions of 
tuning. The behaviour of the DBMS when configured in various ways is then captured 
using ML models built using this data. The suggested system makes use of these models 
as a basis for directing experimentation with new applications, making recommendations 
for settings that enhance performance toward a particular goal. 

We go over all the components that make up the ML pipeline of the proposed system 
and demonstrate how those components interact with one another to fine-tune the 
configuration of a DBMS. The results of the proposed system’s optimum configuration 
are then compared to those of configurations selected by database administrators (DBAs) 
and other automated tuning tools to see how effectively the system can tune MySQL and 
Postgres. 

The next graphic provides an illustration of how data is handled as it travels through 
the ML pipeline of the proposed system. The repository that has been suggested for this 
system contains all of the observations. The suggested system starts the process of 
characterisation of the workload by sending observations to the workload element. This 
component selects a more limited range of DBMS metrics that are the most effective at 
capturing the variability in performance as well as the differentiating features for various 
workloads. The next step is for the knob identification element to produce a ranked group 
of the knobs that have the greatest impact on the performance of the DBMS. After that, 
each and every piece of data is delivered to the automatic tuner by the proposed system. 
This component uses the most comparable workload data from its data repository to 
generate more optimal system configurations by mapping the workload of the target 
DBMS to that workload. 
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Figure 2 ML pipeline (see online version for colours) 

 

Workload characterisation 

The proposed technique uses the internal runtime metrics of the DBMS to characterise 
the behaviour of a workload. These metrics provide a true picture of a task since they 
adequately capture the behaviour shown by a work while it is being carried out. Many of 
the metrics, however, are redundant; some of them are the same measurement recorded in 
different units, while others represent separate DBMS components with unique but 
closely related values. Some of these metrics are documented in the table below. It is 
essential to get rid of duplicate measurements since doing so will make ML models that 
make use of such measures simpler. We organise the DBMS’s metrics into clusters 
according to the correlation patterns between them. After that, we choose one metric to 
be indicative of each cluster, especially the one that is located in the most central position 
inside the cluster. These measurements are used by subsequent parts of the ML process. 

Knob identification 

there may be hundreds of knobs on a DBMS, but only a subset of those knobs affect the 
performance of the DBMS. The proposed system employs a well-known feature-selection 
technique called Lasso to identify which knobs significantly affect the system’s 
performance. By employing this technique to the information contained in its repository, 
the proposed system establishes the hierarchy of importance of the DBMS’s knobs. 

The proposed system then has to determine how many of the knobs to use in order to 
make configuration recommendations. The amount of time required to optimise the 
suggested system is significantly increased when an excessive number of them are used. 
Using an insufficient number of them may make it impossible for the proposed system to 
locate the optimal configuration. The proposed system takes an incremental approach to 
automating this process in order to achieve this goal. The total number of knobs needed 
in the tuning procedure eventually increases. This approach allows the suggested system 
to study and fine-tune the configuration for a small number of the system’s most crucial 
knobs before extending its scope to include other factors. 

Automatic tuner 

Following the end of each observation period, the automated tuning component does a 
two-step analysis to decide which configuration the suggested system should suggest. 
The system starts out by looking at the performance information for the metrics that were 
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chosen to make up the workload characterisation component. In doing so, it is able to 
identify which workload from a prior tuning session most closely resembles the workload 
of the target DBMS. To identify whether workloads respond similarly to different knob 
settings, the metrics from the present session are compared to the data from earlier 
workloads. 

After that, the algorithm selects another knob setup to test out. In addition to the data 
from the repository entry that corresponds to the workload that is the most similar, it then 
applies a statistical model to the data it has already collected. Because of this model, the 
proposed system is able to make accurate predictions on how effectively the DBMS 
would function with each of the available configurations. The suggested method 
optimises the following configuration by making a trade-off between exploration and 
exploitation. 

4 Results and discussion 

Because runtime performance is not a primary concern for the workload characterisation 
and knob recognition elements, we used scikit-learn to implement the ML algorithms that 
correspond to those components. These algorithms are executed in the background as 
processes, and they incorporate new data in the repository of the proposed system 
whenever it is made available. 

The ML algorithms are located on the crucial route for the Automatic Tuner. They are 
run after each observation time, including fresh data in order for the proposed system to 
choose a knob configuration to test out next, and they do this after each observation 
period. TensorFlow was used in the implementation of these algorithms since we were 
concerned about how well they performed. We combined the controller of the proposed 
system with the OLTP-Bench benchmarking framework in order to gather information on 
the hardware, knob settings, and runtime performance metrics of the DBMS. Figure 3 
displays the performance metrics of various types of ML algorithms 

Figure 3 Accuracy comparison of various ML algorithms (see online version for colours) 
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5 Experiment design 

We used the ideal configuration selected by the suggested method to evaluate the 
effectiveness of MySQL and Postgres with the following: 

• Default: the settings that the DBMS makes accessible. 

• Tuning script: the configuration that an open-source tuning advisor tool had 
generated. 

• DBA: The configuration that was selected manually by a DBA. 

• RDS: The deployment of the configuration, which is tailored for the DBMS and uses 
the same EC2 instance type. Amazon RD is in charge of this setup. 

The Amazon EC2 Spot Instances served as the testing ground for all of our procedures. 
Each experiment was carried out on two separate instances, one of which served as the 
controller for the proposed system, and the other as the target DBMS deployment. Big 
and m3.xlarge are the appropriate instance types for this instance size. We used the M4 
rifle. The tuning manager and data repository for the suggested system were installed on 
a local server with 20 processor cores and 128 gigabytes of RAM. We used the TPC-C 
workload, which is the industry standard for evaluating workloads for such systems, to 
assess the performance of online transaction processing (OLTP) systems. 

6 Evaluation 

In this experiment, we used MySQL and Postgres as our databases. We measured the 
latency and throughput of both of these databases. The findings are presented in the 
graphs that follow. The ‘worst case’ time it takes for a transaction to be completed is 
shown by the first graph, which shows the latency that corresponds to the 99th percentile. 
The results for throughput are shown in Figure 4 and Figure 5, which were calculated by 
adding up the usual number of transactions completed per second, are shown in the 
second graph. 

Figure 4 Latency time and throughput time (see online version for colours) 
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Figure 5 Latency time and throughput time (see online version for colours) 

 

7 MySQL results 

The solution that is being suggested may also create a configuration that is almost as 
excellent as the one chosen by the DBA. MySQL’s overall performance for the TPC-C 
workload can be significantly altered by turning only a few of its knobs. Each of these 
knobs can benefit from the optimal settings that are provided by the configurations that 
are produced by the proposed system and the DBA. Because it offers a setting that is less 
than ideal for one of the knobs, RDS performs marginally less well. Because the tuning 
script simply changes one knob, its performance is at its lowest point. 

8 Postgres results 

The configurations produced by the proposed system, the tuning tool, the DBA, and RDS 
all provide improvements in latency that are equivalent to those made by Postgres’ 
default settings. This is most likely due to the cost involved by the repeated network 
round trips required to communicate between the OLTP-Bench client and the DBMS. 
With the configuration recommended by the proposed system, Postgres performs around 
12% better in terms of throughput than it does with the settings picked by the DBA and 
the tuning script, and about 32% better than RDS. Similar to MySQL, Postgres’ 
performance may be significantly changed by adjusting a few knobs. The configurations 
produced by the proposed system, the DBA, the tuning script, and the RDS were used to 
change these knobs; for the most part, these configurations offered values that were 
suitable. 

9 Conclusions 

Finding appropriate values for the configuration knobs of a DBMS can now be done 
quickly and easily with the help of the approach that has been suggested. It recycles 
training data obtained from earlier tuning sessions so that it may tune fresh installations 
of the DBMS. Tuning time is considerably cut down on account of the fact that the 
suggested system does not need the generation of an initial dataset in order to train its ML 
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models. In order to support the growing number of DBaaS installations, the proposed 
system will soon be able to automatically identify the hardware capabilities of the target 
DBMS without requiring remote access. These deployments don’t allow for remote 
access to the machine that hosts the DBMS. Existing works are notoriously difficult to 
complete in a timely manner. Therefore, the method that has been provided is still strong 
for an ADS and for attacks that only have a short amount of time. 
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